Total lipid nutritional quality of the adipose tissue from the orbital cavity in Nile tilapia from continental aquaculture

Álison Bruno Borges de Sousa¹*, Oscar de Oliveira Santos Júnior², Jesuí Vergílio Visentainer² and Neiva Maria de Almeida³

¹Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco, Rua Edson Barbosa de Araújo, s/n, 56800-000, Afogados da Ingazeira, Pernambuco, Brazil. ²Departamento de Química, Universidade Estadual de Maringá, Maringá, Paraná, Brazil. ³Programa de Pós-graduação em Tecnologia Agroalimentar, Universidade Federal da Paraíba, Bananeiras, Paraíba, Brazil. *Author for correspondence. E-mail: alison.borges@afogados.ifpe.edu.br.

ABSTRACT. This study aimed to determine the fatty acid composition and nutritional quality indexes of total lipids in adipose tissue from the orbital cavity of Nile tilapia from continental aquaculture in Paraíba State, Brazil. The tilapias were captured in six fish farms, and after slaughtering and bleeding, the adipose tissue from the orbital cavity was reserved, frozen and lyophilized for analysis of fatty acid composition by gas chromatography. By decreasing order, oleic, palmitic, linoleic, stearic, and palmitoleic acids were the most abundant ones. Monounsaturated fatty acids were the most prominent group in orbital cavity adipose tissue, whereas polyunsaturated fatty acids were most abundant in the diet, with a percentage of linolenic acid ranging from 32.99 to 37.57%. Nutritional quality indexes of lipids varied from 0.491 to 0.575 for Atherogenicity Index, 0.543 to 0.741 for Thrombogenicity Index, and from 1.918 to 2.176 regarding the ratio of hypocholesterolemic/hypercholesterolemic. According to the composition of fatty acids and the nutritional quality of total lipids, the use of this byproduct can be recommended for human consumption or to elaborate products for animal intake.

Keywords: fatty acids, atherogenicity index, thrombogenicity index, Oreochromis niloticus.
necessary to provide a subsidy for fishing communities to improve the fish products since 28% of the global fish production is used to prepare feed, or is considered as residues, which are discarded in the environment. Currently, about 50% of the biomass originated from fish processing in Brazil is discarded, without any type of reuse (Stevanato et al., 2007).

Studies on these residues are relevant since tilapia has an important significance in the national fishery, and because they make possible the use of residues generated by this activity, besides adding value to byproducts. These studies also aim to improve the fish products intake, due to their nutritional characteristics, especially regarding the fatty acids considered essential to the diet, responsible for many health benefits. Meal fatty acids can reduce the risk of coronary and cardiovascular diseases (Lorgeril et al., 1994; Singh, Niaz, Sharma, Kumar, & Rastogi, 1997); chronic neurodegenerative diseases (Youdim, Martin, & Joseph, 2000) such as Alzheimer’s (Tully et al., 2003) and several types of cancer (Connolly, Coleman, & Rose, 1997; Rose, & Connolly, 1999).

This study aimed to determine the fatty acid composition and nutritional quality of total lipids in the adipose tissue from the orbital cavity of Nile tilapia (Oreochromis niloticus) from continental aquaculture in the State of Paraíba, Brazil.

Material and methods

Raw material

Nile tilapia raised in an intensive system was used as raw material for this study. Fish were caught in six different fish farms in the State of Paraíba, Brazil. The slaughtering process was carried out by asphyxia in ice. The tilapias were washed, and the adipose tissue from the orbital cavity was taken, frozen and subjected to lyophilization (L101–Liotop Lyophilizer). Samples were stored at -18ºC until the analysis.

Sampling of the feed used by fish farmers

The sampling of the feed used by fish farmers was carried out by chance, simultaneously with the fish sampling.

Extraction of Total Lipids

Total lipid extraction was carried out according to Bligh and Dyer (1959). The total lipids were stored in amber bottles, under N2 atmosphere, identified and stored in a freezer at -18ºC until the analyses.

Fatty Acid Methyl Esters

The preparation of fatty acid methyl esters was made according to the method proposed by Joseph and Ackman (1992), by using BF3/methanol. All the stages of the process were carried out under N2 atmosphere.

Fatty acid analysis

The fatty acid methyl esters were separated using a Gas chromatograph Varian 3380, equipped with flame ionization and fused-silica capillary column CP - 7420 (Select FAME) (100 m in length, 0.25 mm in internal diameter and 0.25 μm of cyanopropyl). The flux of H2 (mobile gas) was 1.0 mL min⁻¹, with 30 mL min⁻¹ N2 (make up); and 300 mL min⁻¹ synthetic air, for the detector flame. The volume injected was 1.0 μL, by using 1:80 split, and the injector and detector temperatures were 220 and 240ºC, respectively. The column temperature was 165ºC for 18 min. and increased to 235ºC at a rate of 4ºC min⁻¹, which was kept for 24.5 min. Fatty acids were identified by comparison of retention times with Sigma standard (USA) and spiking coelution of standards together with the sample, and the ECL values were calculated from previously corrected retention time of the samples, which were compared with values available in the literature (Stransky, Jursik, & Vitek, 1997; Thompson, 1997). The concentrations were determined through the integration of peak areas using the Software Varian Workstation Star, version 5.0, and the results were expressed as percentages of the total lipid relative area.

Nutritional Quality Indices of Lipids (NQI)

The nutritional quality of the lipid fraction was determined in fatty acids by using the composition data from three indices:

Atherogenicity Index (AI) = \[
\left(\frac{\text{C12:0} + 4\times\text{C14:0} + \text{C16:0}}{\Sigma \text{MUFA} + \Sigma \text{n-6} + \Sigma \text{n-3}}\right)
\]

Thrombogenicity Index (TI) = \[
\left(\frac{\text{C14:0} + \text{C16:0} + \text{C18:0}}{0.5\times\Sigma \text{MUFA} + (0.5\times\Sigma \text{n-6}) + (3\times\Sigma \text{n-3}) + (\Sigma \text{n-3}/\Sigma \text{n-6})}\right)
\]

MUFA = monounsaturated fatty acids.

Ratio between Hypocholesterolemic / Hypercholesterolemic Fatty Acids (H/H) = \[
\left(\frac{\text{C18:1n-9} + \text{C18:2n-6} + \text{C20:4n-6} + \text{C18:3n-3} + \text{C20:5n-3} + \text{C22:5n-3} + \text{C22:6n-6}}{(\text{C14:0} + \text{C16:0})}\right)
\]
were the most abundant fatty acids detected. Palmitoleic acids (16:1n-7), in decreasing order, linolenic (LA, 18:2n-6), stearic (18:0) and orbital cavity. Oleic (18:1n-9), palmitic (16:0), detected in the total lipids of adipose tissue from the orbital cavity adipose tissue in Nile tilapia is shown in Table 1. Twenty-six components were calculated according to Ulbricht and Southgate (1991), and the ratio between Hypocholesterolemic / Hypercholesterolemic fatty acids according to Santos-Silva, Bessa and Santos-Silva (2002).

Results and discussion

Fatty acid composition in the adipose tissue from the orbital cavity

The total lipid fatty acid composition detected in the orbital cavity adipose tissue in Nile tilapia is shown in Table 1. Twenty-six components were detected in the total lipids of adipose tissue from the orbital cavity. Oleic (18:1n-9), palmitic (16:0), linolenic (LA, 18:2n-6), stearic (18:0) and palmitoleic acids (16:1n-7), in decreasing order, were the most abundant fatty acids detected.

Table 1. Total lipid fatty acid composition (%) in adipose tissue from the orbital cavity of Nile tilapia.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>2.58±0.06</td>
<td>2.94±0.02</td>
<td>2.82±0.01</td>
<td>3.34±0.08</td>
<td>3.16±0.07</td>
<td>3.07±0.16</td>
</tr>
<tr>
<td>14:1n-9</td>
<td>0.17±0.00</td>
<td>0.42±0.00</td>
<td>0.17±0.01</td>
<td>0.28±0.03</td>
<td>0.20±0.02</td>
<td>0.17±0.00</td>
</tr>
<tr>
<td>16:0</td>
<td>13.0±0.00</td>
<td>16.0±0.01</td>
<td>16.0±0.02</td>
<td>20.0±0.03</td>
<td>19.0±0.00</td>
<td>16.0±0.01</td>
</tr>
<tr>
<td>15:0</td>
<td>0.26±0.02</td>
<td>0.37±0.01</td>
<td>0.24±0.00</td>
<td>0.29±0.01</td>
<td>0.30±0.01</td>
<td>0.28±0.02</td>
</tr>
<tr>
<td>16:1n-7</td>
<td>22.56±0.39</td>
<td>24.82±0.34</td>
<td>24.30±0.05</td>
<td>25.89±0.30</td>
<td>24.20±0.48</td>
<td>24.08±1.24</td>
</tr>
<tr>
<td>16:1n-7</td>
<td>0.67±0.01</td>
<td>0.35±0.01</td>
<td>0.62±0.01</td>
<td>0.67±0.01</td>
<td>0.69±0.02</td>
<td>0.67±0.04</td>
</tr>
<tr>
<td>18:0</td>
<td>4.56±0.06</td>
<td>6.13±0.02</td>
<td>5.01±0.02</td>
<td>5.74±0.08</td>
<td>5.58±0.11</td>
<td>5.12±0.35</td>
</tr>
<tr>
<td>18:1n-9</td>
<td>0.64±0.05</td>
<td>1.19±0.02</td>
<td>0.51±0.02</td>
<td>0.59±0.01</td>
<td>0.55±0.01</td>
<td>0.57±0.02</td>
</tr>
<tr>
<td>17:0</td>
<td>0.31±0.00</td>
<td>0.43±0.01</td>
<td>0.21±0.01</td>
<td>0.31±0.00</td>
<td>0.25±0.00</td>
<td>0.23±0.02</td>
</tr>
<tr>
<td>18:0</td>
<td>5.61±0.13</td>
<td>7.50±0.06</td>
<td>6.72±0.03</td>
<td>3.00±0.06</td>
<td>0.70±0.00</td>
<td>3.47±0.14</td>
</tr>
<tr>
<td>18:1n-9</td>
<td>29.59±0.44</td>
<td>29.62±0.27</td>
<td>33.08±0.22</td>
<td>34.22±0.06</td>
<td>33.53±0.52</td>
<td>29.35±0.20</td>
</tr>
<tr>
<td>18:2n-6</td>
<td>3.49±0.07</td>
<td>4.29±0.00</td>
<td>3.73±0.04</td>
<td>4.16±0.17</td>
<td>3.89±0.06</td>
<td>3.84±0.2</td>
</tr>
<tr>
<td>18:3n-6</td>
<td>1.42±0.14</td>
<td>1.06±0.02</td>
<td>0.79±0.00</td>
<td>0.91±0.05</td>
<td>0.85±0.02</td>
<td>0.82±0.06</td>
</tr>
<tr>
<td>18:3n-6</td>
<td>1.25±0.02</td>
<td>1.87±0.05</td>
<td>1.14±0.01</td>
<td>1.13±0.02</td>
<td>1.13±0.02</td>
<td>1.12±0.06</td>
</tr>
<tr>
<td>20:0</td>
<td>0.30±0.01</td>
<td>0.44±0.01</td>
<td>0.30±0.02</td>
<td>0.32±0.02</td>
<td>0.27±0.01</td>
<td>0.27±0.02</td>
</tr>
<tr>
<td>20:1n-9</td>
<td>0.18±0.00</td>
<td>0.20±0.01</td>
<td>0.10±0.01</td>
<td>0.05±0.01</td>
<td>0.10±0.00</td>
<td>0.10±0.00</td>
</tr>
<tr>
<td>20:1n-9</td>
<td>0.71±0.02</td>
<td>0.99±0.01</td>
<td>0.76±0.01</td>
<td>0.89±0.00</td>
<td>0.77±0.00</td>
<td>0.81±0.14</td>
</tr>
<tr>
<td>20:3n-6</td>
<td>0.80±0.02</td>
<td>0.77±0.02</td>
<td>0.73±0.00</td>
<td>0.70±0.00</td>
<td>0.71±0.00</td>
<td>0.69±0.05</td>
</tr>
<tr>
<td>20:3n-6</td>
<td>0.91±0.02</td>
<td>0.79±0.03</td>
<td>0.83±0.01</td>
<td>0.80±0.01</td>
<td>0.85±0.01</td>
<td>0.92±0.06</td>
</tr>
<tr>
<td>20:4n-6</td>
<td>0.12±0.00</td>
<td>0.07±0.00</td>
<td>0.14±0.01</td>
<td>0.06±0.01</td>
<td>0.06±0.00</td>
<td>0.08±0.00</td>
</tr>
<tr>
<td>20:5n-3</td>
<td>1.01±0.09</td>
<td>0.45±0.00^4</td>
<td>0.76±0.06</td>
<td>1.08±0.17</td>
<td>1.40±0.31^4</td>
<td>2.19±0.24</td>
</tr>
<tr>
<td>22:4n-6</td>
<td>0.54±0.02</td>
<td>0.05±0.01</td>
<td>0.43±0.12</td>
<td>0.41±0.07</td>
<td>0.30±0.02</td>
<td>0.52±0.04</td>
</tr>
<tr>
<td>22:5n-6</td>
<td>0.41±0.01</td>
<td>0.47±0.02</td>
<td>0.36±0.00</td>
<td>0.40±0.00</td>
<td>0.42±0.05</td>
<td>0.41±0.04</td>
</tr>
<tr>
<td>24:0</td>
<td>0.03±0.00</td>
<td>0.06±0.00</td>
<td>0.03±0.01</td>
<td>0.03±0.00</td>
<td>0.04±0.01</td>
<td>0.03±0.00</td>
</tr>
<tr>
<td>22:6n-3</td>
<td>0.32±0.01</td>
<td>0.63±0.03</td>
<td>0.39±0.00</td>
<td>0.51±0.01</td>
<td>0.37±0.03</td>
<td>0.37±0.03</td>
</tr>
<tr>
<td>SFA</td>
<td>33.07±0.61</td>
<td>31.48±0.36</td>
<td>35.99±0.60</td>
<td>31.73±0.42</td>
<td>29.72±0.53</td>
<td>32.89±1.73</td>
</tr>
<tr>
<td>MUFA</td>
<td>39.14±0.59</td>
<td>42.13±0.24</td>
<td>43.09±0.22</td>
<td>45.69±0.40</td>
<td>44.45±0.72</td>
<td>41.80±2.54</td>
</tr>
<tr>
<td>LC-PUFA</td>
<td>27.80±1.20</td>
<td>26.59±0.70</td>
<td>26.02±0.15</td>
<td>22.58±0.31</td>
<td>25.85±1.24</td>
<td>25.40±0.78</td>
</tr>
<tr>
<td>ΣFAs</td>
<td>24.44±1.16</td>
<td>22.70±0.71</td>
<td>18.22±0.21</td>
<td>19.18±0.47</td>
<td>22.41±1.77</td>
<td>21.29±2.46</td>
</tr>
<tr>
<td>ΣFAs</td>
<td>3.37±0.03</td>
<td>3.70±0.01</td>
<td>2.71±0.37</td>
<td>3.41±0.35</td>
<td>3.60±0.34</td>
<td>4.16±1.69</td>
</tr>
<tr>
<td>LC-PUFASFA</td>
<td>0.84±0.05</td>
<td>0.84±0.03</td>
<td>0.88±0.00</td>
<td>0.72±0.03</td>
<td>0.87±0.06</td>
<td>0.78±0.02</td>
</tr>
<tr>
<td>n-6/n-3</td>
<td>7.27±0.27</td>
<td>6.14±0.21</td>
<td>6.87±1.00</td>
<td>5.68±0.44</td>
<td>6.40±1.45</td>
<td>6.41±3.19</td>
</tr>
</tbody>
</table>

SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; LC-PUFA: polyunsaturated fatty acids (unsaturation ≥ 2); n-6: omega-6 fatty acids; n-3: omega-3 fatty acids; LC-PUFA/SFA: polyunsaturated saturated fatty acid ratio; n-6/n-3: omega-6/omega-3 fatty acid ratio. Different letters in the same row indicate significant difference (p < 0.05) according to Tukey’s test.
The docosahexaenoic acid (DHA) is a very important fatty acid responsible for the physical properties of the brain membranes, the features of their receptors, the cellular interactions and the enzymatic activity (Yehuda, Rabinovitz, Carasso, & Mostofsky, 2002).

Among the polyunsaturated fatty acids, there was a high content of linoleic acid (18:2n-6) in all the samples. Almeida et al. (2008) and Almeida and Franco (2007) found values of 9.57 and 9.35% for 18:2n-6 in the orbitalcavity of tambaqui and matrinixã, respectively, in the Brazilian Amazon. It is interesting to note that the values of 18:2n-6 in the feed were between 32.99 and 37.57%. The diets provided to fish can affect the lipid content, especially the fatty acid composition (Om et al., 2001).

High proportions of n-6 polyunsaturated fatty acids characterize the fatty acid composition of freshwater fish, especially linoleic and arachidonic acids (Steffens, 1997).

The arachidonic acid (AA) is related to the development of brain and retina during the period of gestation and the first years of human life. The values for arachidonic acid (AA, 20:4n-6) obtained in this research were considered low. The values varied from 0.06 to 0.14% among fish from different fish farms.

AGMI presented high proportions of the fatty acid groups, characterized the total lipids in the orbital cavity. According to Ewin (1997), from the nutritional point of view, the ingestion of saturated fatty acids increases the content of serum cholesterol in humans; however, the total cholesterol content in plasma decreases when the ingestion of saturated fatty acids is replaced with monounsaturated fatty acids.

The relations or proportions between fatty acids have been studied to assess and identify the risk factor of food regarding the increase of cholesterol level in human blood. The biological effect of essential fatty acids depends on the ratio between LC-PUFA/SFA. This relationship helps to determine the risk factors in food (Marques et al., 2007).

The n-6 and n-3 fatty acids influenced the metabolism of eicosanoids, the gene expression, and the inter-cellular communication. The composition of LC-PUFA in the cellular membranes considerably depends on the amount ingested. In this sense, it is important to consider the recommendations of the appropriate amount of these fatty acids for the daily intake, as well as the balance of the n-6/n-3 ratio, which is essential for the human metabolism, preventing cardiovascular and chronic degenerative diseases, leading to a better mental health (Simopoulos, 2000).

Many countries, such as Germany, Canada, Japan, and the USA, have already made recommendations on the omega 6/omega 3 ratio for human health. In Canada, the recommended proportion of n-6/n-3 should be between 4.0 and 10, according to the Scientific Review Committee (1990).

Fatty acid composition of feed

The fatty acids composition and the sum of SFA, MUFA, LC-PUFA, fatty acids n-6 and n-3, and the LC-PUFA/SFA and n-6/n-3 ratios in the feed are listed in Table 2.

Twenty-six components were detected in the total lipids of feed. In decreasing order, linolenic acid (LA, 18:2n-6), oleic acid (18:1n-9), palmitic acid (16:0), alpha linoleic acid (18:3n-3), vaccenic acid (18:1n-7), palmitoleic acid (16:1n-7) and myristic acid (14:0) were the most abundant fatty acids detected.

Lipids are fundamental to the health, survival, and success of fish populations. The functions of these molecules in fish growth are well defined, namely: energetic, structural, hormonal, precursors of eicosanoids and among others (Haliloglu, Bayr, Sirkicioğlu, Aras, & Atamanalp, 2003). Among lipids, polyunsaturated fatty acids are required for normal growth and development, mainly by maintaining the structural and functional integrity of membranes (Sargent, Bell, McEvoy, Tocher, & Estevez, 1999).

High proportions of LC-PUFA with values of 36.85 and 41.459% respectively for fish from farm II and for fish from farm V characterized the total lipids in the feed. The linolenic acid was the main responsible for the high content of LC-PUFA (Table 2).

Diets given to fish directly affect the muscle composition, especially regarding the lipid content and the composition of fatty acids (Om et al., 2001). The importance of lipids in diets for aquatic organisms is associated with the increase of palatability, the improvement of the muscle tissue texture and the fatty acids profile (Martino & Portz, 2006; Martino & Takahashi, 2001). Rainuzzo, Reitan, and Olsen (1997) emphasized the importance of knowing type and amount of lipid in the diet of animals because of their influence on the quality and quantity of PUFA in the tissues.
Lipid Nutritional Quality

The thrombogenicity index and atherogeneity index were proposed by Ulbricht and Southgate (1991) with the aim of considering not only the family of fatty acids but also their biological effect. Thus, TI relates the content of saturated fatty acids 14:0 16:0 and 18:0 (prothrombotic) with the content of monounsaturated and polysaturated fatty acids n-3 and n-6 (antithrombotic), indicating the contribution the food product may have in the formation of clots in the blood vessels (Senso, Suarez, Ruiz-Cara, & Garcia-Gallego, 2007). On the other hand, AI is based on the information about the effect the several fatty acids have on the plasmatic cholesterol, specifically in the formation of LDL and HDL.

The values of the atherogeneity index (AI), thrombogenicity index (TI) and theratio between hypocholesterolemic and hypercholesterolemic fatty acids (H/H) are shown in Table 3.

Lipid nutritional quality indices for the adipose tissue from the orbital cavity of tilapia

The atherogenicity index results found by Tonial et al. (2011), in fillets of tilapiad diets supplemented with soybean oil, varied from 0.67 to 0.49, from 0 to 90 days, respectively. Senso et al. (2007) reported values from 0.21 to 0.29 for AI in Sparusarata. These studies presentedlower values, which can be justified by the factthatthe fish tissue (fillet) has less polyunsaturated fatty acids compared to the fish eye, as well as by the interference of other factors, such as diet.

There are no recommended values for the AI and TI. It is considered that low values are related to more favorable fatty acids, in terms of health.
beneficial effect on human health since they help to prevent the occurrence of coronary diseases (Turan, Sönmez, & Kaya, 2007).

Values between 1.87 and 2.18 were found for the H/H ratio in the adipose tissue from the orbital cavity analyzed. These values were higher than those observed by Ramos, Ramos, Hiane, and Souza (2008), in freshwater fish raised in Pantanal, State of Mato Grosso, Brazil, who verified values ranging from 1.49 to 1.84 in the muscle of Salminus maxillosus and Pseudoplatystoma coruscans, respectively.

According to the literature, the higher the H/H index, the more suitable is the fat for the human diet. It is worth emphasizing that, for meat products, the ideal value should be close to 2 (Bentes, Souza, Mendonça, & Simões, 2009). The H/H ratio in the adipose tissue from the orbital cavity of fish was strongly influenced by the content of oleic acid.

Conclusion

The LC-PUFA/SFA ratio of the adipose tissue of the orbital cavity was considered satisfactory for the human diet because it presented values within the recommended levels, which are above 0.45. The adipose tissue of the orbital cavity of fish presented essential fatty acids, such as linoleic acid and alphalinolenic acid, in addition to fatty acids of important nutritional value such as arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid. Regarding the lipid nutritional quality, through atherogenicity and thrombogenicity indexes and the H/H ratio, the tilapia residue analyzed in the present study can be recommended for human consumption or to elaborate products for animal feeding.

Acknowledgements

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico–CNPq for support and scholarships.

References

Stevanato, F. V., Almeida, V. V., Matsushita, M., Oliveira, C. C., Souza, N. E., & Visentainer, J. V. (2008). Fatty acids and nutrients in the flour made from tilapia (Oreochromis niloticus) heads. Food Science and Technology, 28(2), 440-443.

Received on March 19, 2017. Accepted on May 24, 2017.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.