<b>The influence of nonlinear trends on the power of the trend-free pre-whitening approach
Resumo
The Mann-Kendall test has been widely used to detect trends in agro-meteorological as well as hydrological time series. Trend-free pre-whitening (TFPW-MK) is an approach that improves the performance of this test in the presence of serial correlation. The main goal of this study was to evaluate the ability of TFPW-MK to detect nonlinear trends. As a case study, this approach was also applied to 10-day values of precipitation (P), potential evapotranspiration (PE) and the difference between P and PE (P- PE) obtained from the weather station of Ribeirão Preto, State of São Paulo, Brazil. The results obtained from Monte Carlo simulations indicate that upward convex trends increase the power of this test, while upward concave trends decrease its power. The results obtained from the location of Ribeirão Preto reveal an increasing pressure on agricultural water management due to growing PE values. Thus, we conclude that the power of the TFPW-MK is affected by the shape of the trend and that the hypothesis of the absence of climate change in the abovementioned location cannot be accepted.
Downloads
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.