Geochemical signatures and weathering rates in soils derived from different granites in contrasting climatic locations

Ygor Jacques Agra Bezerra da Silva, Clístenes Williams Araújo do Nascimento, Caroline Miranda Biondi, Peter van Straaten, Valdomiro Severino de Souza Júnior, Tiago Osório Ferreira

Resumo


We studied the mineralogical properties and chemical composition of different granites using energy dispersive X-ray spectroscopy coupled with scanning electron microscopy to understand the relationship between granite signatures and soil characteristics, including weathering patterns and soil fertility status. The discriminant analysis (DA) was based on soil physical and chemical properties and was used to differentiate soils developed from I- and S-type granites across contrasting climatic conditions in northeast Brazil. The DA identified the highest values of organic carbon, clay and plant nutrients as key variables to recognize soil profiles derived from I-type granites. In contrast, the greater sand contents and Al saturation distinguished soils developed from S-type granites. These results were related to the mineralogical characteristics of each granite type, such as a high percentage of silica-bearing minerals in the S-type granites. The highest concentrations of K, Ca, Mg, and P in I-type granites were found in feldspars, amphiboles, and apatite. These elements account for the majority of nutrients derived in their soil profiles. However, it seems that the harsh conditions of the humid tropical environment equalized the effect of the rocks on weathering rates-the difference in chemical index of alteration is more extreme in the dry region.

 


Palavras-chave


soil science; soil genesis; soil fertility; chemical index of alteration; northeastern Brazil.

Texto completo:

PDF (English) (baixado

Referências


Bitencourt, D. G. B., Barros, W. S., Timm, L. C., She, D., Penning, L. H., Parfitt, J. M. B., & Reichardt, K. (2016). Multivariate and geostatistical analyses to evaluate lowland soil levelling effects on physico-chemical properties. Soil & Tillage Research, 156, 63-73. DOI: 10.1016/j.still.2015.10.004

Boteva, S., Radeva, G., Traykov, I., & Kenarova, A. (2016). Effects of long-term radionuclide and heavy metal contamination on the activity of microbial communities, inhabiting uranium mining impacted soils. Environmental Science and Pollution Research, 23(6), 5644-5653. DOI: 10.1007/s11356-015-5788-5

Canosa, F., Izard, A. M., & Fuente, M. F. (2012). Evolved granitic systems as a source of rare-element deposits: The Ponte Segade case (Galicia, NW Spain). Lithos, 153, 165-176. DOI: 10.1016/j.lithos.2012.06.029

Chappell, B. W., & White, A. J. R. (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48, 489-499. DOI: 10.1016/j.lithos.2012.06.029

Chappell, B. W., Bryant, C. J., & Wyborn. D. (2012). Peraluminous I-type granites. Lithos, 153, 142-153. DOI: 10.1016/j.lithos.2012.07.008

Chung, S. Y., Venkatramanan, S., Park, N., Rajesh, R., Ramkumar, T., & Kim, B. W. (2015). An Assessment of selected hydrochemical parameter trend of the Nakdong River water in South Korea, using time series analyses and PCA. Environmental Monitoring and Assessment, 187(4192), 1-13. DOI: 10.1007/s10661-014-4192-9

Fernandez, A. L., Sheaffer, C. C., Wyse, D. L., Staley, C., Gould, T. J., & Sadowsky, M. J. (2016). Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Science of the Total Environment, 566-567, 949-959. DOI: 10.1016/j.scitotenv.2016.05.073

Foden, J., Sossi, P. A., & Wawryk, C. M. (2015). Fe isotopes and the contransting petrogenesis of A-, I- and S-type granite. Lithos, 32(44), 212-215. DOI: 10.1016/j.lithos.2014.10.015

Gontier, A., Rihs, S., Chabaux, F., Lemarchand, D., Pelt, E., & Turpault, M. P. (2015). Lack of bedrock grain size influence on the soil production rate. Geochimica et Cosmochimica Acta, 166, 146-164. DOI: 10.1016/j.gca.2015.06.010

Guan, Y., Yuan, C., Sun, M., Wilde, S., Long, X., Huang, X., & Wang, Q. (2014). I-type granitoids in the eastern Yangtze Block: implications for the Early Paleozoic intracontinental orogeny in South China. Lithos, 206(207), 34-51. DOI: 10.1016/j.lithos.2014.07.016

Guani, A. A., Searle, M., Robb, L., & Chung, S. L. (2013). Transitional I S type characteristic in the Main Range Granite. Peninsular Malaysia. Journal of Asian Earth Sciences, 76, 225-240. DOI: 10.1016/j.jseaes.2013.05.013

Gee, G. W., & Or, D. (2002). Particle size analysis. In J. H. Dane, & C. T. Topp (Ed.), Methods of soil analysis: physical methods (p. 255-289). Madison, WI: SSSA.

Haack, S. K., Duris, J. W., Kolpin, D. W., Focazio, M. J., Meyer, M. T., Johnson, H. E., … Foreman, W. T. (2016). Contamination with bacterial zoonotic pathogen genes in U.S. streams influenced by varying types of animal agriculture. Science of the Total Environment, 563-564, 340-350. DOI: 10.1016/j.scitotenv.2016.04.087

IUSS Working Group WRB. (2014). World Reference Base for Soil Resources (World Soil Resources Report No. 106). Rome, IT: FAO.

Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528(7580), 60-68. DOI: 10.1038/nature16069

Litvinovsky, B. A., Jahn, B. M., & Eyal, M. (2015). Mantle-derived sources of syenites from the A-type igneous suites - New approach to the provenance of alkaline silicic magmas. Lithos, 232, 242-265. DOI: org/10.1016/j.lithos.2015.06.008

Mareschal, L., Turpault, M. P., & Ranger, J. (2015). Effect of granite crystal grain size on soil properties and pedogenic processes along a lithosequence. Geoderma, 249(250), 12–20. DOI: 10.1016/j.geoderma.2015.02.009

Matiatos, I., Alexopoulos, A., & Ath, G. (2014). Multivariate statistical analysis of the hydrogeochemical and isotopic composition of the groundwater resources in northeastern Peloponnesus (Greece). Science of the Total Environment, 476-477(C), 577–590. DOI: 10.1016/j.scitotenv.2014.01.042

Matiatos, I. (2016). Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Science of the Total Environment, 541, 802-814. DOI: 10.1016/j.scitotenv.2015.09.134

Murphy, C. P. (1986). Thin section preparation of soils and sediments. Berkhanmsterd: Academic Publis.

Nascimento, C. W. A., Oliveira, A. B., Ribeiro, M. R., & Melo, É. E. C. (2006). Distribution and availability of zinc and copper in benchmark soils of Brazil. Communications in Soil Science and Plant Analysis, 37(1-2), 109-125. DOI: 10.1080/00103620500403895

National Institute of Standards and Technology [NIST]. (2002). Standard Reference Materials -SRM 2709, 2710 and 2711. Addendum Issue Date: 18 January, 2002.

Nekoeinia, M., Mohajer, R., Salehi, M. H., & Moradlou, O. (2016). Multivariate statistical approach to identify metal contamination sources in agricultural soils around Pb–Zn mining area, Isfahan province, Iran. Environmental Earth Sciences, 75, 760-770. DOI: 10.1007/s12665-016-5597-2

Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715-717. DOI: 10.1038/299715a0

Robinson, F. A., Foden, J. D., & Collins, A. S. (2015). Geochemical and isotopic constraints on island arc, synorogenic, post-orogenic and anorogenicgranitoids in the Arabian Shield, Saudi Arabia. Lithos, 220(223), 97-115. DOI: 10.1016/j.lithos.2015.01.021

Rojas, J. M., Prause, J., Sanzano, G. A., Arce, O. E. A., & Sánchez, M. C. (2016). Soil quality indicators selection by mixed models and multivariate techniques in deforested areas for agricultural use in NW of Chaco, Argentina. Soil & Tillage Research, 155, 250–262. DOI: 10.1016/j.still.2015.08.010

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49-56. DOI: 10.1038/nature10386

Silva, T. R., Ferreira, V. P., Lima, M. M. C., Sial, A. N., & Silva, J. M. R. (2015). Synkinematic emplacement of the magmatic epidote bearing Major Isidoro tonalite-granite batholith: Relicts of an Ediacaran continental arc in the Pernambuco-Alagoas domain, Borborema Province, NE Brazil. Journal of South American Earth Sciences, 64, 1-13. DOI: 10.1016/j.jsames.2015.09.002

Silva, Y. J. A. B., Nascimento, C. W. A., Biondi, C. M., Van Straaten, P., Souza Júnior, V. S., & Ferreira, T. O. (2016). Weathering rates and carbon storage along a climosequence of soils developed from contrasting granites in northeast Brazil. Geoderma, 284, 1-12. DOI: 10.1016/j.geoderma.2016.08.009

Silva, Y. J. A. B., Nascimento, C. W. A., Van Straaten, P., Biondi, C. M., Souza Júnior, V. S., & Silva, Y. J. A. B. (2017). Effect of I and S type granite parent material mineralogy and geochemistry on soil fertility: a multivariate statistical and gis-based approach. Catena, 149, 64–72. DOI: 10.1016/j.catena.2016.09.001

Taboada, T., Rodríguez-Lado, L., Ferro-Vázquez, C., Stoops, G., & Cortizas, A. M. (2016). Chemical weathering in the volcanic soils of Isla Santa Cruz (Galápagos Islands, Ecuador). Geoderma, 261, 160–168. DOI: 10.1016/j.geoderma.2015.07.019

Taiti, C., Giorni, E., Colzi, I., Pignattelli, S., Bazihizina, N., Buccianti, A., … Gonnelli, C. (2016). Under fungal attack on a metalliferous soil: ROS or not ROS? Insights from Silene paradoxa L. growing under copper stress. Environmental Pollution, 210, 282-292. DOI: 10.1016/j.envpol.2015.12.020

Thivya, C., Chidambaram, R., Thilagavathi, R., Prasanna, M. V., Singaraja, C., Adithya, V. S., & Nepolian, M. (2015). A multivariate statistical approach to identify the spatio-temporal variation of geochemical process in a hard rock aquifer. Environmental Monitoring and Assessment, 187(9), 552-571. DOI: 10.1007/s10661-015-4738-5

Valaee, M., Ayoubi, S., Khormali, F., Lu, S. G., & Karimzadeh, H. R. (2016). Using magnetic susceptibility to discriminate between soil moisture regimes in selected loess and loess-like soils in northern Iran. Journal of Applied Geophysics, 127, 23-30. DOI: 10.1016/j.jappgeo.2016.02.006

Van Schmus, W. R., Oliveira, E. P., Silva, A. F. F., Toteu, S. F., Penaye, J., & Guimarães, I. P. (2008). Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. Geological Society of London, 294, 69–99. DOI: 10.1144/SP294.5

Vilalva, F. C. J., Vlach, S. R. F., & Simonetti, A. (2016). Chemical and O-isotope compositions of amphiboles and clinopyroxenes from A-type granites of the Papanduva Pluton, South Brazil: Insights into late- to post-magmatic evolution of peralkaline systems. Chemical Geology, 420, 186–199. DOI: 10.1016/j.chemgeo.2015.11.019

Wang, X. S., Hu, R. Z., Bi, X. W., Leng, C. B., Panl, C., Zhu, J. J., & Chen, Y. W. (2014). Petrogenesis of Late Cretaceous I-type granites in the southern YidunTerrane: New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau. Lithos, 208-209, 202-219. DOI: 10.1016/j.lithos.2014.08.016

Wang, Z., Wang, J., Deng, Q., Du, Q., Zhou, X., Yang, F., & Liu, H. (2015). Paleoproterozoic I-type granites and their implications for the Yangtze block position in the Columbia supercontinent: Evidence from the Lengshui Complex. South China. Precambrian Research, 263(C), 157-173. DOI: 10.1016/j.precamres.2015.03.014

Yeomans, J. C., & Bremner, J. M. (1988). A rapid and prec 9,ise method for routine determination of organic carbon in soil. Communications in Soil Science and Plant Analysis, 19(13), 1467-1476. DOI: 10.1080/00103628809368027

Zhang, X., Qian, H., Chen, J., & Qiao, L. (2014). Assessment of groundwater chemistry and status in a heavily used semi-arid region with multivariate statistical analysis. Water, 6, 2212-2232. DOI: 10.3390/w6082212

Zhao, X. F., Zhou, M. F., Li, J. W., & Wu, F. Y. (2008). Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in asubduction-related environment. Chemical Geology, 257, 1-15. DOI: 10.1016/j.chemgeo.2008.07.018




DOI: http://dx.doi.org/10.4025/actasciagron.v41i1.39708

Apontamentos

  • Não há apontamentos.




Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.

ISSN: 1679-9275 (impresso) e 1807-8621 (on-line) E-mail: actaagron@uem.br

  

Resultado de imagem para CC BY