Genetic linkage map and mapping of the locus of biological nitrogen fixation inefficiency in cowpea

Palavras-chave: Vigna unguiculata, nitrogen fixation, marker-assisted selection

Resumo

The objectives of the present study were to construct a cowpea genetic map using the F2 population resulting from the cross IC-1 x BRS Marataoã, based on single nucleotide polymorphism (SNP) markers, and to map the cpi gene, with additional reference to introgression with the consensus map of species, aiming to identify markers for assisted selection to develop more efficient cultivars for BNF. The parents and 89 F2 plants were genotyped with 51,128 SNP markers, of which 910 polymorphic markers were used to construct the map. The results revealed 11 linkage groups, with an average of 82 markers per chromosome and average distance of 1.26 cM between markers. Recombination analysis of the SNPs indicated that markers 2_12850 and 2_00188, located in linkage group 11, flanked the cpi gene at a distance of 6.7 cM and 5.64 cM, respectively. The introgression of linkage group 11 with the cowpea reference map revealed short distances (from zero to 0.6 cM) for these markers, indicating a strong association with the cpi gene. The constructed map and cpi mapping provide basic information that can assist the genetic breeding of more efficient cowpea plants for BNF by marker-assisted selection.

Downloads

Não há dados estatísticos.

Referências

Adetumbi, J. A., Akinyosoye, S. T., Olowolafe, M. O., Oloyede-Kamiyo, Q. O., & Agbeleye, O. A. (2016). Genetic linkage map of cowpea [Vigna unguiculata (L.) Walp] using SNP markers. African Journal of Biotechnollogy, 15(20), 830-834. DOI: 10.5897/AJB2015.15167

Agbicodo, E. M., Fatokun, C. A., Bandyopadhyay, R., Wydra, K., Diopet, N. N., Muchero W., … Van Der Linder, C. G. (2010). Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.]. Euphytica, 175(2), 215-226. DOI: 10.1007/s10681-010-0164-5

Arumuganathan, K., & Earle, E. D. (1991). Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter, 9(3), 229–241. DOI: 10.1007/BF02672073

Belane, A. K., Pule-Meulenberg, F., Makhubedu, T. I., & Dakora, F. D. (2014). Nitrogen fixation and symbiosis-induced accumulation of mineral nutrients by cowpea (Vigna unguiculata L. Walp.). Crop and Pasture Science, 65(3), 250-258. DOI: 10.1071/CP13283

Bladergroen, M. R., & Spaink H. P. (1998). Genes and signal molecules involved in the rhizobia-leguminoseae symbiosis. Current Opinion in Plant Biology, 1(4), 353-359. DOI: 10.1016/1369-5266(88)80059-1

Ceccatto, V. M., Gomes, J. E., Sarries, G. A., Moon, D. H., & Tsai, S. M. (1988). Effects of host plant origin on nodulin activities and nitrogen fixation in Phaseolus vulgaris L. Plant and Soil, 204(1), 79-88. DOI: 10.1023/A:1004331011493

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13-15.

Geurts, R., Fedorova, H., & Bisseling, T. (2005). Nod factor signaling genes and their function in the early stages of Rhizobium infection. Current Opinion in Plant Biology, 8(4), 346-352. DOI: 10.1016/j.pbi.2005.05.013

Kosambi, D. D. (1943). The estimation of map distances from recombination values. Annal of Human Genetics, 12(1), 172-175. DOI: 10.1111/j.1469-1809.1943.tb02321.x

Leite, J., Seido, S. L., Passos, S. R., Xavier, G. R., Runjaneck, N. G., & Martins, L. M. V. (2009). Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. Revista Brasileira de Ciência do Solo, 33(5), 1215-1226. DOI: 10.1590/S0100-06832009000500015

Lucas, M. R., Diop, N., Wanamaker, S., Ehlers, J. D., Roberts, P. A., & Close, T. J. (2011). Cowpea-soybean synteny clarified through an improved genetic map. The Plant Genome, 4(3), 218-225. DOI: 10.3835/plantgenome2011.06.0019

Madsen, L. H., Tirichine, L., Jurkiewicz, A., Sullivan, J. T., Heckmann, A. B., Bek, A. S., … Stougaard, J. (2010). The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nature Communications, 1(10), 1-10. DOI: 10.1038/ncomms1009

Markwei, C. M., & LaRue, T. A. (1992). Phenotypic characterization of sym8 and sym9, two genes conditioning non-nodulation in Pisum sativum ‘Sparkle’. Canadian Journal of Microbiology, 38(6), 548–554. DOI: 10.1139/m92-090

Meng, L., Li, H., Zhang, L., & Wang, J. (2015). QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop Journal, 3(3), 269-283. DOI: 10.1016/j.cj.2015.01.001

Menéndez, C. M., Hall, A. E., & Gepts, P. A. (1997). Genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theoretical and Applied Genetics, 95(8), 1210-1217. DOI: 10.1007/s001220050683

Mohammadi, K., Sohrabi, Y., Heidari, G., Khalesro, S., & Majidi, M. (2012). Effective factors on biological nitrogen fixation. Africam Journal of Agricultural Research, 7(12), 1782-1788. DOI: 10.5897/AJARX11.034

Muchero, W., Diop, N. N., Bhat, P. R., Fenton, R. D., Wanamaker, S., Pottorff, M., … Close, T. J. (2009). A consensus genetic map of cowpea [Vigna unguiculata (L.) Walp.] and synteny based on EST-derived SNPs. Proceedings of the National Academy of Sciences, 106(43), 18159-18164. DOI: 10.1073/pnas.0905886106

Muñoz-Amatriaín, M., Mirebrahim, H., Xu, P., Wanamaker, S. I., Luo, M., Alhakami, H., … Close, T. J. (2017). Genome resources for climate-resilient cowpea, an essential crop for food security. The Plant Jounal, 89(5), 1042-1054, 2017. DOI: 10.1111/tpj.13404

Nigan, S. N., Nambiar, P. T. C., Dwivedi, S. L., Gibbons, R. W., & Dart, P. J. (1982). Genetics of nonnodulation in groundnut (Arachis hypogaea L.). Studies with single and mixed Rhizobium strains. Euphytica, 31(3), 691-693. DOI: 10.1007/BF00039207

Novák, K. (2003). Allelic relationships of pea nodulation mutants. Journal of Heredity, 94(2), 191-193. DOI: 10.1093/jhered/esg028

Okazaki, S., Tittabutr, P., Teulet, A., Thouin, J., Fardoux, J., Chaintreuil, C., … Giraud, E. (2016). Rhizobium–legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS. The ISME Journal, 10(1), 64-74. DOI: 10.1038/ismej.2015.103

Ouédraogo, J. T., Gowda, B. S., Jean, M., Close, T. J., Ehlers, J. D., Hall, A. E., … Belzile, F. J. (2002). An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome, 45(1), 175-188. DOI: 10.1139/G01-102

Park, S. J., & Buttery, B. R. (1994). Inheritance of nonnodulation and Ineffective nodulation mutants In common bean (Phaseolus vulgaris L.). Journal of Heredity, 85(1), 1-3. DOI: 10.1093/oxfordjournals.jhered.a111383

Pedalino, M., Kipe-Nolt, J., Frusciante, L., & Monti, L. (1993). Common bean (Phaseolus vulgaris L.) mutants defective in root nodule formation: II genetic analysis. Journal of Experimental Botany, 44(6), 1015-1020. DOI: 10.1093/jxb/44.6.1015

Pemberton, I. J., Smith, G. R., & Miller Jr., J. C. (1990). Inheritance of ineffective nodulation in cowpea. Crop Science, 30(3), 568-571. DOI: 10.2135/cropsci1990.0011183X003000030020x

Pottorff, M., Wanamaker, S., Ma, Y. Q., Ehlers, J. D., Roberts, P. A., & Close, T. J. (2012). Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f.sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. Public Library of Science, 7(7), 1-12. DOI: 10.1371/journal.pone.0041600

Purdom, D., & Trese, A. T. (1995). Morphological and molecular characteristics of host-conditioned ineffective root nodules in cowpea. Plant Physiology, 109(1), 239-244. DOI: 10.1104/pp.109.1.239

Rodrigues, M. A., Santos, C. A. F., & Santana, J. R. F. (2012). Mapping of AFLP loci linked to tolerance to cowpea golden mosaic virus. Genetics and Molecular Research, 11(4), 3789-3797. DOI: 10.4238/2012.August.17.12

Sagan, M., Huguet, T., & Duc, G. (1994). Phenotypic characterization and classification of nodulation mutants of pea (Pisum sativum L.). Plant Science, 100(1), 59-70. DOI: 10.1016/0168-9452(94)90134-1

Shamseldin, A. (2013). The role of different genes involoved in symbiotic nitrogen fixation – Review. Global Journal of Biotechnology and Biochemistry, 8(4), 84-94. DOI: 10.5829/idosi.gjbb.2013.8.4.82103

Vest, G. (1970). RJ3-a gene conditioning ineffectiveness in soybean. Crop Science, 10(1), 34-35. DOI: 10.2135/cropsci1970.0011183X001000010013x

Vest, G., & Caldwell, B. E. (1972). Rj4 a gene controlling ineffective nodulation in soybean. Crop Science, 12(5), 692-693. DOI: 10.2135/cropsci1972.0011183X001200050042x

Vincent, J. M. A. (1970). Manual for the practical study of root-nodule bacteria (IBP Handbook, 15). London, UK: International Biological Programme.

Publicado
2019-09-05
Como Citar
Seido, S. L., & Fernandes Santos, C. A. (2019). Genetic linkage map and mapping of the locus of biological nitrogen fixation inefficiency in cowpea. Acta Scientiarum. Agronomy, 41(1), e42603. https://doi.org/10.4025/actasciagron.v41i1.42603
Seção
Genética e Melhoramento

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus