Impactos do fogo sobre o componente arbustivo-arbóreo de um remanescente de Floresta Ombrófila Aberta, Areia, Estado da Paraíba

Klerton Rodrigues Forte Xavier^{1*}, Leonaldo Alves de Andrade², Maria do Socorro Evangelista Coelho¹, Felipe Nollet de Medeiros Assis¹ e Juliano Ricardo Fabricante¹

¹Programa de Pós-graduação em Agronomia, Universidade Federal da Paraíba, Rod. BR 079, Km 12, 58397-000, Areia, Paraíba, Brasil. ²Laboratório de Ecologia Vegetal, Departamento de Fitotecnia e Ciências Ambientais, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, Paraíba, Brasil. *Autor para correspondência. E-mail: klertonxavier@hotmail.com

RESUMO. O objetivo do presente trabalho foi avaliar os impactos causados pelo fogo sobre o estrato arbustivo-arbóreo de um fragmento de Floresta Atlântica, em Areia, Paraíba. Foram plotadas 40 parcelas de 100 m² em dois ambientes: floresta intacta (Ambiente I) e floresta queimada (Ambiente II). O presente levantamento incluiu indivíduos com diâmetro ao nível do solo (DNS) ≥ 3 cm, sendo a estrutura da vegetação avaliada por parâmetros convencionais. Calcularam-se, também, os índices de diversidade e de equabilidade, além da similaridade entre os ambientes. Foram amostrados 1.960 indivíduos, pertencentes a 22 famílias, 26 gêneros e 35 espécies. No Ambiente I, *Protium heptaphyllum* foi a espécie mais abundante e importante; no Ambiente II, sobressaíram-se os indivíduos mortos. O teste Kruskal-Wallis (H) analisou a diferença no número de perfilhos dos indivíduos entre os Ambientes, apontando diferença significativa entre estes. O índice de diversidade e a equabilidade no Ambiente I foram maiores que no atingido pelo incêndio; pelo índice de Jaccard, porém, verificou-se que continuam similares. Os resultados demonstraram que o incêndio parece não modificar a composição específica da sinúsia, mas afeta a estrutura da comunidade, além de aumentar significativamente o perfilhamento, indicando a morte da parte aérea de muitos indivíduos.

Palavras-chave: incêndio florestal, perfilhamento, impactos ambientais, floresta serrana.

ABSTRACT. Impacts of fire on the tree-shrub component in an ombrophilous forest fragment in Areia, Paraíba State. The objective of this study was to evaluate the impacts of fire on the tree-shrub component in an ombrophilous forest fragment in Areia, state of Paraíba, Brazil. Forty parcels were plotted in two environments: intact forest (Environment I) and burned forest (Environment II). The vegetation structure was evaluated by conventional parameters, and the difference in the number of shoots of individuals between the environments was evaluated using the Kruskal-Wallis test. Also calculated were the index of diversity, equability and the similarity between the environments. We sampled 1,960 individuals, belonging to 22 families, 26 genera and 35 species. In Environment I, Protium heptaphyllum, Cupania oblongifolia and Brosimum guianense were the most important and abundant species, while the dead individuals were the majority in Environment II. The Kruskal-Wallis test showed there were significant differences between the intact and burned environments. The indices of diversity and the equability of Environment I were greater than those found in Environment II. Nevertheless, the two environments remain similar according to the Jaccard index. The results showed that fire does not appear to change the composition of species; however, it affected the structure of the community, and increased significantly the number of shoots, indicating the death of the canopy in several individuals.

Key words: forest fire, shoots, environmental impacts, mountain forest.

Introdução

Originalmente a Floresta Atlântica possuía cerca de 1,3 milhão de km², estendendo-se do Rio Grande do Norte ao Rio Grande do Sul. Atualmente, ela está representada por cerca de 7% de sua área original, sendo considerada o segundo bioma mais ameaçado do planeta (BRASIL, 2004). Calcula-se que esta floresta abrigue 20.000 espécies de plantas vasculares, das quais 8.000 são endêmicas (MYERS et al., 2000).

A situação desse importante bioma é crítica em todo o Brasil, particularmente na região Nordeste, cuja situação é ainda mais grave. Os poucos remanescentes estão reduzidos a pequenos fragmentos, cercados pelas mais diversas atividades antrópicas. Entre eles, estão inseridas as florestas serranas ou brejos de altitude (disjunção da Floresta Ombrófila Aberta) que, segundo Barbosa et al. (2004), são áreas mais úmidas que a região do entorno, em virtude do efeito orográfico, o qual aumenta as precipitações e reduz a temperatura.

Xavier et al.

Esta tipologia pode ser considerada como refúgio ou relíquia vegetacional, por apresentar peculiaridades florísticas, fisionômicas e ecológicas dissonantes do contexto em que está inserida (VELOSO et al., 1991).

Mesmo com toda a descaracterização sofrida, os brejos de altitude ainda constituem importantes depositários da biodiversidade autóctone e do patrimônio natural da Floresta Atlântica. Deve-se ressaltar que, pela posição geográfica em que se encontram, os brejos de altitude assumem valor estratégico para a conservação, já que detêm particularidades muito próprias e, portanto, considerável número de espécies exclusivas ou endêmicas (ANDRADE et al., 2002).

Por apresentar condições climáticas favoráveis à agricultura, os brejos de altitude, historicamente, vêm sofrendo com o antropismo, que se manifesta de diferentes formas, inclusive por incêndios florestais, frequentes em determinados meses do ano. Nessas formações florestais, os impactos dos incêndios se tornam mais severos porque a biota não apresenta flora adaptada ao fogo (FEARNSIDE, 2005). As consequências dos impactos provocados pelo fogo nas plantas variam de acordo com a intensidade, a frequência e a duração das queimadas (SILVA et al., 2005). Os incêndios florestais comumente eliminam parte dos indivíduos da comunidade (IVANAUSKAS et al., 2003), porém a recorrência do evento tende a simplificar a composição e a estrutura de espécies (CORADIN, 1978).

Informações sobre as consequências dos distúrbios antrópicos em ecossistemas da Floresta Atlântica no Brasil ainda são escassas, sendo ainda mais restritas aquelas referentes aos impactos causados pelo fogo. Considerando a intensa fragmentação em que se encontram as formações da Floresta Atlântica, surge a necessidade de estudar os impactos provocados pelo fogo, visando à aquisição de instrumentos que auxiliem programas de recuperação das áreas afetadas, o que é cada vez mais comum no cenário atual.

O objetivo do presente trabalho foi avaliar os impactos causados por um incêndio acidental sobre o estrato arbustivo-arbóreo de um fragmento de Floresta Ombrófila Aberta, no município de Areia, Estado da Paraíba.

Material e métodos

O fragmento florestal estudado possui uma área de aproximadamente 30 ha, localiza-se na fazenda Engenho Jussara, no município de Areia, Estado da Paraíba (06°57'33,8"S e 35° 41'01,7"W), possui altitude média de 560 m e relevo ondulado a forte ondulado. O clima da região, segundo a classificação de Köppen, é do tipo As (MCKNIGHT; HESS, 2000), ou seja, tropical quente-

úmido, com precipitação média anual superior a 1.400 mm. Os solos são, predominantemente, os Podzólicos Vermelho Amarelo Equivalente eutrófico (BRASIL, 1972). A vegetação apresenta histórico de cortes seletivos de madeira para a utilização como lenha, e cerca de 50% do fragmento foi queimado por um incêndio acidental ocorrido em março de 2007.

Para avaliar os impactos do fogo sobre a vegetação, 90 dias após o incidente, tendo já iniciado a estação chuvosa, foram amostrados 4.000 m², metade dos quais distribuída em 20 parcelas de 100 m² (10 x 10 m) na vegetação intacta (Ambiente I) e metade na floresta queimada (Ambiente II). Todos os indivíduos arbustivoarbóreos com diâmetro ao nível do solo (DNS) ≥ 3 cm foram inventariados, tomando-se o diâmetro ao nível do solo (DNS), a altura e o número de perfilhos, com seus respectivos diâmetros (DNS). Foram contabilizados, também, os indivíduos mortos ainda em pé. A lista florística gerada foi organizada de acordo com o Sistema APG (2003) e a lista dos autores das espécies, segundo Brummitt e Powell (1992); o material botânico foi identificado e armazenado no herbário Jaime Coelho de Morais do CCA/UFPB (EAN).

A estrutura da vegetação foi avaliada pela área basal, densidade, frequência, dominância, valor de cobertura e valor de importância (BROWN-BLANQUET, 1950; MÜLLER-DOMBOIS; ELLEMBERG, 1974; KENT; COKER, 1999). Ainda foram contabilizadas as brotações laterais do fuste dos indivíduos amostrados, que no presente estudo foram considerados como perfilhos. Estes tiveram o diâmetro medido na sua base, e a diferença no número de perfilhos entre os indivíduos dos dois Ambientes foi analisada pelo teste não-paramétrico de Kruskal-Wallis (H) (ZAR, 1999), com a comparação de postos pelo método de Student-Newman-Keuls (AYRES et al., 2005). A hipótese de nulidade, ou seja, de o fogo não afetar o perfilhamento na sinúsia, foi verificada a uma probabilidade menor que 1%.

Calculou-se para cada Ambiente o índice de diversidade de Shannon-Weiner (H') e da equabilidade de Pielou (E) (ODUM, 1988). Para avaliar a similaridade entre as duas áreas, utilizou-se o índice de Jaccard (RICKLEFS, 1996), efetuado pelo método aglomerativo das médias aritméticas (SNEATH; SOKAL, 1973).

As análises estatísticas foram feitas por meio dos *Softwares*: Mata Nativa 2[©] (CIENTEC, 2002), MVSP 3.1[©] (KOVACH COMPUTING SERVICES, 1998) e BioEstat 4.0[©] (AYRES et al., 2005).

Resultados e discussão

Foram amostrados 1.960 indivíduos, pertencentes a 22 famílias, 26 gêneros e 35 espécies, dos quais 1.018 indivíduos, representados por 21 famílias, 25 gêneros e 31 espécies, no Ambiente I e 942 indivíduos,

representados por 21 famílias, 23 gêneros e 29 espécies, no Ambiente II (Tabela 1).

Tabela 1. Lista taxonômica da área estudada e código das espécies para a leitura da tabela da estrutura da vegetação. Sendo: A = Ambientes; CI = Código das espécies do Ambiente I; CII = Código das espécies do Ambiente II.

Famílias / Espécies	CI	CII	Nome Vulgar	Α
Anacardiaceae				
Tapirira guianensis Aubl.	9	18	Cupiúba	I/II
Anonaceae			•	
Xylopia frutescens Aubl.	27	28	Embira	I/II
Apocynaceae				
Malouetia cestroides (Ness ex Martius) Hull. Arg.	20	16	Leiteiro	I/II
Araliaceae				
Schefflera morototoni (Aubl.) Steyemark & Frodin	17		Sabacuim	I
Arecaceae				
Attalea oleifera Barb. Rodr.	14	2	Pindoba	I/II
Boraginaceae				
Cordia sp.		32	Gargaúba	II
Burceraceae			0	
Protium heptaphyllum (Aubl.) Marchand	4	5	Amescla	I/II
Clusiaceae				,
Clusia paralicola G. Mariz	18	10	Pororoca	I/II
Erithroxylaceae				,
Erythroxylum deciduum A. St. Hill	7	15	Cocão	I/II
Fabaceae				,
Caesalpinia ferrea Mart.		25	Pau ferro	II
Inga ingoides (Rich.)Willd	1	22	Ingá	I/II
Bowdichia virgilioides Kunth	19	4	Sucupira	I/II
Indeterminada	5	12	Pau d'anta	I/II
Flacourtiaceae				,
Casearia hirsuta SW	16	7	Café bravo	I/II
Lauraceae				
Nectandra pichurim (Kunth) Mez	29	17	Louro	I/II
Ocotea guianensis Aubl.	24		Louro branco	I
Ocotea glomerata (Nees) Mez	32		Louro preto	I
Lecythidaceae				-
Eschweilera ovata (Cambess) Miers	10		Embiriba	I
Eschweilera sp.	8	8	Embiriba preta	I/II
Lecythis ollaria Loefl.	33		Sapucaia	Ī
Malpghiaceae			F	
Byrsonima sericeae DC.	25	14	Murici	I/II
Melastomataceae				-,
Miconia candolleana Naudin	30	21	Cinzeiro	I/II
Miconia SP	35		Cinzeiro roxo	I
Moraceae				-
Brosimum guianense (Aubl.) Huber	22	19	Quiri	I/II
Myrtaceae			~	-,
Myrcia sp.	2	9	Cupuna	I/II
Nyctaginaceae				
Guapira opposita (Vell.) Reitz	23	31	João mole	I/II
Piperaceae			,	
Piper sp.	31	29	Pimenta de pau	I/II
Sapindaceae			1	
Cupania oblongifolia Mart	3	3	Caboatã de leite	I/II
Cupania revolute Rolfe	21	11	Caboatã de rego	
Simaroubaceae				-,
Simarouba versicolor A. St. Hil	26	23	Paraíba	I/II
Tiliaceae				-,
Apeiba tibourbou Aubl.	15	20	Jangada	I/II
Indeterminadas		_0	Jungana	., 11
Ind. 1	6	6	_	I/II
Ind. 2	13	13	-	I/II
Ind. 3	13	30	_	II
Ind. 4		27	_	II
		-/	<u> </u>	1.1

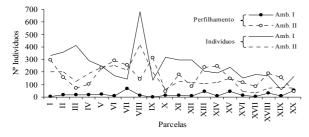
A família mais representativa foi Fabaceae, com quatro táxons, seguida por Lauraceae e Lecythidaceae, com três espécies, e Sapindaceae e Melastomataceae, com duas. No Ambiente I, *Protium heptaphyllum*, *Cupania oblongifolia* e *Brosimum guianense* foram responsáveis por 49,6% da

abundância de espécies. A composição florística deste sítio foi similar à encontrada no trabalho realizado por Neves (2006), porém diferiu de outros trabalhos desenvolvidos em florestas de brejos de altitude, a exemplo de Andrade et al. (2002), Cestaro e Soares (2004), Andrade et al. (2006) e Oliveira et al. (2006).

No Ambiente II, 44,9% da amostra foi composta por indivíduos mortos, demonstrando o impacto negativo do fogo sobre a vegetação. Tais impactos vão além da diminuição na densidade de árvores e arbustos (AGEE, 1993), causando também redução no crescimento (FROST; ROBERTSON, 1987) e na biomassa vegetal (MEDINA; SILVA, 1990), e interferência no estabelecimento de plântulas (BOND; WILGEN, 1996; FRANCO et al., 1996).

Os táxons mais abundantes foram também os mais importantes na avaliação estrutural da comunidade (Tabela 2). No Ambiente I, P. heptaphyllum apresentou 1.095 indivíduos ha-1, frequência de 95% nas unidades amostrais e dominância de 5,83 m² ha⁻¹, o que gerou um valor de cobertura de 30,57 e valor de importância de 37,31, correspondendo a 15,29% e a 12,44% da amostra, respectivamente. A segunda espécie com maior VI (C. oblongifolia) foi a única presente em todas as parcelas do Ambiente I, apresentando a terceira maior densidade (590 indivíduos ha⁻¹) e a segunda maior dominância (8,74 m² ha⁻¹), com um valor de cobertura de 25,16 e de importância de 32,25. Já a terceira espécie em VI (B. guianense) foi a segunda mais abundante (840 indivíduos ha-1) e apresentou frequência de 95% e dominância de 4,23 m² ha⁻¹; assim, representou 11,54% da cobertura e 9,94% da importância do Ambiente I.

No Ambiente II, observou-se que as diferenças em relação ao Ambiente I estão principalmente na redução dos valores nos parâmetros analisados, reflexo da morte significativa pelo fogo, pois as espécies são basicamente as mesmas e com distribuição proporcionalmente similar. O VI dos indivíduos mortos foi definido pela densidade de 2.115 indivíduos ha⁻¹, pela presença em todas as unidades amostrais e pela dominância de 15,10 m² ha⁻¹ (Tabela 2).


O número de indivíduos perfilhando foi de 74 para o Ambiente I e 302 para o Ambiente II, correspondendo a 7,27 e 32,06% dos indivíduos amostrados nas parcelas, respectivamente. Os perfilhados no Ambiente I apresentaram média de 0,73 perfilhos indivíduo⁻¹, com amplitude total de 2,1 perfilhos indivíduo⁻¹, enquanto no Ambiente II foi de 4,78 perfilhos indivíduo⁻¹, com amplitude de 7,3 perfilhos indivíduo⁻¹. Assim, verifica-se que o fogo não só aumenta o número de indivíduos perfilhados como também o número de perfilhos por indivíduo (Figura 1).

410 Xavier et al.

Tabela 2. Parâmetros estruturais das espécies identificadas pelos códigos (Tabela 1) nos ambientes estudados. Sendo: N = Número de Indivíduos, AB = Área Basal, DA = Densidade Absoluta, DoA = Dominância Absoluta, FA = Frequência Absoluta, VC = Valor de Cobertura e VI = Valor de Importância.

	Ambiente I – Não-atingido pelo fogo							Ambiente II – Atingido pelo fogo							
Código	N	AB	DA	FA	DoA	VC	VI	Código	N	AB	DA	FA	DoA	VC	VI
4	219	1,1664	1095	95	5,832	30,571	37,308	1**	423	3,0203	2115	100	15,102	70,808	79,355
3	118	1,7469	590	100	8,735	25,157	32,249	3	58	2,0524	290	95	10,263	23,759	31,879
22	168	0,8464	840	95	4,232	23,076	29,813	9	90	0,5468	450	95	2,684	13,309	21,43
9	25	2,5050	125	80	12,525	21,909	27,582	18	14	1,6105	70	45	8,052	15,298	19,144
12*	43	0,8724	215	85	4,362	10,998	17,027	2	54	0,4724	270	75	2,362	9,784	16,194
8	75	0,3486	375	80	1,743	10,075	15,749	5	43	0,4881	215	85	2,440	8,751	16,016
14	32	0,8926	160	65	4,463	10,075	14,685	4	16	1,1294	80	50	5,647	11,385	15,659
5	15	0,9451	75	40	4,726	8,813	11,650	7	50	0,3344	250	80	1,672	8,176	15,014
27	35	0,7239	175	80	0,946	4,908	10,582	8	40	0,1757	200	75	0,879	5,753	12,163
16	35	0,1760	175	65	0,880	4,805	9,415	14	8	0,6465	40	30	3,232	6,394	8,958
20	27	0,9071	135	65	0,921	4,084	8,693	6	23	0,0471	115	60	0,236	2,846	7,974
2	33	0,0905	165	50	0,452	3,944	7,490	13	16	0,0359	80	50	0,179	2,6	6,280
13	37	0,0877	185	40	0,439	4,316	7,153	12	10	0,1447	50	35	0,724	2,303	5,294
1	21	0,2250	105	45	1,125	3,810	7,2	22	15	0,0520	75	35	0,260	2,039	5,030
18	10	0,3067	50	40	1,534	3,364	6,201	15	6	0,2096	30	30	1,048	2,435	4,999
26	10	0,3095	50	35	1,548	3,386	5,868	16	11	0,0550	55	35	0,275	1,639	4,631
7	16	0,1255	80	45	0,628	2,546	5,738	23	5	0,2228	25	15	1,114	2,441	3,723
17	5	0,4035	25	25	2,018	3,625	5,398	19	7	0,0428	35	30	0,214	1,110	3,674
33	11	0,3144	55	25	1,572	3,522	5,295	17	10	0,1455	50	15	0,727	2,309	3,591
21	15	0,0499	75	45	0,250	1,861	5,053	10	6	0,0697	30	25	0,348	1,235	3,371
6	19	0,0379	95	40	0,190	2,161	4,998	28	9	0,0536	45	20	0,268	1,415	3,125
29	9	0,2380	45	20	1,190	2,732	4,151	20	3	0,0743	15	15	0,371	0,956	2,238
10	11	0,0901	55	30	0,450	1,780	3,908	31	3	0,0825	15	10	0,413	1,026	1,881
23	7	0,1109	35	30	0,554	1,549	3,676	27	4	0,96	20	15	0,048	0,507	1,789
30	7	0,0163	35	30	0,082	0,814	2,942	21	3	0,85	15	15	0,042	0,391	1,673
19	3	0,2059	15	10	1,030	1,894	2,603	30	4	0,53	20	10	0,026	0,470	1,324
25	3	0,1862	15	10	0,931	1,741	2,450	29	7	0,84	35	5	0,042	0,815	1,242
15	3	0,0559	15	15	0,279	0,728	1,792	11	2	0,0103	10	10	0,051	0,301	1,155
32	2	0,0473	10	10	0,236	0,564	1,273	32	1	0,0135	5	5	0,068	0,222	0,649
24	1	0,0908	5	5	0,454	0,803	1,158	25	1	0,13	5	5	0,7	0,118	0,545
31	2	0,60	10	5	0,030	0,243	0,598	-	-	-	-	-	-	-	· -
35	1	0,62	5	5	0,031	0,147	0,501				-				
Total	1018	12,877	5090	1410	64,387	200	300	Total	942	11,660	4710	1170	58,300	200	300

^{*; **:} Indivíduos mortos.

Figura 1. Variação do número de indivíduos e de perfilhos totais por parcela nos ambientes estudados.

Esses resultados corroboram aquilo que tem sido observado em outras florestas tropicais incendiadas (UHL et al., 1982; KAUFFMAN, 1991; CASTELLANI; STUBBLEBINE, 1993; MARTINS et al., 2002), sugerindo tratar-se de uma estratégia comum entre as espécies deste tipo de vegetação para rápido restabelecimento após a perturbação sofrida.

A hipótese de nulidade para a variável perfilhamento foi rejeitada a 1% de probabilidade, o que demonstra que o fogo modificou significativamente o evento na comunidade. O valor do teste H foi de 27,71, com diferença entre os postos de H=19,45.

Os perfilhos são responsáveis por 5,55 e 4,33% da área basal total obtida para os Ambientes I e II, respectivamente. A maior contribuição deste parâmetro no Ambiente I, a despeito do menor número de perfilhados, é um forte indício de perturbações passadas

sofridas pela vegetação, a exemplo do corte seletivo para retirada de madeira e lenha, corroborando o histórico de uso levantado na área estudada. No Ambiente II, a baixa contribuição para o valor total do parâmetro deve-se ao fato de os perfilhos ainda estarem em fase inicial de desenvolvimento, o que pode ser verificado *in loco* pela presença de tecidos pouco lignificados.

O índice de diversidade e a equabilidade, no Ambiente I, foi de 2,74 e 0,85, respectivamente; já no Ambiente II, foi de 2,25 e 0,26. Observa-se que a diferença da equabilidade foi alta entre os Ambientes, o que se explica pela grande abundância dos indivíduos mortos na área incendiada, com consequente redução da diversidade.

Os valores para diversidade encontrados neste trabalho foram inferiores aos obtidos em trabalhos desenvolvidos em florestas secundárias (ANDRADE et al., 2002; LOPES et al., 2002; SILVA et al., 2003) e similares aos encontrados por Oliveira et al. (2006), ao estudarem um fragmento de floresta com diferentes idades no mesmo município do presente trabalho. No que se refere à equabilidade, o valor para o Ambiente I foi similar; no Ambiente II, foi inferior aos encontrados em outros estudos em florestas úmidas brasileiras (SOUZA et al., 2002; SILVA et al., 2003).

Pela análise de similaridade, observou-se que houve a formação de dois grandes grupos de parcelas que dividem a amostra quase exatamente nos dois Ambientes estudados (Figura 2).

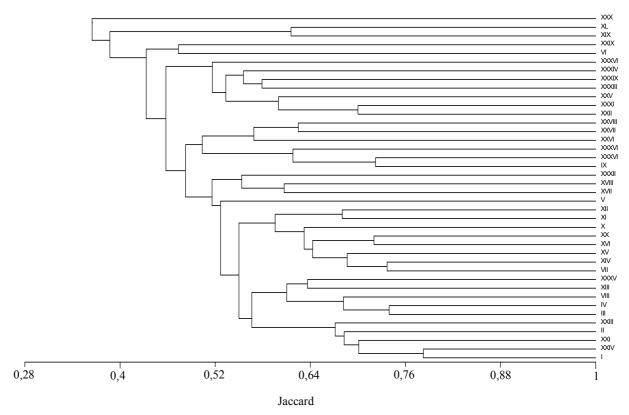


Figura 2. Similaridade de Jaccard entre os Ambientes estudados. Parcelas I a XX = Ambiente I; Parcelas XXI a XL = Ambiente II.

Por outro lado, todas as amostras possuem valor do índice superior a 25%, o que indica analogia entre os Ambientes (MATEUCCI; COLMA, 1982; WHITTAKER, 1984).

Conclusão

Os resultados evidenciaram que o incêndio ocorrido em parte do fragmento de Floresta Ombrófila Aberta não modificou a composição específica, porém afetou a estrutura da vegetação, provocando alta mortalidade de indivíduos, além de aumentar significativamente o número de indivíduos policaulescentes, assim como o número de perfilhos por indivíduo.

Agradecimentos

Os autores agradecem ao proprietário da fazenda Engenho Jussara (Seu Brian) e à equipe do Laboratório de Ecologia Vegetal do CCA/UFPB.

Referências

AGEE, J. K. **Fire ecology of pacific northwest forests**. New York: Island Press, 1993.

ANDRADE, L. A.; PEREIRA, I. M.; DORNELAS, G. V. Análise da vegetação arbóreo-arbustiva espontânea, ocorrente em taludes íngremes no município de Areia – estado da Paraíba. **Revista Árvore**, v. 26, n. 2, p. 165-172, 2002.

ANDRADE, L. A.; OLIVEIRA, F. X.; NASCIMENTO, I. S.; FABRICANTE, J. R.; SAMPAIO, E. V. S. B.; BARBOSA, M. R. V. Análise florística e estrutural de matas ciliares ocorrentes em brejo de altitude, no município de Areia, Paraíba. **Revista Brasileira Ciências Agrárias**, v. 1, n. 1, p. 31-40, 2006.

APG-Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. **Botanical Journal of the Linnean Society**, v. 141, n. 4, p. 399-436, 2003.

AYRES, M.; AYRES, J. R. M.; AYRES, D. L.; SANTOS, A. A. S. **Bioestat 4.0**: aplicações estatísticas nas áreas das ciências bio-médicas. Belém: Mamirauá/CNPq, 2005.

BARBOSA, M. R. V.; AGRA, M. F.; SAMPAIO, E. V. S. B.; CUNHA, J. P.; ANDRADE, L. A. Diversidade florística da Mata de Pau Ferro, Areia, Paraíba. In: PÔRTO, K. C.; CABRAL, J. J. P.; TABARELLI, M. (Ed.). Brejos de altitude em Pernambuco e Paraíba: história natural, ecologia e conservação. Brasília: Ministério do Meio Ambiente, 2004. p. 111-122. (Série Biodiversidade, 9).

BOND, W. J.; WILGEN, B. W. Fire and plants. New York: Chapman & Hall, 1996.

BRASIL. Ministério da Agricultura. **Levantamento exploratório**: reconhecimento de solos do estado da

412 Xavier et al.

Paraíba. Rio de Janeiro: SUDENE, 1972. (Boletim Técnico, 15).

BRASIL. Ministério do Meio Ambiente. Áreas prioritárias para a conservação, utilização sustentável e repartição de benefícios da biodiversidade brasileira. Brasília, 2004.

BROWN-BLANQUET, J. **Sociologia vegetal**: estudio de las comunidades vegetales. Buenos Aires: Acme, 1950.

BRUMMITT, R. K.; POWELL, C. E. Authors of plant names. Kew: Royal Botanic Gardens, 1992.

CASTELLANI, T. T.; STUBBLEBINE, W. H. Sucessão secundária inicial em mata tropical mesófila, após perturbação por fogo. **Revista Brasileira de Botânica**, v. 16, n. 2, p. 181-203, 1993.

CESTARO, L. A.; SOARES, J. J. Variações florística e estrutural e relações fitogeográficas de um fragmento de floresta decídua no Rio Grande do Norte, Brasil. **Acta Botanica Brasilica**, v. 18, n. 2, p. 203-218, 2004.

CIENTEC-Consultoria e Desenvolvimento de Sistemas Ltda. **Mata nativa**: sistema para análise fitossociológica e elaboração de planos de manejo de florestas nativas. São Paulo, 2002.

CORADIN, L. The grasses of the natural savanna of the federal territory of Roraima, Brasil. Brasília: Embrapa, 1978.

FEARNSIDE, P. M. Desmatamento na Amazônia brasileira: história, índices e conseqüências. **Megadiversidade**, v. 1, n. 1, p. 113-123, 2005.

FRANCO, A. C.; SOUZA, M. P.; NARDOTO, G. B. Estabelecimento e crescimento de *Dalbergia miscolobium* em áreas de campo sujo e cerrado no DF. In: MIRANDA, H. S.; SAITO, C. H.; DIAS, B. F. S. (Org.). **Impacto de queimadas em área de cerrado e restinga**. Brasília: Universidade de Brasília, 1996. p. 84-92.

FROST, P. G. H.; ROBERTSON, F. The ecological effects of fire in savannas. In: WALKER, B. H. (Ed.). **Determinants of tropical savannas**. Oxford: IRL Press, 1987. p. 93-140.

IVANAUSKAS, N. M.; MONTEIRO, R.; RODRIGUES, R. R. Alterations following a fire in a forest community of Alto Rio Xingu. **Forest Ecology and Management**, v. 184, n. 1-3, p. 239-250, 2003.

KAUFFMAN, J. B. Survival by sprouting following fire in tropical forest of the Eastern Amazon. **Biotropica**, v. 23, n. 3, p. 219-224, 1991.

KENT, M.; COKER, P. **Vegetation description and analysis**: a pratical approach. Chichester: John Wiley and Sons, 1999.

KOVACH COMPUTING SERVICES. **MVSP**: a multivariate statistical package. Oriana, 1998.

LOPES, W. P.; SILVA, A. F.; SOUZA, A. L.; MEIRA NETO, J. A. A. Estrutura fitossociológica de um trecho de vegetação arbórea no Parque Estadual do Rio Doce - Minas Gerais, Brasil. **Acta Botanica Brasilica**, v. 16, n. 4, p. 443-456, 2002.

MARTINS, S. V.; RIBEIRO, G. A.; SILVA JUNIOR, W. M.; NAPPO, M. E. Regeneração pós-fogo em um fragmento de floresta estacional semidecidual no município de Viçosa, MG. **Ciência Florestal**, v. 12, n. 1, p. 11-19, 2002.

MATEUCCI, S. D.; COLMA, A. **Metodologia para el estudio de la vegetacion**. Washington, D.C.: Programa Regional de Desarrolo Científico y Tecnológico, 1982.

MCKNIGHT, T. L.; HESS, D. **Climate zones and types**: the köppen system, physical geography: a landscape appreciation. Upper Saddle River: Prentice Hall, 2000.

MEDINA, E.; SILVA, J. F. Savannas of northern South América: a steady state regulated by water-fire interactions on a background of low nutrient availability. **Journal of Biogeography**, v. 17, n. 4, p. 403-413, 1990.

MYERS, N.; MITTERMEIER, R. A.; MITTERMEIER, C. G.; FONSECA, G. A. B.; KENT, J. Biodiversity hotspots for conservation priorities. **Nature**, v. 403, n. 6772, p. 853-845, 2000.

MULLER-DOMBOIS, D.; ELLEMBERG, H. Aims and methods of vegetation ecology. New York: John Wiley and Sons, 1974.

NEVES, C. M. L. Análise da vegetação e da entomofauna de coleópeteros ocorrentes em fragmentos de floresta serrana de Brejo de Altitude no estado da Paraíba. 2006. 133f. Dissertação (Mestrado em Agronomia)-Universidade Federal da Paraíba, Areia, 2006.

ODUM, E. P. **Ecologia**. Rio de Janeiro: Guanabara, 1988.

OLIVEIRA, F. X.; ANDRADE, L. A.; FÉLIX, L. P. Comparações florísticas e estruturais entre comunidades de floresta ombrófila aberta com diferentes idades, no município de Areia, Paraíba. **Acta Botanica Brasilica**, v. 20, n. 4, p. 861-873, 2006.

RICKLEFS, R. E. A economia da natureza. Rio de Janeiro: Guanabara Koogan, 1996.

SILVA, A. F.; OLIVEIRA, R. V.; SANTOS, N. R. L.; PAULA, A. Composição florística e grupos ecológicos das espécies de um trecho de floresta semidecídua submontana da Fazenda São Geraldo, Viçosa-MG. **Revista Árvore**, v. 27, n. 3, p. 311-319, 2003.

SILVA, V. F.; OLIVEIRA FILHO, A. T.; VENTURIN, N.; CARVALHO, W. A. C.; GOMES, J. B. V. Impacto do Fogo no Componente Arbóreo de uma Floresta Estacional Semidecídua no Município de Ibituruna, MG, Brasil. **Acta Botanica Brasilica**, v. 19, n. 4, p. 701-716, 2005.

SNEATH, P. H. A.; SOKAL, R. R. **Numerical taxonomy**. San Francisco: Freeman, 1973.

SOUZA, A. L.; SCHETTINO, S.; JESUS, R. M.; VALE, A. B. Dinâmica da regeneração natural em uma floresta ombrófila densa secundária, após corte de cipós, reserva natural da companhia Vale do Rio Doce S.A., Estado do Espírito Santo, Brasil. **Revista Árvore**, v. 26, n. 4, p. 411-419, 2002.

UHL, C.; CLARK, H.; CLARK, K.; MAQUIRINO, P. Successional patterns associated with slash-and-burn agriculture in the upper Rio Negro region of the Amazon basin. **Biotropica**, v. 14, n. 4, p. 249-254, 1982.

VELOSO, H. P.; RANGEL-FILHO, A. L. R.; LIMA, J. C. A. Classificação da vegetação brasileira, adaptada a um sistema universal. Rio de Janeiro: IBGE, 1991.

WHITAKER, R. H. **Classification of plant communities**. Boston: Kluwer Academic Publishers Group, 1984.

ZAR, J. H. **Biostatistical analysis**. New Jersey: Prentice-Hall, 1999.

Received on July 22, 2008. Accepted on September 23, 2008.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.