Genetic progress, adaptability and stability of maize cultivars for value of cultivation and use trials
Resumo
Maize breeding programs conduct multi-environment trials every year to assess the performance of new cultivars in pre-releasing tests. The data are combined across sites and seasons to perform a joint analysis in order to obtain information that will help breeders to select the best cultivars for different environments. Beyond this, it is essential to understand the different factors that can hamper the selection and genetic progress (i.e., genetic variability, selection intensity and genotype-by-environment interactions). In this study, the genetic progress (GP) was estimated and the adaptability and stability of 81 maize genotypes were evaluated in a series of trials for the value of cultivation and use (VCU) between the 2010/11 and 2014/15 growing seasons. The genotypes were composed of open-pollinated varieties, topcross hybrids, intervarietal hybrids, and single, double and three-way cross hybrids and were assessed in 117 environments in the central region of Brazil, from which 22 presented environmental stresses. For grain yield, an annual GP of 331.5 kg ha-1 was observed, thus showing efficiency in the selection of superior cultivars. Additionally, it was observed that some low-cost seed cultivars showed yield potential, adaptability and stability estimates that were compatible with commercial hybrids, thus making them quite attractive for cultivation in environments with or without abiotic stresses.
Downloads
Referências
Balestre, M., Von Pinho, R. G., Souza, J. C., & Oliveira, R. L. (2009). Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. Genetics and Molecular Research, 8(4), 1311-1322. DOI: 10.4238/vol8-4gmr658
Crossa, J., & Cornelius, P. L. (2002). Linear-bilinear models for the analysis of genotype environment interaction. In: Kang, M. S. (Ed.), Quantitative genetics, genomics and plant breeding (p. 305-322). Oxford, UK: CAB International.
Cullis B., Gogel, B., Verbyla A., & Thompson R. (1998). Spatial analysis of multi-environment early generation trials. Biometrics, 54(1), 1-18. DOI: 10.2307/2533991
Figueiredo, A. G., Von Pinho, R. G., Silva, H. D., & Balestre, M. (2015). Application of mixed models for evaluating stability and adaptability of maize using unbalanced data. Euphytica, 202(3), 393-409. DOI: 10.1007/s10681-014-1301-3
Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6), 742-754, 1963. DOI: 10.1071/AR9630742
Frensham, A. B., Barr, A. R., Cullis, B. R., & Pelham, S. D. (1998). A mixed model analysis of 10 years of oat evaluation data: use of agronomic information to explain genotype by environment interaction. Euphytica, 99(1), 43-56. DOI: 10.1023/A:101839573
Gauch, H.G., Piepho, H.-P., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science, 48(3), 866-889. DOI: 10.2135/cropsci2007.09.0513
Gogel, B. J., Cullis, B. R., & Verbyla, A. P. (1995). REML estimation of multiplicative effects in multi-environment variety trials. Biometrics, 51(2), 744-749. DOI: 10.2307/2532960
Instituto Nacional de Meteorologia [INMET]. (2015). Normais Climatológicas 2010 a 2015. Brasília, DF: INMET.
Kelly, A. M., Smith, A. B., Eccleston, J. A., & Cullis, B. R (2007). The accuracy of varietal selection using factor analytic models for multi-environment plant breeding trials. Crop Science, 47(3), 1063-1070. DOI: 10.2135/cropsci2006.08.0540
Nabugoomu, F., Kempton, R. A., & Talbot, M. (1999). Analysis of series of trials where varieties differ in sensitivity to locations. Journal of Agricultural, Biological, and Environmental Statistics, 4(3), 310-325. DOI: 10.2307/1400388
Negash, A. W., Mwambi, H., Zewotir, T., & Taye, G. (2013). Additive main effects and multiplicative interactions model (AMMI) and genotype main effect and genotype by environment interaction (GGE) biplot analysis of multi-environmental wheat variety trials. African Journal of Agricultural Research, 8(12), 1033-1040. DOI: 10.5897/AJAR2012.6648
Nuvunga, J. J., Oliveira, L. A., Pamplona, A. K. A., Silva, C. P., Lima, R. R., & Balestre, M. (2015). Factor analysis using mixed models of multi-environment trials with different levels of unbalancing. Genetics and Molecular Research, 14(4), 14262-14278. DOI: 10.4238/2015.November.13.10
Oliveira, R. L., Von Pinho, R. G., Balestre, M., & Ferreira, D. V. (2010). Evaluation of maize hybrids and environmental Evaluation of maize hybrids and environmental stratification by the methods AMMI and GGE biplot. Crop Breeding and Applied Biotechnology, 10(3), 247-253. DOI: 10.1590/S1984-70332010000300010
Rocha, R. B., Ramalho, A. R., Teixeira, A. L., Laviola, B. G., Silva, F. C. G. D., & Militão, J. S. L. T. (2012). Selection efficiency for increasing physic nut oil content. Pesquisa Agropecuaria Brasileira, 47(1), 44-50. DOI: 10.1590/S0100-204X2012000100007
Romano, M. R., Verburg, N., & de Andrade, J. M. (2007). Desempenho de cinco variedades de milho crioulo em diferentes sistemas de produção. Revista Brasileira de Agroecologia, 2(2), 808-811. DOI: 10.5433/1679-0359.2013v34n6p2809
Spinelli, V. M., Rocha, R. B., Ramalho, A. R., Marcolan, A. L., Vieira Júnior, J. R., Fernandes, C. D. F., ... Dias, L. A. D. S. (2010). Primary and secondary yield components of the oil in physic nut (Jatropha curcas L.). Ciencia Rural, 40(8), 1752-1758. DOI: 10.1590/S0103-84782010005000129
Smith, A. B.; Cullis, B. R., & Thompson, R. (2001). Analysing variety by environment data using multiplicative mixed models and adjustments for spatial fi eld trend. Biometrics, 57(4), 1138-1147. DOI: 10.1111/j.0006-341X.2001.01138.x
Smith, A. B., Cullis, B. R., & Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. Journal of Agricultural Science, 143(6), 1-14. DOI: 10.1017/S0021859605005587
Smith, A. B., Ganesalingam, A., Kuchel, H., & Cullis, B. R. (2015). Factor analytic mixed models for the provision of grower information from national crop variety testing programs. Theoretical and Applied Genetics, 128(1), 55–72. DOI: 10.1007/s00122-014-2412-x
Stefanova, K. T., & Buirchell, B. (2010). Multiplicative mixed models for genetic gain assessment in lupin breeding. Crop Science, 50(3), 880-891. DOI: 0.2135/cropsci2009.07.0402
Talbot, M. (1984). Yield variability of crop varieties in the UK. Journal of Agricultural Science, 102(2): 315–321. DOI: 10.1017/S0021859600042635
Theobald, C. M., Talbot, M., & Nabugoomu, F. (2002). A Bayesian approach to regional and local-area prediction from crop variety trials. Journal of Agricultural, Biological, and Environmental Statistics, 7(3), 403-419. DOI: 10.1198/108571102230
Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3), 597-605. DOI: 10.2135/cropsci2000.403597x
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.