Isolation and characterization of Bacillus thuringiensis strains active against Elasmopalpus lignosellus (Zeller, 1848) (Lepidoptera, Pyralidae)

Janaina Zorzetti, Ana Paula Scaramal Ricietto, Fernanda Aparecida Pires Fazion, Ana Maria Meneguim, Pedro Manuel Oliveira Janeiro Neves, Gislayne Trindade Vilas-Bôas

Resumo


 

Elasmopalpus lignosellus (Zeller, 1848) (Lepidoptera, Pyralidae) is an insect pest of 60 economically important crops, including sugarcane, wheat, soybean, rice, beans, sorghum, peanuts, and cotton. The aim of this work was to select and characterize Bacillus thuringiensis isolates with insecticidal activity against E. Lignosellus that could be used as an alternative method of control. Selective bioassays were done to evaluate the toxicity of 47 isolates against first instar larvae of E. lignosellus. For the most toxic bacterial strains, the lethal concentration (LC50) was estimated and morphological, biochemical and molecular methods were used to characterize the isolates. Among the 47 isolates tested, 12 caused mortality above 85% and showed LC50 values from 0.038E+8 to 0.855E+8 spores mL-1. Isolates BR83, BR145, BR09, BR78, S1534, and S1302 had the lowest LC50 values and did not differ from the standard HD-1 strain; the exception was BR83.The protein profiles produced bands with molecular masses of 60-130 kDa. The genes cry1, cry2, cry3, and cry11 were identified in the molecular characterization. The morphological analysis identified three different crystal inclusions: bipyramidal, spherical and cuboidal. Among the tested isolates, 12 isolates have potential for biotechnological control of E. Lignosellus by development of new biopesticides or genetically modified plants.

 


Palavras-chave


biological control; cry genes; entomopathogenic bacteria; lesser cornstalk borer.

Texto completo:

PDF (English) (baixado

Referências


Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 265-266.

Alper, M., Günes, H., Tatlipina, A., Çöl, B., Civelek, H. S., Özkan, C., & Poyraz, B. (2014). Distribution, occurrence of cry genes, and lepidopteran toxicity of native Bacillus thuringiensis isolated from fig tree environments in Aydın Province. Turkish Journal of Agriculture and Forestry, 38(6), 898-907.

Armengol, G., Escobar, M. C., Maldonado, M. E., & Orduz, S. (2007). Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. Journal of Applied Microbiology, 102(1), 77-88.

Arrieta, G., Hernández, A., & Espinoza, A. M. (2004). Diversity of Bacillus thuringiensis strains isolated from coffee plantations infested with the coffee berry borer Hypothenemus hampei Ferrari. Revista de Biología Tropical, 52(3), 757-764.

Bertani, G. (1951). Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62(3), 293-300.

Bravo, A., Gómez, I., Conde, J., Muñoz-Garay, C., Sánchez, J., Miranda, R., ... Soberón, M. (2004). Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta, 1667(3), 38-46.

Bravo, A., Likitvivatanavong, S., Gill, S. S., & Soberόn, M. (2011). Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, 41(7), 423-431.

Bravo, A., Sarabia, S., Lopez, L., Ontiveros, H., Abarca, C, Ortiz, A., ... Quintero, R. (1998). Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and Environmental Microbiology, 64(12), 4965-4972.

Brizzard, B. L., & Whiteley, H. R. (1988). Nucleotide sequence of an additional crystal protein gene cloned from Bacillus thuringiensis subsp. thuringiensis. Nucleic Acids Research, 16(6), 2723-2724.

Céron, J., Ortíz, A., Quintero, R., Güereca, L., & Bravo, A. (1995). Specific PCR primers directed to identify cry1 and cry3 genes within a Bacillus thuringiensis strains collection. Applied and Environmental Microbiology, 61(11), 3826-3831.

Constanski, K. C., Zorzetti, J., Vilas Bôas, G. T., Ricieto, A. P. S., Fazion, F. A. P., Vilas Boas, L. A., ... Neves, P. M. O, J. (2015). Seleção e caracterização molecular de isolados de Bacillus thuringiensis para o controle de Spodoptera spp. Pesquisa Agropecuária Brasileira, 50(8), 730-733.

Downes, F. P., & Ito, K. (2001). Compendium of methods for the microbiological examination of foods (4th ed.). Washington, DC: American Public Health Association.

Finney, D. J. (1971). Probit analysis (3rd ed.). Cambridge, UK: Cambridge University Press.

Gallo, D., Nakano, O., Neto, S. S., Carvalho, R. P. L., Batista, G. C., Filho, E. B., ... Omoto, C. (2002). Entomologia agrícola. Piracicaba, SP: Fealq.

Gill, H. K., McSorley, R., Goyal, G., & Webb, S. E. (2010). Mulch as a potential management strategy for lesser cornstalk borer, Elasmopalpus lignosellus (Insecta: Lepidoptera: Pyralidae), in bush bean (Phaseolus vulgaris). Florida Entomologist, 93(2), 183-190.

Greene, G. L., Leppla, N. C., & Dickerson, W. A. (1976). Velvetbean caterpillar: a rearing procedure and artificial medium. Journal of Economic Entomology, 69(4), 487-488.

Hernández-Rodríguez, C. S., Hernández-Martínez, P., Van Rie, J., Escriche, B., & Ferré, J. (2013). Shared midgut binding sites for Cry1A, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinian ubilalis and Spodoptera frugiperda. PLoS ONE, 8(7), e68164.

Höfte, H., & Whiteley, H. R. (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiology and Molecular Biology Reviews, 53(2), 242-255.

Ibarra, J. E., Rincón, M. C. D., Ordúz, S., Noriega, D., Benintende, G., Monnerat, R., ... Bravo, A. (2003). Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Applied and Environmental Microbiology, 69(9), 5269-5274.

Jham, G. N., Silva, A. A., Lima, E. R., & Viana, P. A. (2007). Identification of acetates in Elasmopalpulus lignosellus pheromone glands using a newly created mass spectral database and Kóvats retention indices. Química Nova, 30(4), 916-919.

Lecadet, M. M., Chaufaux, J., Ribier, J., & Lereclus, D. (1992). Construction of novel Bacillus thuringiensis strain with different insecticidal activities by transduction and transformation. Applied and Environmental Microbiology, 58(3), 840-849.

Lemes, A. R. N., Marucci, S. C., Costa, J. R. V., Alves, E. C. C., Fernandes, O. A., Lemos, M. V. F., & Desidério, J. A. (2015). Selection of strains from B. thuringiensis genes containing effective in the control of Spodoptera frugiperda. Bt Research, 6(1), 1-8.

Lereclus, D., Delécluse, A., & Lecadet, M. M. (1993). Diversity of Bacillus thuringiensis toxins and genes. In: P. F. Enwistle, J. Cory, M. Bailey, S, Higgs (Eds.), Bacillus thuringiensis, an environmental biopesticide: Theory and practice (p. 37-69). Chichester, UK: John Wiley & Son Ltd.

Li, H., Oppert, B., Higgins, R. A., Huang, F., Buschman, L. L., & Zhu, K. Y. (2005). Susceptibility of Dipel-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to individual Bacillus thuringiensis protoxins. Journal of Economic Entomology, 98(4), 1333-1340.

Ministério da Agricultura, Pecuária e Abastecimento [MAPA]. (1995). Normas e exigências para execução de testes de produtos químicos para fins de registro no MAPA. Brasília, DF: Ministério da Agricultura e Reforma Agrária.

Marra, M. C., Piggott, N. E., & Goodwin, B. K. (2010). The anticipated value of Smart Stax™ for US corn growers. AgBio Forum, 13(1), 1-12.

Menezes, R. S., Fiuza, V. D., Martins, E. S.,Praça, L. B., & Monnerat, R. G. (2010). Seleção e caracterização de estirpes de Bacillus thuringiensis tóxicas a Agrotisipsilon. Universitas Ciências da Saúde, 8(1), 1-13.

Moar, W. J., Pusztai-Carey, M., & Mack, T. P. (1995). Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis against lesser cornstalk borer (Lepidoptera: Pyralidae). Journal of Economic Entomology, 88(3), 606-609.

Monnerat, R. G., Batista, A. C., Medeiros, P. T., Martins, E., Melatti, V., Praça, L., Dumas, V., … Berry C. (2007). Screening of Brazilian Bacilus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biological Control, 41(3), 291–295.

Pardo-López, L., Soberón, M., & Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 37(1), 3-22.

Porcar, M., & Juárez-Pérez, V. (2003). PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiology Reviews, 26(5), 419-432.

Praça, L. B., Batista, A. C., Martins, E. S., Siqueira, C. B., Dias, D. G. S., Gomes, A. C. M. M., ... Monnerat, R. G. (2004). Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera. Pesquisa Agropecuária Brasileira, 39(1), 11-16.

Ricieto, A. P. S., Fazion, F. A. P., Carvalho Filho, C. D., Vilas-Boas, L. A., & Vilas-Bôas, G. T. (2013). Effect of vegetation on the presence and genetic diversity of Bacillus thuringiensis in soil. Canadian Journal of Microbiology, 59(1), 28-33.

Sanahuja, G., Banakar, R., Twyman, R. M., Capell, T., & Christou, P. (2011). Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnology Journal, 9(3), 283-300.

Santos, K., Neves, P. M. O. J., Meneguim, A. M., Santos, R. B., Santos, W. J., Vilas-Bôas, G. T., ... Monnerat, R. (2009). Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Biological Control, 50(2), 157-163.

Singsit, C., Adang, M. J., Lynch, R. E., Anderson, W. F., Wang, A., Cardineau, G., & Ozias-Akins, P. (1997). Expression of a Bacillus thuringiensis cryA(c) gene in transgenic peanut and its efficacy against lesser cornstalk borer. Transgenic Research, 6(2), 169-176.

Sun, Y., Fu, Z., Ding, X., & Xia, L. (2008). Evaluating the insecticidal genes and their expressed products in Bacillus thuringiensis strains by combining PCR with Mass Spectrometry. Appliedand Environmental Microbiology, 74(21), 6811-6813.

Viana, P. A. (2004). Lagarta-elasmo. In J. R. Salvadori, C. J. Ávila, M. T. B. Silva. (Ed.), Pragas de solo no Brasil

(p. 379-408). Passo Fundo, RS: Embrapa Trigo; Dourados, MS: Embrapa Agropecuária Oeste; Cruz Alta, RS: Fundacep Fecotrigo.

Vidal-Quist, J. C., Castañera, P., & González-Cabrera, J. (2009). Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. Journal of Microbiology and Biotechnology, 19(8), 749-759.

Vilas-Bôas, G. T., Peruca, A. P. S., & Arantes, O. M. N. (2007). Biology and taxonomy of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis. Canadian Journal of Microbiology, 53(6), 673- 687.

Vilella, F. M. F., Waquil, J. M., Vilela, E. F., Siegfried, B. D., & Foster, J. E. (2002). Selection of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) for survival on Cry 1A(b)Bt. toxin. Revista Brasileira de Milho e Sorgo, 1(1), 12-17.

Walker, D. R., All, J. N., Mcpherson, R. M., Boerma, H. R., & Parrott, W. A. (2000). Field evaluation of soybean engineered with a synthetic crylAc transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). Journal of Economic Entomology, 93(3), 613-622.




DOI: http://dx.doi.org/10.4025/actasciagron.v39i4.32707

Apontamentos

  • Não há apontamentos.






ISSN: 1679-9275 (impresso) e 1807-8621 (on-line) E-mail: actaagron@uem.br

  

Resultado de imagem para CC BY