Stigmatic receptivity of peach flowers submitted to heat stress

  • Silvia Carpenedo Empresa Brasileira de Pesquisa Agropecuária https://orcid.org/0000-0002-3383-3872
  • Maria do Carmo Bassols Raseira Empresa Brasileira de Pesquisa Agropecuária
  • Rodrigo Cezar Franzon Empresa Brasileira de Pesquisa Agropecuária
  • David Hawkins Byrne Texas A&M University
  • João Baptista da Silva Universidade Federal de Pelotas
Palavras-chave: Prunus persica; pollen viability; pollen tubes; flowering.

Resumo

Because of climatic changes, the cultivation of temperate climate plants such as peach in subtropical climates has become a challenge. In these areas, temperatures exceeding 25°C often occur during the pre-flowering and flowering phases. The high temperature causes damages by acting during the early stages of pollen-pistil interaction processes. The objective of this work was to evaluate the stigmatic receptivity of peach flowers at 18°C and 30°C. The pollen adherence was evaluated as well as the germination and presence of pollen tubes in the transmitting tissue of the style. The genotypes responded differently to temperature. ‘Granada,’ ‘Diamante’, and ‘Sensação’ had a stigmatic receptivity that was less affected when flowers were exposed to the higher temperature. Most genotypes showed a reduction in the number of pistils with pollen tubes growing in the style, particularly when pollination was delayed.

Downloads

Não há dados estatísticos.

Referências

Couto, M., Raseira, M. C. B., Herter, F. G., & Silva, J. B. (2010). Influence of high temperatures at blooming time on pollen production and fruit set of peach “Maciel” and “Granada”. Acta Horticulturae, 872(1), 225-230. DOI: 10.17660/ActaHortic.2010.872.30

Ferreira, D. F. (2011). SISVAR: A computer statistical analysis system. Ciencia e Agrotecnologia, 35(6), 1039-1042. DOI: 10.1590/S1413-70542011000600001

Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10(1), 4-10. DOI: 10.1016/j.wace.2015.08.001

Hatfield, J., Boote, K., & Kimball, B. (2011). Climate impacts on agriculture: implications for crop production. Agronomy Journal, 103(2), 351-370. DOI: 10.2134/agronj2010.0303

Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74(1), 9-16. DOI: 10.1016/j.envexpbot.2011.03.016

Hedhly, A., Hormaza, J. I., & Herrero, M. (2005). The effect of temperature on pollen germination, pollen tube growth, and stiggmatic receptivity in peach. Plant Biology, 7(5), 476-483. DOI: 10.1055/s-2005-865850

Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14(1), 30-36. DOI: 10.1016/j.tplants.2008.11.001

Hiscock, S. J., & Allen, A. M. (2008). Diverse cell signalling pathways regulate pollen-stigma interactions: The search for consensus. New Phytologist, 179(2), 286-317. DOI: 10.1111/j.1469-8137.2008.02457.x

IPCC. (2015). Climate Change 2014: Synthesis Report. Geneva, SW: IPCC.

Johansen, D. A. (1940). Plant microtechnique. New York and London: McGraw-Hill Book Company Inc

Kodad, O., & Socias i Company, R. (2013). Flower age and pollenizer could affect fruit set in late-blooming self-compatible almond cultivars under warm climatic conditions. Scientia Horticulturae, 164(1), 359-365. DOI: 10.1016/j.scienta.2013.09.049

Kodad, O., Messaoudi, Z., Mamouni, A., Lahlou, M., & Socias, R. (2013). Stigma receptivity is limiting fruit set in almond in warm climates. Acta Horticulturae, 976(1), 325-332. DOI: 10.17660/ActaHortic.2013.976.44

Losada, J. M., & Herrero, M. (2012). Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower. Annals of Botany, 110(3), 573-584. DOI:10.1093/aob/mcs116

Nava, G. A., Dalmago, G. A., Bergamaschi, H., Paniz, R., Santos, R. P., Marodin, G. A. B. (2009). Effect of high temperatures in the pre-blooming and blooming periods on ovule formation, pollen grains and yield of ‘Granada’ peach. Scientia Horticulturae, 122(1), 37-44. DOI: 10.1016/j.scienta.2009.03.021

Rodrigo, J., & Herrero, M. (2002). Effects of pre-blossom temperatures on flower development and fruit set in apricot. Scientia Horticulturae, 92(2), 125-135. DOI: 10.1016/S0304-4238(01)00289-8

Snider, J. L., & Oosterhuis, D. M. (2011). How does timing, duration, and severity of heat stress influence pollen-pistil interactions in angiosperms? Plant Signaling & Behavior, 6(7), 930-933. DOI: 10.4161/psb.6.7.15315

Snider, J. L., Oosterhuis, D. M., Skulman, B. W., & Kawakami, E. M. (2009). Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiologia Plantarum, 137(2), 125-138. DOI: 10.1111/j.1399-3054.2009.01266.x

Souza, F., B. M., Pio, R., Barbosa, J. P. R. A. D., Reighard, G. L., Tadeu, M. H., & Curi, P. N. (2017a). Adaptability and stability of reproductive and vegetative phases of peach trees in subtropical climate, Acta Scientiarum. Agronomy, 39(4), 427-435. DOI: 10.4025/actasciagron.v39i4.32914

Souza, F. B. M., Pio, R., Tadeu, M. H., Zambon, C. R., & Reighard, G. L. (2017b). Boric acid in germination of pollen grains and fruit set of peach cultivars in subtropical region. Revista Ciência Agronômica, 48(3), 496-500. DOI: 10.5935/1806-6690.20170058

Vuletin Selak, G., Perica, S., Goreta Ban, S., & Poljak, M. (2013). The effect of temperature and genotype on pollen performance in olive (Olea europaea L.). Scientia Horticulturae, 156(1), 38-46. DOI: 10.1016/j.scienta.2013.03.029

Wilson, J. A., & Brown, S. O. (1957). Differential staining of pollen tubes in grass pistils. Agronomy Journal, 49(4), 220-222. DOI: 10.2134/agronj1957.00021962004900040018x

Zanandrea, I., Raseira, M. C. B., Santos, J., & Silva, J. B. (2011). Receptividade do estigma e desenvolvimento do tubo polínico em flores de pessegueiro submetidas à temperatura elevada. Ciencia Rural, 41(12), 2066-2072. DOI: 10.1590/S0103-84782011001200005

Zinn, K. E., Tunc-Ozdemir, M., & Harper, J. F. (2010). Temperature stress and plant sexual reproduction: Uncovering the weakest links. Journal of Experimental Botany, 61(7), 1959-1968. DOI: 10.1093/jxb/erq053

Publicado
2019-11-20
Como Citar
Carpenedo, S., Raseira, M. do C. B., Franzon, R. C., Byrne, D. H., & da Silva, J. B. (2019). Stigmatic receptivity of peach flowers submitted to heat stress. Acta Scientiarum. Agronomy, 42(1), e42450. https://doi.org/10.4025/actasciagron.v42i1.42450
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus