Genetic progress, adaptability and stability of maize cultivars for value of cultivation and use trials

  • Joaquim Vicente Uate Universidade Eduardo Mondlane / Empresa Brasileira de Pesquisa Agropecuária
  • Joel Jorge Nunvuga Escola Superior de Negócios e Empreendedorismo de Chibuto
  • Carlos Pereira da Silva Universidade Federal de Lavras
  • Lauro Jose Moreira Guimarães Empresa Brasileira de Pesquisa Agropecuária
  • Renzo Garcia Von Pinho Universidade Federal de Lavras
  • Marcio Balestre Universidade Federal de Lavras http://orcid.org/0000-0001-8855-9674
Palavras-chave: mixed model, genetic gain, biplot.

Resumo

Maize breeding programs conduct multi-environment trials every year to assess the performance of new cultivars in pre-releasing tests. The data are combined across sites and seasons to perform a joint analysis in order to obtain information that will help breeders to select the best cultivars for different environments. Beyond this, it is essential to understand the different factors that can hamper the selection and genetic progress (i.e., genetic variability, selection intensity and genotype-by-environment interactions). In this study, the genetic progress (GP) was estimated and the adaptability and stability of 81 maize genotypes were evaluated in a series of trials for the value of cultivation and use (VCU) between the 2010/11 and 2014/15 growing seasons. The genotypes were composed of open-pollinated varieties, topcross hybrids, intervarietal hybrids, and single, double and three-way cross hybrids and were assessed in 117 environments in the central region of Brazil, from which 22 presented environmental stresses. For grain yield, an annual GP of 331.5 kg ha-1 was observed, thus showing efficiency in the selection of superior cultivars. Additionally, it was observed that some low-cost seed cultivars showed yield potential, adaptability and stability estimates that were compatible with commercial hybrids, thus making them quite attractive for cultivation in environments with or without abiotic stresses.

Downloads

Não há dados estatísticos.

Referências

Balestre, M., Von Pinho, R. G., Souza, J. C., & Oliveira, R. L. (2009). Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. Genetics and Molecular Research, 8(4), 1311-1322. DOI: 10.4238/vol8-4gmr658

Crossa, J., & Cornelius, P. L. (2002). Linear-bilinear models for the analysis of genotype environment interaction. In: Kang, M. S. (Ed.), Quantitative genetics, genomics and plant breeding (p. 305-322). Oxford, UK: CAB International.

Cullis B., Gogel, B., Verbyla A., & Thompson R. (1998). Spatial analysis of multi-environment early generation trials. Biometrics, 54(1), 1-18. DOI: 10.2307/2533991

Figueiredo, A. G., Von Pinho, R. G., Silva, H. D., & Balestre, M. (2015). Application of mixed models for evaluating stability and adaptability of maize using unbalanced data. Euphytica, 202(3), 393-409. DOI: 10.1007/s10681-014-1301-3

Finlay, K. W., & Wilkinson, G. N. (1963). The analysis of adaptation in a plant-breeding programme. Australian Journal of Agricultural Research, 14(6), 742-754, 1963. DOI: 10.1071/AR9630742

Frensham, A. B., Barr, A. R., Cullis, B. R., & Pelham, S. D. (1998). A mixed model analysis of 10 years of oat evaluation data: use of agronomic information to explain genotype by environment interaction. Euphytica, 99(1), 43-56. DOI: 10.1023/A:101839573

Gauch, H.G., Piepho, H.-P., & Annicchiarico, P. (2008). Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Science, 48(3), 866-889. DOI: 10.2135/cropsci2007.09.0513

Gogel, B. J., Cullis, B. R., & Verbyla, A. P. (1995). REML estimation of multiplicative effects in multi-environment variety trials. Biometrics, 51(2), 744-749. DOI: 10.2307/2532960

Instituto Nacional de Meteorologia [INMET]. (2015). Normais Climatológicas 2010 a 2015. Brasília, DF: INMET.

Kelly, A. M., Smith, A. B., Eccleston, J. A., & Cullis, B. R (2007). The accuracy of varietal selection using factor analytic models for multi-environment plant breeding trials. Crop Science, 47(3), 1063-1070. DOI: 10.2135/cropsci2006.08.0540

Nabugoomu, F., Kempton, R. A., & Talbot, M. (1999). Analysis of series of trials where varieties differ in sensitivity to locations. Journal of Agricultural, Biological, and Environmental Statistics, 4(3), 310-325. DOI: 10.2307/1400388

Negash, A. W., Mwambi, H., Zewotir, T., & Taye, G. (2013). Additive main effects and multiplicative interactions model (AMMI) and genotype main effect and genotype by environment interaction (GGE) biplot analysis of multi-environmental wheat variety trials. African Journal of Agricultural Research, 8(12), 1033-1040. DOI: 10.5897/AJAR2012.6648

Nuvunga, J. J., Oliveira, L. A., Pamplona, A. K. A., Silva, C. P., Lima, R. R., & Balestre, M. (2015). Factor analysis using mixed models of multi-environment trials with different levels of unbalancing. Genetics and Molecular Research, 14(4), 14262-14278. DOI: 10.4238/2015.November.13.10

Oliveira, R. L., Von Pinho, R. G., Balestre, M., & Ferreira, D. V. (2010). Evaluation of maize hybrids and environmental Evaluation of maize hybrids and environmental stratification by the methods AMMI and GGE biplot. Crop Breeding and Applied Biotechnology, 10(3), 247-253. DOI: 10.1590/S1984-70332010000300010

Rocha, R. B., Ramalho, A. R., Teixeira, A. L., Laviola, B. G., Silva, F. C. G. D., & Militão, J. S. L. T. (2012). Selection efficiency for increasing physic nut oil content. Pesquisa Agropecuaria Brasileira, 47(1), 44-50. DOI: 10.1590/S0100-204X2012000100007

Romano, M. R., Verburg, N., & de Andrade, J. M. (2007). Desempenho de cinco variedades de milho crioulo em diferentes sistemas de produção. Revista Brasileira de Agroecologia, 2(2), 808-811. DOI: 10.5433/1679-0359.2013v34n6p2809

Spinelli, V. M., Rocha, R. B., Ramalho, A. R., Marcolan, A. L., Vieira Júnior, J. R., Fernandes, C. D. F., ... Dias, L. A. D. S. (2010). Primary and secondary yield components of the oil in physic nut (Jatropha curcas L.). Ciencia Rural, 40(8), 1752-1758. DOI: 10.1590/S0103-84782010005000129

Smith, A. B.; Cullis, B. R., & Thompson, R. (2001). Analysing variety by environment data using multiplicative mixed models and adjustments for spatial fi eld trend. Biometrics, 57(4), 1138-1147. DOI: 10.1111/j.0006-341X.2001.01138.x

Smith, A. B., Cullis, B. R., & Thompson, R. (2005). The analysis of crop cultivar breeding and evaluation trials: an overview of current mixed model approaches. Journal of Agricultural Science, 143(6), 1-14. DOI: 10.1017/S0021859605005587

Smith, A. B., Ganesalingam, A., Kuchel, H., & Cullis, B. R. (2015). Factor analytic mixed models for the provision of grower information from national crop variety testing programs. Theoretical and Applied Genetics, 128(1), 55–72. DOI: 10.1007/s00122-014-2412-x

Stefanova, K. T., & Buirchell, B. (2010). Multiplicative mixed models for genetic gain assessment in lupin breeding. Crop Science, 50(3), 880-891. DOI: 0.2135/cropsci2009.07.0402

Talbot, M. (1984). Yield variability of crop varieties in the UK. Journal of Agricultural Science, 102(2): 315–321. DOI: 10.1017/S0021859600042635

Theobald, C. M., Talbot, M., & Nabugoomu, F. (2002). A Bayesian approach to regional and local-area prediction from crop variety trials. Journal of Agricultural, Biological, and Environmental Statistics, 7(3), 403-419. DOI: 10.1198/108571102230

Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3), 597-605. DOI: 10.2135/cropsci2000.403597x

Publicado
2019-05-24
Como Citar
Uate, J. V., Nunvuga, J. J., Silva, C. P. da, Guimarães, L. J. M., Pinho, R. G. V., & Balestre, M. (2019). Genetic progress, adaptability and stability of maize cultivars for value of cultivation and use trials. Acta Scientiarum. Agronomy, 41(1), e42624. https://doi.org/10.4025/actasciagron.v41i1.42624
Seção
Genética e Melhoramento

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus