Physiological analysis and gene expression analysis of ZmDBP3, ZmALDH9, ZmAN13, and ZmDREB2A in maize lines

  • Thaís Lima Marques Universidade Federal de Lavras https://orcid.org/0000-0001-7488-4919
  • Renzo Garcia Von Pinho Universidade Federal de Lavras
  • Édila Vilela de Resende Von Pinho Universidade Federal de Lavras
  • Bruno da Costa Paniago Universidade Federal de Lavras
  • Natália Chagas Freitas Universidade Federal de Lavras
  • Heloisa Oliveira dos Santos Universidade Federal de Lavras

Resumo

The objective of this study was to evaluate gene expression related to water deficit tolerance in maize lines. For this, lines previously classified as tolerant (91-T and 32-T) and non-tolerant (24-NT and 57-NT) to water deficit were used. The seeds of the four lines were evaluated for emergence and emergence speed index, and the seedlings were evaluated for root and shoot length under two conditions of water availability (70 and 10% substrate water retention capacity). In transcript analysis, the expression of several genes associated with water deficit tolerance, ZmDBP3, ZmALDH9, ZmAN13, and ZmDREB2A, was evaluated by qRT-PCR for the 91-T and 57-NT lines. It can be concluded that soil water deficiency did not reduce root development. However, the shoot length was significantly lower under dry conditions. Through transcript analysis, the genes ZmDBP3 and ZmAN13 were identified as potential markers for the early selection of maize lines tolerant to water deficit.

Downloads

Não há dados estatísticos.

Referências

Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances 28(1), 169–183. DOI: 10.1016/j.biotechadv.2009.11.005

Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment 31(1), 11–38. DOI: 10.1111/j.1365-3040.2007.01727

Brasil. (2009) Regras para a análise de sementes. Brasília, DF: Ministério da Agricultura, Pecuária e Abastecimento.

Bengough, A. G., McKenzie, B. M., Hallett, P. D., & Valentine, T. A. (2011). Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62(1), 59-68. DOI: 10.1093/jxb/erq350

CONAB (Companhia Nacional de Abastecimento) (2017). Acompanhamento de safra brasileira: grãos, décimo segundo levantamento, 2016/2017.

Ding, Y., Cao, J., Ni, L., Zhu, Y., Zhang, A., Tan, M., & Jiang, M. (2012). ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. Journal of experimental botany, 64(4), 871-884. DOI: 10.1093/jxb/ers366

Hu, Y., Zhang, L., Zhao, L., Li, J., He, S., Zhou, K., ... & Li, L. (2011). Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize. PLoS One, 6(7), 1-13. DOI: 10.1371/journal.pone.0022132

Jin, Y., Wang, M., Fu, J., Xuan, N., Zhu, Y., Lian, Y., ... & Wang, G. (2007). Phylogenetic and expression analysis of ZnF-AN1 genes in plants. Genomics, 90(2), 265-275. DOI: 10.1016/j.ygeno.2007.03.019

Liu, L., Hu, X., Song, J., Zong, X., Li, D., & Li, D. (2009). Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. Journal of plant physiology, 166(5), 531-542. DOI: 10.1016/j.jplph.2008.07.008

Liu, S., Wang, X., Wang, H., Xin, H., Yang, X., Yan, J., ... & Qin, F. (2013). Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS genetics, 9(9), 1-17. DOI: 10.1371/journal.pgen.1003790

Maguire, J. D. (1962). Speed of Germination—Aid In Selection And Evaluation for Seedling Emergence And Vigor. Crop science, 2(2), 176-177.

Manoli, A., Sturaro, A., Trevisan, S., Quaggiotti, S., & Nonis, A. (2012). Evaluation of candidate reference genes for qPCR in maize. Journal of plant physiology, 169(8), 807-815. DOI: 10.1016/j.jplph.2012.01.019

Marcos Filho, J. M. F. (2005). Fisiologia de sementes de plantas cultivadas. Piracicaba, SP: Fealq.

Oliveira, G. E., Von Pinho, R. G., Von Pinho, É. V. D. R., de Andrade, T., dos Santos, C. D., & Veiga, A. D. (2013). Physiological quality and amylase enzyme expression in maize seeds. Ciência e Agrotecnologia, 37(1), 40-48. doi: 10.1590/S1413-70542013000100005

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), 2002-2007. DOI: 10.1093/nar/29.9.e45

Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L. S. P., ... & Yamaguchi‐Shinozaki, K. (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 50(1), 54-69. DOI: 10.1111/j.1365-313X.2007.03034.x

Rodrigues, S. M., Andrade, M. O., Gomes, A. P. S., DaMatta, F. M., Baracat-Pereira, M. C., & Fontes, E. P. (2006). Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. Journal of experimental botany, 57(9), 1909-1918. DOI: 10.1093/jxb/erj132

Serraj, R., & Sinclair, T. R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions?. Plant, cell & environment, 25(2), 333-341. DOI: 10.1046/j.1365-3040.2002.00754.x

Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., & Nguyen, H. T. (2004). Root growth maintenance during water deficits: physiology to functional genomics. Journal of experimental botany, 55(407), 2343-2351. DOI: 10.1093/jxb/erh276

Trachsel, S., Sun, D., SanVicente, F. M., Zheng, H., Atlin, G. N., Suarez, E. A., ... & Zhang, X. (2016). Identification of QTL for early vigor and stay-green conferring tolerance to drought in two connected advanced backcross populations in tropical maize (Zea mays L.). PloS one, 11(3), 1-22. DOI: 10.1371/journal.pone.0149636

Wang, C. T., & Dong, Y. M. (2009). Overexpression of maize ZmDBP3 enhances tolerance to drought and cold stress in transgenic Arabidopsis plants. Biologia, 64(6), 1108-1114. DOI: 10.2478/s11756-009-0198-0

Zhou, M. L., Zhang, Q., Zhou, M., Qi, L. P., Yang, X. B., Zhang, K. X., ... & Wu, Y. M. (2012). Aldehyde dehydrogenase protein superfamily in maize. Functional & integrative genomics, 12(4), 683-691. DOI: 10.1007%2Fs10142-012-0290-3

Publicado
2019-09-20
Como Citar
Marques, T. L., Pinho, R. G. V., Pinho, Édila V. de R. V., Paniago, B. da C., Freitas, N. C., & Santos, H. O. dos. (2019). Physiological analysis and gene expression analysis of ZmDBP3, ZmALDH9, ZmAN13, and ZmDREB2A in maize lines. Acta Scientiarum. Agronomy, 42(1), e43479. https://doi.org/10.4025/actasciagron.v42i1.43479
Seção
Genética e Melhoramento

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus