Dynamics of proteins, carbohydrates and global DNA methylation patterns during induction of nodular cluster cultures from seeds of Vriesea reitzii
Resumo
Tissue culture techniques have been employed for bromeliad mass propagation by means of the morphogenetic route of nodular cluster cultures (NCs). This study aimed to assess protein, carbohydrate and global DNA methylation (GDM) level dynamics during NCs induction from Vriesea reitzii seeds. Seeds were inoculated into Murashige and Skoog (MS) liquid medium supplemented with 4 µM α-naphthaleneacetic acid (NAA) to induce NCs and in culture medium without plant growth regulators to form normal seedlings. Samples collected at 0, 3, 7, 10, 14, and 21 days of culture were analyzed. All parameters assessed showed the same variation pattern. However, seeds inducing NCs showed significantly lower starch (6.0 mg g-1 FM), carbohydrate (10.7 mg g-1 FM) and GDM (11.0%) levels than seeds forming normal seedlings after 21 days in culture. On the other hand, the protein content (9.1 mg g-1 FM) was significantly higher during induction. NCs induction process through seeds is the result of gene reprogramming in the explant, which leads to morphological, biochemical and metabolic alterations. This involves dedifferentiation, high cell proliferation, high energy demand and protein synthesis, which is related to elevated metabolic activity.
Downloads
Referências
Alves, G., Dal Vesco, L. L., & Guerra, M. P. (2006). Micropropagation of the Brazilian endemic bromeliad Vriesea reitzii trough nodule clusters culture. Scientia Horticulturae, 110(2), 204-207. DOI: 10.1016/j.scienta.2006.06.014
Benzing, D. H. (2000). Bromeliaceae: Profile of an adaptive radiation. New York, US: Cambridge University Press.
Bewley, J. (1997). Seed germination and dormancy. Plant Cell, 9(7), 1055-1066. DOI: 10.1105/tpc.9.7.1055
Cangahuala-Inocente, G. C., Silveira, V., Caprestano, C. A., Floh, E. I. S., & Guerra, M. P. (2014). Dynamics of physiological and biochemical changes during somatic embryogenesis of Acca sellowiana. In Vitro Cellular & Developmental Biology - Plant, 50(2), 166-175. DOI: 10.1007/s11627-013-9563-3
Cantón, F. R., Suárez, M. F., & Cánovas, F. M (2005). Molecular aspects of nitrogen mobilization and recycling in trees. Photosynthesis Research, 83(2), 265-278. DOI: 10.1007/s11120-004-9366-9
Carpentier, S. C., Witters, E., Laukens, K., Deckers, P., Swennen, R., & Panis, B. (2005). Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics, 5(10), 2497-2507. DOI: 10.1002/pmic.200401222
Chu, E. P., Tavares, A. R., Kanashiro, S., Giampaoli, P., & Yokota, E. S. (2010). Effects of auxins on soluble carbohydrates, starch and soluble protein content in Aechmea blanchetiana (Bromeliaceae) cultured in vitro. Scientia Horticulturae, 125(3), 451-455. DOI: 10.1016/j.scienta.2010.04.021
Corredor-Prado J. P., De Conti, D., Cangahuala-Inocente G., Guerra, M. P., Dal Vesco, L. L., & Pescador, R. (2016). Proteomic analysis in the induction of nodular cluster cultures in the bromeliad Vriesea reitzii Leme and Costa. Acta Physiologiae Plantarum, 38(5), 1-10. DOI: 10.1007/s11738-016-2140-8
Corredor-Prado J. P., Schmidt, E. C., Steinmacher, D., Guerra, M. P., Bouzon, Z. L., Dal Vesco, L. L., & Pescador, R. (2014). Seed morphology of Vriesea friburgensis var. paludosa L.B. Sm. (Bromeliaceae). Hoehnea, 41(4), 553-562. DOI: 10.1590/2236-8906-08/2013
Corredor-Prado J. P., Schmidt E. C., Guerra M. P., Bouzon, Z. L., Dal Vesco, L. L., & Pescador, R. (2015). Histodifferentiation and ultrastructure of nodular cultures from seeds of Vriesea friburgensis Mez var. paludosa (L.B. Smith) L.B. Smith and leaf explants of Vriesea reitzii Leme & A. Costa (Bromeliaceae). Journal of Microscopy and Ultrastructure, 3(4), 200-209. DOI: 10.1016/j.jmau.2015.04.001
Dal Vesco L. L., & Guerra, M. P. (2010). In vitro morphogenesis and adventitious shoot mass regeneration of Vriesea reitzii from nodular cultures. Scientia Horticulturae, 125(4), 748–755. DOI: 10.1016/j.scienta.2010.05.030
Dal Vesco, L. L., Pescador, R., Corredor Prado, J. P., Welter, L. J., & Guerra, M. P. (2014a). In vitro propagation of Vriesea reitzii, a native epiphyte bromeliad from the Atlantic rainforest. Acta Scientiarum. Biological Sciences, 36(3), 271-278. DOI: 10.4025/actascibiolsci.v36i3.21006
Dal Vesco, L. L., Vieira, P. M., Corredor Prado, J. P., Pescador, R., Guerra, M. P., & Elter, L. J. (2014b). Induction and development of nodular cluster cultures in Vriesea reitzii (Leme and Costa), an endangered bromeliad from the Brazilian Atlantic Forest. Journal of Horticultural Science and Biotechnology, 89(5), 542-548. DOI: 10.1080/14620316.2014.11513118
Dal Vesco, L. L., Stefenon, V. M., Welter, L. J., Guerra, M. P., & Scherer, R. F. (2011). Induction and scale-up of Billbergia zebrina nodule cluster cultures: Implications for mass propagation, improvement and conservation. Scientia Horticulturae, 128(4), 515-522. DOI: 10.1016/j.scienta.2011.02.018
Dal Vesco, L. L., Stefenon, V. M., Welter, L. J., Steiner, N. & Guerra, M. P. (2012). Conservation of Billbergia zebrina genetic resources: AFLP polymorphism of in vitro regenerated genotypes. Plant Genetic Resources, 10(1), 20-23. DOI: 10.1017/S1479262111000918
Doyle, J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13-15.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugar and related substances. Analytical Chemistry, 28(3), 350-256.
Fait, A., Angelovici, R., Less, H., Ohad, I., Urbanczyk-Wochniak, E., Fernie, A. R., & Galili, G. (2006). Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiology, 142(3), 839-854. DOI: 10.1104/pp.106.086694
Finnegan, E. F. (2010). DNA methylation: A dynamic regulator of genome organization and gene expression in plants. In E. C. Pua, & M. Davey (Eds.), Plant developmental biology – Biotechnological perspectives (p. 295-323). Berlin, GE: Springer.
Fraga, H. P. F., Vieira, L. N., Caprestano, C. A., Steinmacher, D. A., Micke, G. A., Spudeit, D.,A., Pescador, R., & Guerra, M. P. (2012). 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant Cell Reports, 31(12), 2165-2176. DOI: 10.1007/s00299-012-1327-8
Fraga, H. P. F., Vieira, L. N., Heringer, A. S., Puttkammer, C. C., Silveira, V., & Guerra, M. P. (2016). DNA methylation and proteome profiles of Araucaria angustifolia (Bertol.) Kuntze embryogenic cultures as affected by plant growth regulators supplementation. Plant Cell, Tissue and Organ Culture, 125(2), 353-374. DOI: 10.1007/s11240-016-0956-y
Guerra, M. P., & Dal Vesco, L. L. (2010). Protocols for in vitro propagation of ornamental plants. Business, 589(1), 47-66. DOI: 10.1007/978-1-60327-114-1
Halford, N. G. (2010). Photosynthate Partitioning. (v. 2). In E. C. Pua, & M. R.Davey (Eds.), Plant developmental biology - Biotechnological perspectives (p. 67–82). Berlin,GE: Springer.
Howell, K. A., Narsai, R., Carroll, A., Ivanova, A., Lohse, M., Usadel, B., Harvey Millar, A., & Whelan, J. (2009). Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiology, 149(2), 961-980. DOI: 10.1104/pp.108.129874
Lechat, M. M., Brun, G., Montiel, G., Véronési, C., Simier, P., Thoiron, S., Pouvreau, J. B., & Delavault, P. (2015). Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. Journal of Experimental Botany, 66(11), 3129-3140. DOI: 10.1093/jxb/erv119
Leme, E M. C., & Costa, A. (1991) A new species from southern Brazil: a tribute to Father Raulino. Journal of The Bromeliad Society, 41(5), 195-198.
LoSchiavo F, Pitto L, Giuliano G., Torti, G., Nuti-Ronchi, V., Marazziti, D., Vergara, R., ..., Terzi, M. (1989). DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theoretical and Applied Genetics, 77(3), 325-331. DOI: 10.1007/BF00305823
Lu, G., Wu, X., Chen, B., Gao, G., Xu, K., & Li, X. (2006). Detection of DNA methylation changes during seed germination in rapeseed (Brassica napus). Chinese Science Bulletin, 51(2), 182-190. DOI: 10.1007/s11434-005-1191-9
Magalhães, R. I., & Mariath, J. E. A. (2012). Seed morphoanatomy and its systematic relevance to Tillandsioideae (Bromeliaceae). Plant Systematics and Evolution, 298(10), 1881-1895. DOI: 10.1007/s00606-012-0688-3
Marsch-Martínez, N., & Pereira, A. (2010). Activation tagging for gain-of-function mutants (v. 2). In E. C Pua, & Davey M. (Eds.), Plant developmental biology - Biotechnological perspectives (p. 345-370). Berlin, GE: Springer.
Martin, A. B., Cuadrado, Y., Guerra, H., Galeggo, P., Hita, O., Martin, L., Dourado, A., & Villalobos, N. (2000). Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant Science, 154(2), 143-151. DOI: 10.1016/S0168-9452(99)00251-4
McCready, R. M., Guggolz, J., Siliviera, V., & Owens, H. S. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22(9), 1156-1158. DOI: 10.1021/ac60045a016
Meng, F. R., Li, Y. C., Yin, J., Liu, H., Chen, X. J., Ni, Z. F., & Sun, Q. X. (2012). Analysis of DNA methylation during the germination of wheat seeds. Biologia Plantarum, 56(2), 269-275. DOI: 10.1007/s10535-012-0086-2
Miguel, C., & Marum, L. (2011). An epigenetic view of plant cells cultured in vitro: Somaclonal variation and beyond. Journal of Experimental Botany, 62(11), 3713-3725. DOI: 10.1093/jxb/err155
Morel, A., Trontin, J. F., Corbineau, F., Lomenech, A. M., Beaufour, M., Reymond, I., Le Metté, C., ... Lelu-Walter, M. A. (2014). Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: biological, carbohydrate and proteomic analyses. Planta, 240(5), 1075-1095. DOI: 10.1007/s00425-014-2125-z
Msogoya, T. J., Grout, B. W., & Roberts, A. (2011). Reduction in genome size and DNA methylation alters plant and fruit development in tissue culture induced off-type banana (Musa spp.). Journal of Animal and Plant Sciences, 11(3), 1450-1456.
Neelakandan, A. K., & Wang, K. (2012). Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Report, 31(4), 597-620. DOI: 10.1007/s00299-011-1202-z
Negrelle, R. R. B., Mitchell, D., & Anacleto, A. (2012). Bromeliad ornamental species: conservation issues and challenges related to commercialization. Acta Scientiarum. Biological Sciences, 34(1), 91-100. DOI: 10.4025/actascibiolsci.v34i1.7314
Noceda, C., Salaj, T., Pérez, M., Canal, M. J., Rodrigues, R., Viejo, M., & Salaj, J. (2009). DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. cell culture. Trees, 23(6), 1285-1293. DOI: 10.1007/s00468-009-0370-8
Pérez, M., Viejo, M., LaCuesta, M., Toorop, P., & Canal, M. J., (2015). Epigenetic and hormonal profile during maturation of Quercus Suber L. somatic embryos. Journal of Plant Physiology, 173(1), 51-61. DOI: 10.1016/j.jplph.2014.07.028
Perrot-Rechenmann, C. (2010). Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspectives in Biology, 2(5), a001446. DOI: 10.1101/cshperspect.a001446
Portis, E., Acquadro, A., Comino, C., & Lanteri, S. (2004). Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Science, 166(1), 169-178. DOI: 10.1016/j.plantsci.2003.09.004
Scherer, R. F., Fraga, H. P. F., Klabunde, G, F., Silva, D. A., & Guerra, M. P. (2015). Global DNA methylation levels during the development of nodule cluster cultures and assessment of genetic fidelity of in vitro-regenerated pineapple plants (Ananas comosus var. comosus). Journal of Plant Growth Regulation, 34(3), 677-683. DOI: 10.1007/s00344-015-9493-x
Scherer, R. F., Garcia, A. C., Fraga, H. P. D. F., Dal Vesco, L. L., Steinmacher, & Guerra, M. P. (2013). Nodule cluster cultures and temporary immersion bioreactors as a high performance micropropagation strategy in pineapple (Ananas comosus var. comosus). Scientia Horticulturae, 151(1), 38-45. DOI: 10.1016/j.scienta.2012.11.027
Shan, X., Wang, X., Yang, G., Wu, Y., Su, S., Li, S., Liu, H., & Yuan, Y. (2013). Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. Journal of Plant Biology, 56(1), 32-38. DOI: 10.1007/s12374-012-0251-3
Silveira, V., Floh, S., Handro, W., & Guerra, M. P. (2004). Effect of plant growth regulators on the cellular growth and levels of intracellular protein, starch and polyamines in suspension cultures of Pinus taeda. Plant Cell, Tissue and Organ Culture, 76(1), 53-60.
Sreenivasulu, N., Usadel, B., Winter, A., Radchuk, V., Scholz, U., Stein, N., Weschke, W., ... Wobus, U. (2008). Barley grain maturation and germination: Metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiology, 146(4), 1738-1758. DOI: 10.1104/pp.107.111781
Stone, S. L., & Gifford, D. J. (1999). Structural and biochemical changes in loblolly pine (Pinus taeda L.) seeds during germination and early-seedling growth. II. Storage triacylglycerols and carbohydrates. International Journal of Plant Sciences, 160(4), 663-671.
Thorpe, T., Stasolla, C., Yeung, E. C., Klerk, G. J.; Roberts, A. & George, E. F. (2008). The components of plant tissue culture media. II: Organic additions, osmotic and pH effects, and support systems. (3rd ed.). In E. F. George, M. A. Hall, & G. J. De Klerk (Eds.), Plant propagation by tissue culture (p. 115–174). Dordrecht, GE: Springer.
Valledor L, Hasbún R, Meijón M, Rodrigues, J. L., Santamaría, E., Viejo, M., Berdasco, M., … Rodrigues, R. (2007). Involvement of DNA methylation in tree development and micropropagation. Plant Cell, Tissue and Organ Culture, 91(2), 75-86. DOI: 10.1007/s11240-007-9262-z
Valledor, L., Meijón, M., Hasbún, R., Cañal, M. J., & Rodrigues R. (2010). Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. Journal of Plant Physiology, 167(5), 351-357. DOI: 10.1016/j.jplph.2009.09.018
Wang. Q. M., Wang, Y. Z., Sun, L. L., Gao, F. Z., Sun, W., He, J., Gao, X., & Wang, L. (2012). Direct and indirect organogenesis of Clivia miniata and assessment of DNA methylation changes in various regenerated plantlets. Plant Cell Reports, 31(7), 1283-1296. DOI: 10.1007/s00299-012-1248-6
Weber, H., Borisjuk, L., & Wobus, U. (1997). Sugar import and metabolism during seed development. Trends in Plant Science, 2(5), 169-174. DOI: 10.1016/S1360-1385(97)01030-3
Zhang, H., & Ogas, J. (2009). An epigenetic perspective on developmental regulation of seed genes. Molecular Plant, 2(4), 610-627. DOI: 10.1093/mp/ssp027
Zhang, C. C., Yuan, W. Y., & Zhang, Q. F (2012). RPL1, a gene involved in epigenetic processes regulates phenotypic plasticity in rice. Molecular Plant, 5(2), 482-493. DOI: 10.1093/mp/ssr091
Zluvova, J., Janousek, B., & Vyskot, B. (2001). Immunohistochemical study of DNA methylation dynamics during plant development. Journal of Experimental Botany, 52(365), 2265-2273.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.