Multivariate adaptive regression splines (MARS) applied to daily reference evapotranspiration modeling with limited weather data

Resumo

Estimation of reference evapotranspiration (ETo) is very relevant for water resource management. The Penman-Monteith (PM) equation was proposed by the Food and Agriculture Organization (FAO) as the standard method for estimation of ETo. However, this method requires various weather data, such as air temperature, wind speed, solar radiation and relative humidity, which are often unavailable. Thus, the objective of this study was to compare the performance of multivariate adaptive regression splines (MARS) and alternative equations, in their original and calibrated forms, to estimate daily ETo with limited weather data. Daily data from 2002 to 2016 from 8 Brazilian weather stations were used. ETo was estimated using empirical equations, PM equation with missing data and MARS. Four data availability scenarios were evaluated as follows: temperature only, temperature and solar radiation, temperature and relative humidity, and temperature and wind speed. The MARS models demonstrated superior performance in all scenarios. The models that used solar radiation showed the best performance, followed by those that used relative humidity and, finally, wind speed. The models based only on air temperature had the worst performance.

Downloads

Não há dados estatísticos.

Referências

Alencar, L. P., Sediyama, G. C., & Mantovani, E. C. (2015). Estimativa da evapotranspiração de referência (ETo padrão FAO), para Minas Gerais, na ausência de alguns dados climáticos. Engenharia Agrícola, 35(1), 39–50. DOI: 10.1590/1809-4430-Eng.Agric.v35n1p39-50/2015

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. Rome, IT: FAO Irrigation and drainage paper 56.

Almorox, J., Quej, V. H., & Martí, P. (2015). Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. Journal of Hydrology, 528(C), 514–522. DOI: 10.1016/j.jhydrol.2015.06.057

Almorox, J., Senatore, A., Quej, V. H., & Mendicino, G. (2018). Worldwide assessment of the Penman–Monteith temperature approach for the estimation of monthly reference evapotranspiration. Theoretical and Applied Climatology, 131(1-2), 693-703. DOI: 10.1007/s00704-016-1996-2

Antonopoulos, V. Z., & Antonopoulos, A. V. (2017). Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Computers and Electronics in Agriculture, 132, 86–96. DOI: 10.1016/j.compag.2016.11.011

Cheng, M.-Y., & Cao, M. (2014). Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Applied Soft Computing, 22, 178–188. DOI: 10.1016/j.asoc.2014.05.015

Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Célleri, R. (2015). Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Mountain Research and Development, 35(3), 230–239. DOI: 10.1659/MRD-JOURNAL-D-14-0024.1

Cunha, F. F., Magalhães, F. F., & Castro, M. A. (2013). Métodos para estimativa da evapotranspiração de referência para Chapadão do Sul - MS. Engenharia na Agricultura, 21(2), 159–172. DOI: 10.1111/j.1365

Djaman, K., Irmak, S., & Futakuchi, K. (2017). Daily Reference Evapotranspiration Estimation under Limited Data in Eastern Africa. Journal of Irrigation and Drainage Engineering, 143(4), 6016015. DOI: 10.1061/(ASCE)IR.1943-4774.0001154

Feng, Y., Cui, N., Zhao, L., Hu, X., & Gong, D. (2016). Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. Journal of Hydrology, 536, 376–383. DOI: 10.1016/j.jhydrol.2016.02.053

Feng, Y., Jia, Y., Cui, N., Zhao, L., Li, C., & Gong, D. (2017). Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agricultural Water Management, 181, 1–9. DOI: 10.1016/j.agwat.2016.11.010

Fernandes, L. C., Paiva, C. M., & Rotunno Filho, O. C. (2012). Evaluation of six empirical evapotranspiration equations - case study: Campos dos Goytacazes/RJ. Revista Brasileira de Meteorologia, 27(3), 272–280. DOI: 10.1590/S0102-77862012000300002

Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1), 1–67. DOI: 10.1214/aos/1176347963

Gao, X., Peng, S., Xu, J., Yang, S., & Wang, W. (2015). Proper methods and its calibration for estimating reference evapotranspiration using limited climatic data in Southwestern China. Archives of Agronomy and Soil Science, 61(3), 415–426. DOI: 10.1080/03650340.2014.933810

Gocic, M., Petković, D., Shamshirband, S., & Kamsin, A. (2016). Comparative analysis of reference evapotranspiration equations modelling by extreme learning machine. Computers and Electronics in Agriculture, 127(C), 56–63. DOI: 10.1016/j.compag.2016.05.017

Hargreaves, G. H., & Samani, Z. A. (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2), 96–99. DOI: 10.13031/2013.26773

Jensen, M. E., & Haise, H. R. (1963). Estimating evapotranspiration from solar radiation. Journal of the Irrigation and Drainage Division ASCE, 89(1), 15-41.

Kisi, O. (2015). Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology, 528, 312–320. DOI: 10.1016/j.jhydrol.2015.06.052

Koc, E. K., & Bozdogan, H. (2015). Model selection in multivariate adaptive regression splines (MARS) using information complexity as the fitness function. Machine Learning, 101(1-3), 35-58. DOI: 10.1007/s10994-014-5440-5

Liu, X., Xu, C., Zhong, X., Li, Y., Yuan, X., & Cao, J. (2017). Comparison of 16 models for reference crop evapotranspiration against weighing lysimeter measurement. Agricultural Water Management, 184(C), 145–155. DOI: 10.1016/j.agwat.2017.01.017

Makkink, G. F. (1957). Testing the Penman formula by means of lysimeters. Journal Inst. Water Engineering, 11(3), 277–288.

Mehdizadeh, S., Behmanesh, J., & Khalili, K. (2017). Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and Electronics in Agriculture, 139, 103–114. DOI: 10.1016/j.compag.2017.05.002

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., & Loumagne, C. (2005). Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling. Journal of Hydrology, 303(1–4), 290–306. DOI: 10.1016/j.jhydrol.2004.08.026

Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 147, 4-20. DOI: 10.1016/j.agwat.2014.07.031

Raziei, T., & Pereira, L. S. (2013). Estimation of ETo with Hargreaves-Samani and FAO-PM temperature methods for a wide range of climates in Iran. Agricultural Water Management, 121, 1–18. DOI: 10.1016/j.agwat.2012.12.019

Sentelhas, P. C., Gillespie, T. J., & Santos, E. A. (2010). Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agricultural Water Management, 97(5), 635–644. DOI: 10.1016/j.agwat.2009.12.001

Shiri, J. (2017). Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran. Agricultural Water Management, 188(C), 101–114. DOI: 10.1016/j.agwat.2017.04.009

Tabari, H., Grismer, M. E., & Trajkovic, S. (2013). Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrigation Science, 31(2), 107-117. DOI: 10.1007/s00271-011-0295-z

Tabari, H., Kisi, O., Ezani, A., & Talaee, P. H. (2012). SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology, 444–445, 78–89. DOI: 10.1016/j.jhydrol.2012.04.007

Talaee, P. H. (2014). Performance evaluation of modified versions of Hargreaves equation across a wide range of Iranian climates. Meteorology and Atmospheric Physics, 126(1-2), 65–70. DOI: 10.1007/s00703-014-0333-5

Valiantzas, J. D. (2013). Simplified forms for the standardized FAO-56 Penman-Monteith reference evapotranspiration using limited weather data. Journal of Hydrology, 505, 13–23. DOI: 10.1016/j.jhydrol.2013.09.005

Yassin, M. A., Alazba, A. A., & Mattar, M. A. (2016). Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agricultural Water Management, 163(C), 110–124. DOI: 10.1016/j.agwat.2015.09.009

Publicado
2019-03-13
Como Citar
Ferreira, L. B., Duarte, A. B., Cunha, F. F. da, & Fernandes Filho, E. I. (2019). Multivariate adaptive regression splines (MARS) applied to daily reference evapotranspiration modeling with limited weather data. Acta Scientiarum. Agronomy, 41(1), e39880. https://doi.org/10.4025/actasciagron.v41i1.39880
Seção
Engenharia Agrícola

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus