Fruit shape regulates susceptibility of tomato to blossom-end rot

  • Lucas Baiochi Riboldi Universidade de São Paulo
  • Sabrina Helena da Cruz Araújo Universidade de São Paulo
  • Sérgio Tonetto de Freitas Empresa Brasileira de Pesquisa Agropecuária
  • Paulo Roberto Camargo Castro Universidade de São Paulo
Palavras-chave: Blossom-end rot, Tomato varieties, Ca2 disorder, Fruit length, Fruit Ca2, Cell wall-bound Ca2

Resumo

Calcium (Ca2+) is a nutrient in tomato plants, of which deficiency usually causes several problems including a physiological disorder known as blossom-end rot (BER) in the fruit. The objective of this study was to evaluate and identify morphological and physiological characteristics related to the susceptibility of tomato varieties to BER. The varieties studied were ‘Amalia’, ‘IPA-6’, ‘M-82’, ‘Mara’, and ‘Nagcarlan’, presenting different fruit formats. Physiological parameters that negatively correlated with BER were plant water potential, leaf area, plant dry mass, relationship between proximal/distal Ca2+, K+ content in the proximal and distal portions of the fruit, and proximal Ca2+ content. Physiological parameters that positively correlated with BER were number of trichomes in the abaxial and adaxial leaf portions, leaf stomatal conductance, distal Ca2+ content bound to the cell wall, leaf transpiration, and fruit length. Our results showed that ‘Mara’ and ‘Nagcarlan’, ‘Amalia’ and ‘IPA-6’, and ‘M-82’ presented low, medium, and high susceptibility to BER, respectively. We also found that total fruit Ca2+ concentration, particularly in the distal fruit tissue, was not the only factor responsible for the development of BER; rather, the balance between factors that increase and decrease the susceptibility of each variety affected development of this disorder.

Downloads

Não há dados estatísticos.

Referências

Abdal, M., & Suleiman, M. (2005). Blossom end rot occurrence in calcareous soil of Kuwait. Acta Horticulturae, 695, 63-65. DOI: 10.17660/ActaHortic.2005.695.5

Campbell, A., Huysamer, M., Stotz, H. U., Greve, L. C., & Labavitch, J. M. (1990). Comparison of ripening processes in intact tomato fruit and excised pericarp discs. Plant Physiology, 94(4), 1582-1589. DOI:10.1104/pp.94.4.1582

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Conn, S. J., Gilliham, M., Athman, A., Schreiber, A. W., Baumann, U., Moller, I., Cheng, N. H., …, Leigh, R. A. (2011). Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell, 23(1), 240-257. DOI: 10.1105/tpc.109.072769

Dražeta, L. L., Lang, A., Hall, A. J., Volz, R. K. (2004). Causes and effects of changes in xylem functionality in apple fruit. Annals of Botany, 93(3), 275-282. DOI: 10.1093/aob/mch040

Farber, M., Attia, Z., & Weiss, D. (2016). Cytokinin activity increases stomatal density and transpiration rate in tomato. Journal of Experimental Botany, 67(22), 6351-6362. DOI: 10.1093/jxb/erw398

Freitas, S. T. d., Amarante, C. V. T., & Mitcham, E. J. (2016). Calcium deficiency disorders in plants. In S. Pareek (Ed.), Postharvest ripening physiology of crops (p. 477-512). Florida, US: CRC Press.

Freitas, S. T. d., McElrone, A. J., Shackel, A. K., & Mitcham, E. J. (2014). Calcium partitioning and allocation and blossom-end rot development in tomato plants in response to whole-plant and fruit-specific abscisic acid treatments. Journal of Experimental Botany, 65(1), 235-247. DOI: 10.1093/jxb/ert364

Freitas, S. T. d., Padda, M., Wu, Q., Park, S., & Mitcham, E. (2011a). Dynamic alterations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiology, 156(2), 844-855. DOI: 10.1104/pp.111.175208

Freitas, S. T. d., Shackel, K. A., & Mitcham, E. J. (2011b). Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom-end rot development in tomato fruit. Journal of Experimental Botany, 62(8), 2645-2656. DOI: 10.1093/jxb/erq430

Gianfagna, T. J., Carter, C. D., & Sacalis, J. N. (1992). Temperature and photoperiod influence trichome density and sesquiterpene content of Lycopersicon hirsutum f. hirsutum. Plant Physiology, 100(3), 1403-1405. DOI: 10.1104/pp.100.3.1403

Gilroy, S., Białasek, M., Suzuki, N., Górecka, M., Devireddy, A. R., Karpinski, S., & Mittler, R. (2016). ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiology, 171(3), 1606-1615. DOI: 10.1104/pp.16.00434

Guichard, S., Bertin, N., Leonard, C., & Gary, C. (2001). Tomato fruit quality in relation to water and carbon fluxes. Agronomie, 21(4), 385-392. DOI: 10.1051/agro:2001131

Guichard, S., Gary, C., Leonardi, C., & Bertin, N. (2005). Analysis of growth and water relations of tomato fruit in relation to air vapor pressure deficit and plant fruit load. Journal of Plant Growth Regulation, 24(3), 201-213. DOI: 10.1007/s00344-005-0040-z

Hepler, P. K., & Winship, L. J. (2010). Calcium at the cell wall-cytoplast interface. Journal of Integrative Plant Biology, 52(2), 147-160. DOI: 10.1111/j.1744-7909.2010.00923.x

Ho, L. C. (1998). Improving tomato fruit quality by cultivation. In K. E. Cockshull, D. Gray, G. B. Seymour, B. Thomas (Ed.), Genetic and environmental manipulation of horticultural crops (p. 17–29.) Wallingford, UK: CAB International. Ho, L.C., & White, P.J. (2005). A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Annals of Botany, 95(4), 571-581. DOI: 10.1093/aob/mci065

Ho, L. C., Adams, P., Li, X. Z., Shen, H., Andrews, J., & Xu, Z. H. (1995). Response of calcium-inefficient tomato cultivars to salinity in plant growth, calcium accumulation and blossom-end rot. Journal of Horticultural Sciences & Biotechnology, 70(6), 909-918. DOI: 10.1080/14620316.1995.11515366

Ho, L. C., Belda, R., Brown, M., Andrews, J., & Adams, P. (1993). Uptake and transport of calcium and the possible causes of blossom end rot in tomato. Journal of Experimental Botany, 44(2), 509-518. DOI: 10.1093/jxb/44.2.509

Husson, F. (2014). Multivariate exploratory data analysis and data mining. Retrieved on June 6, 2016 from https://cran.r-project.org/web/packages/FactoMineR/FactoMineR.pdf

Jones Jr., J. B. (1998). Tomato plant culture: In the field, greenhouse and home garden. In J. B. Jones Jr. (Ed.), Tomato plant nutrition (p. 129-178). Boca Raton, FL: CRC Press.

Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141-151.

Malavolta, E., Vitti, G. C., & Oliveira, S.A. (1997). Avaliação do estado nutricional das plantas- princípios e aplicações (2a ed.). Piracicaba, SP: Potafós.

Morales, D., Rodríguez, P., Dell’amico, J., Nicolas, E., Torrecillas, A., & Sanchez- Blanco, M. J. (2003). High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biologia Plantarum, 47(2), 203-208. DOI: 10.1023/B:BIOP.0000022252.70836.fc

Paiva, E. A. S., Martinez, H. E. P., Casali, V. W. D., & Padilha, L. (1998). Occurrence of blossom-end rot in tomato as a function of calcium dose in the nutrient solution and air relative humidity. Journal of Plant Nutrition, 21(12), 2663-2670. DOI: 10.1080/01904169809365596

Paupière, M. J., van Haperen, P., Rieu. I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213(6), 1-8. DOI: 10.1007/s10681-017-1927-z

Riboldi, L. B., Araújo, S. H. C., Múrcia, J. A. G., Freitas, S. T. d., & Castro, P. R. C. (2018a) Abscisic acid (ABA) and 24-epibrassinolide regulate blossom-end rot (BER) development in tomato fruit under Ca2+ deficiency. Australian Journal of Crop Science, 12(9), 1440-1446. DOI: 10.21475/ajcs.18.12.09.PNE1106

Riboldi, L. B., Araújo, S. H. C., Freitas, S. T. d., & Castro, P. R. C. (2018b). Blossom-end rot incidence in elongated tomato fruit. Botany, 96(10), 663-673. DOI: 10.1139/cjb-2018-0021

Riboldi, L. B., Gaziola, S. A., Azevedo, R. A., Freitas, S. T. d., & Castro, P. R. C. (2019). Journal of Plant Growth Regulation, 38(3), 812-823. DOI: 10.1007/s00344-018-9892-x

Saure, M. C (2014). Why calcium deficiency is not the cause of blossom-end rot in tomato and pepper fruit–a reappraisal. Scientia Horticulturae, 174(1), 151-154. DOI: 10.1016/j.scienta.2014.05.020

Saure, M. C. (2005). Calcium translocation to fleshy fruit: its mechanism and endogenous control. Scientia Horticulturae, 105(1), 65-89. DOI: 10.1016/j.scienta.2004.10.003

Schmitz-Eiberger, M., & Noga, G. (2003). Influence of calcium deficiency on distribution and antioxidative system in tomato plants. Acta Horticulturae, 618, 217-224. DOI: 10.17660/ActaHortic.2003.618.24

Segatto, F. B., Bisognin, D. A., Benedetti, M., Costa, L. C. d., Rampelotto, M. V., & Nicoloso, F. T. (2004). A technique for the anatomical study of potato leaf epidermis. Ciência Rural, 34(5), 1597-1601. DOI: 10.1590/S0103-84782004000500042

Taylor, M. D., & Locascio, S. J. (2004). Blossom-end rot: a calcium deficiency. Journal of Plant Nutrition, 27(1), 123-139. DOI: 10.1081/PLN-120027551

Tsukaguchi, T., Kawamitsu, Y., Takeda, H., Suzuki, K., & Egawa, Y. (2003). Water status of flower buds and leaves as affected by high temperature in heat tolerant and heat sensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant Production Science, 6(1), 4-27. DOI: 10.1626/pps.6.24

Tuteja, N., & Mahajan, S. (2007). Calcium signaling network in plants. Plant Signaling & Behaviour, 2(2), 79-85. DOI: 10.4161/Psb.2.2.4176

White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487-511. DOI: 10.1093/aob/mcg164

Publicado
2020-04-03
Como Citar
Riboldi, L. B., Araújo, S. H. da C., Freitas, S. T. de, & Castro, P. R. C. (2020). Fruit shape regulates susceptibility of tomato to blossom-end rot. Acta Scientiarum. Agronomy, 42(1), e42487. https://doi.org/10.4025/actasciagron.v42i1.42487
Seção
Produção Vegetal

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus