Relationship of total bacterial and somatic cell counts with milk production and composition – multivariate analysis
Resumo
This study was realized to evaluate the monthly production, composition and quality of milk (total and defatted dry extract, lactose, fat and protein) and their relation to somatic cell count (SCC) and total bacterial count (TBC) using multivariate statistical analyses. The data are from a dairy farm for the period of two years (from January 2015 to December 2016). The SCC and TBC variables were transformed to somatic cell score (SCS) and log10 (LogTBC). Factor analysis, discriminant analysis and cluster analysis were used. Through factor analysis, it was found two factors that together explained 69.5% of the total data variation. The first factor represented the inverse relationship between lactose versus fat and protein content, while the second factor represented the inverse relationship among monthly milk yield versus SCS and LogTBC. The discriminant analysis identified that lactose and protein contents and SCS were the variables that had the greatest participation in the separation of the groups formed by the cluster analysis. The groups differed mainly by the monthly production of milk, composition and SCS. Finally, there are important multivariate relations between the variables milk production, composition and quality.
Downloads
Referências
Alessio, D. R. M., Thaler Neto, A., Velho, J. P., Pereira, I. B., Miquelutti, D. J., Knob, D. A., & Silva, C. G. (2016). Multivariate analysis of lactose contente in milk of Holstein and Jersey cows. Semina: Ciências Agrárias, 37(4), 2641-2652. doi: 10.5433/1679-0359.2016v37n4Supl1p2641.
Ali, A. K. A., & Shook, G. E. (1980). An optimum transformation for somatic cell concentration in milk. Journal of Dairy Science, 63(3), 487-490. doi: 10.3168/jds.s0022-0302(80)82959-6.
Allen, M. S., & Piantoni, P. (2014). Carbohydrate nutrition: Managing energy intake and partitioning through lactation. Veterinary Clinics: Food Animal Practice, 30(3), 577-597. doi: 10.1016/j.cvfa.2014.07.004.
Belage, E., Dufour, S., Bauman, C., Jones-Bitton, A., & Kelton, D. F. (2017). The Canadian National Dairy Study 2015—Adoption of milking practices in Canadian dairy herds. Journal of Dairy Science, 100(5), 3839-3849. doi: 10.3168/jds.2016-12187.
Busanello, M., Freitas, L. N., Winckler, J. P. P., Farias, H. P., Dias, C. T. S., Cassoli, L. D., & Machado, P. F. (2017a). Month-wise variation and prediction of bulk tank somatic cell count in Brazilian dairy herds and its impact on payment based on milk quality. Irish Veterinary Journal, 70(26), 1-13. doi10.1186/s13620-017-0103-z.
Busanello, M., Rossi, R. S., Cassoli, L. D., Pantoja, J. C. F., & Machado, P. F. (2017b). Estimation of prevalence and incidence of subclinical mastitis in a large population of Brazilian dairy herds. Journal of Dairy Science, 100(8), 6545-6553. doi: 10.3168/jds.2016-12042.
Dias, M. B. d. C., Leão, K. M., Carmo, R. M., Silva, M. A. P., Nicolau, E. S., & Marques, T. C. (2017). Milk composition and blood metabolic profile from holstein cows at different calving orders and lactation stages. Acta Scientiarum. Animal Sciences, 39(3), 315-321. doi: 10.4025/actascianimsci.v39i3.34807.
Dillon, E. J., Hennessy, T., & Cullinan, J. (2015). Measuring the economic impact of improved control of sub-clinical mastitis in Irish dairy herds. The Journal of Agricultural Science, 153(4), 666-675. doi: 10.1017/S0021859614001178.
Eckstein, I. I., Pozza, M. S. S., Ramos, C. E. C., Zambom, M. A., Santos, G. T., Kazama, R., & Pozza, P. C. (2016). Typification of factors related to milk production and its impact on the sanitary quality of milk. Scientia Agraria Paranaensis, 15(1), 56-63. doi: 10.18188/1983-1471/sap.v15n1p56-63.
Fagan, E. P., Jobim, C. C., Calixto Júnior, M., Silva, M. S., & Santos, G. T. (2010). Environmental and handling factors on the chemical composition of milk in dairy farms of Paraná State, Brazil. Revista Brasileira de Zootecnia, 32(3), 309-316. doi: 10.4025/actascianimsci.v32i3.8570.
Haile-Mariam, M., & Pryce, J. E. (2017). Genetic parameters for lactose and its correlation with other milk production traits and fitness traits in pasture-based production systems. Journal of Dairy Science, 100(5), 3754-3766. doi: 10.3168/jds.2016-11952.
Instituto Nacional de Meteorologia [INMET]. (2017). Rede de Estações Climatológicas.
Lebart, L., Morineau, A., & Piron, M. (2000). Statistique exploratoire multidimensionnelle. Paris, France: Dunod.
Lemosquet, S., Delamaire, E., Lapierre, H., Blum, J. W., & Peyraud, J. L. (2009). Effects of glucose, propionic acid, and nonessential amino acids on glucose metabolism and milk yield in Holstein dairy cows. Journal of Dairy Science, 92(7), 3244-3257. doi: 10.3168/jds.2008-1610.
Macciotta, N. P. P., Cecchinato, A., Mele, M., & Bittante, G. (2012). Use of multivariate factor analysis to define new indicator variables for milk composition and coagulation properties in Brown Swiss cows. Journal of Dairy Science, 95(12), 7346-7354. doi: 10.3168/jds.2012-5546.
Machado, S. C., Fischer, V., Stumpf, M. T., & Stivanin, S. C. B. (2017). Seasonal variation, method of determination of bovine milk stability, and its relation with physical, chemical, and sanitary characteristics of raw milk. Revista Brasileira de Zootecnia, 46(4), 340-347. doi: 10.1590/S1806-92902017000400010.
National Research Council [NRC]. (2001). Nutrient Requirements of Dairy Cattle (7th ed.). Washington, DC: National Academy Press.
Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in health sciences education, 15(5), 625-632. doi: 10.1007/s10459-010-9222-y.
Paixão, M. G., Lopes, M. A., Costa, G. M., Souza, G. N., Abreu, L. R., & Pinto, S. M. (2017). Milk quality and financial management at different scales of production on dairy farms located in the south of Minas Gerais state, Brazil. Revista Ceres, 64(3), 213-221. doi: 10.1590/0034-737X201764030001.
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and earth system sciences discussions, 4(2), 439-473. doi: 10.5194/hess-11-1633-2007.
Reche, N. L. M., Neto, A. T., Loredana, D., Felipus, N. C., Pereira, L. C., Cardozo, L. L., ... Picinin, L. C. A. (2015). Multiplicação microbiana no leite cru armazenado em tanques de expansão direta. Ciência Rural, 45(5), 828-834. doi: 10.1590/0103-8478cr20140542.
Ribas, N. P., Junior, P. R., de Andrade, U. V. C., Valotto, A. A., de Jesus, C. P., & de Almeida, M. C. (2014). Escore de células somáticas e sua relação com os componentes do leite amostrados de tanque no estado do Paraná. Archives of Veterinary Science, 19(3), 14-23.
Statistical Analysis System [SAS]. (2000). SAS/STAT UserGguide, Version 8.1. Cary, NC: SAS Institute Inc.
Tremblay, M., Hess, J. P., Christenson, B. M., McIntyre, K. K., Smink, B., van der Kamp, A. J., ... Döpfer, D. (2016). Customized recommendations for production management clusters of North American automatic milking systems. Journal of Dairy Science, 99(7), 5671-5680. doi: 10.3168/jds.2015-10153.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.