The strongly generalized double difference χ sequence spaces defined by a modulus

Subramanian Nagarajan1* and Umakanta Misra2

1Department of Mathematics, Sastra University, Thanjavur-613 401, India. 2Department of Mathematics, National Institute of Science and Technology, Palur Hills, Golanthara, Odisha, India. *Author for correspondence. E-mail: nsmaths@yahoo.com

ABSTRACT. In this paper we introduce the strongly generalized difference sequence spaces of modulus

$$A_i = \alpha_i^{(n,n)}$$

is a non-negative four dimensional matrix of complex numbers and $(p_{i(mn)})$ is a sequence of positive real numbers. We also give natural relationship between strongly generalized difference summable sequences with respect of modulus. We examine some topological properties of the above spaces and investigate some inclusion relations between these spaces.

Keywords: De la Valle-Poussin means, difference sequence, gai sequence, analytic sequence, modulus function, double sequence.

A diferença dupla fortemente generalizada de espaços sequenciais de χ determinados por módulo

RESUMO. Os espaços sequenciais diferenciais fortemente generalizados da função modulus são apresentados. $A_i = \alpha_i^{(n,n)}$ é uma matriz não negativa de quatro dimensões de número complexos e $(p_{i(mn)})$ é uma sequência de número reais positivos. Proporciona-se o relacionamento natural entre sequências somáveis diferenciais fortemente generalizadas referente ao modulus. Analisam-se algumas características topológicas dos espaços mencionados acima e investigam-se as relações incluentes entre esses espaços.

Palavras-chave: medianas de Valle-Poussin, sequências diferenciais, sequência de Gai, sequência analítica, função de módulo, sequência dupla.

Introduction

Throughout the paper w, x and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively. We write w^2 for the set of all complex sequences (x_{mn}), where $m,n \in \mathbb{N}$ the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces are found in Bromwich (1965). Later on these were investigated by Hardy (1917), Moricz (1991), Moricz and Rhoades (1988), Basarir and Solancan (1999), Tripathy (2003), Turkmenoglu (1999) and many others. Quite recently Zeltser (2001) in her Ph.D. thesis, had essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen (2004) and Mursaleen and Edely (2004), have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M-core for double sequences.

They have determined four dimensional matrices transforming every bounded double sequences $x = (x_{mn})$ into one whose core is a subset of the M-core of x. Recently, Altay and Basar (2005), have defined the spaces \mathcal{BS}, $\mathcal{BS} (t)$, \mathcal{CS}, \mathcal{CS}_p, \mathcal{CS} and \mathcal{BV} of double sequences consisting of all double series whose sequence of partial sums are in the spaces \mathcal{M}_p, $\mathcal{Um}(t)$, \mathcal{C}_p, \mathcal{C}_p, \mathcal{C} and \mathcal{L}_p respectively, and also examined some properties of those sequence spaces and determined the α - duals of the spaces \mathcal{BS}, \mathcal{CS}_p and \mathcal{BV} and the β - duals of the spaces \mathcal{CS}_p, \mathcal{CS} of double series. Quite recently Basar and Sever (2009), have introduced the Banach space \mathcal{L}_q of double sequences corresponding to the well-known space l_q of single sequences and examined some properties of the space \mathcal{L}_q. Quite recently Das et al. (2008), Vakeel and...
Spaces of strongly summable sequences were discussed by Kuttner (1946), Maddox (1979) and others. The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by Maddox (1986), as an extension of the definition of strongly Cesàro summable sequences. Cannor (1989) further extended this definition to the definition of strong A – summability, with respect to a modulus where $A = (a_{n,k})$ is a non-negative regular matrix and established some connection between strong A – summability with respect to a modulus and A – statistical convergence. The notion of double sequence was presented by Pringsheim (1900). The four dimensional matrix transformations

$$ (Ax)_{k,l} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{kl}^{mn} x_{mn} $$

was also studied extensively by Hamilton (1936, 1938a and b, 1939). In his work and throughout this paper, the four dimensional matrices and double sequences have real-valued entries unless specified otherwise. In this paper we extend a few results of sequences have real-valued entries unless specified otherwise. In this paper we extend a few results of sequences spaces to apply sequence spaces. A known in the literature for ordinary (single) sequence spaces, to apply sequence spaces. A known in the literature for ordinary (single) sequence spaces.

Let $A = (a_{n,k})$ be an infinite four dimensional matrix of complex numbers. We write $Ax = \left(A \left(x \right) \right)_{i,j}^{\infty}$ if

$$ A \left(x \right) = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \left(a_{i(k,n)} \right) x_{nm} $$

converges for each $i \in \mathbb{N}$.

Let $p = (p_{mn})$ be a sequence of positive real numbers with $0 < p_{mn} \leq \sup_{m,n} p_{mn} = G$ and let $D = \max(1,2^{G})$. Then, for $a_{mn}, b_{mn} \in \mathbb{N}$, the set of complex numbers, and for all $m,n \in \mathbb{N}$ we have

$$ \left| a_{mn} + b_{mn} \right|^{1/p_{mn}} \leq D \left\{ \left| a_{mn} \right|^{1/p_{mn}} + \left| b_{mn} \right|^{1/p_{mn}} \right\} \quad (1) $$

The double series $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} x_{mn}$ is said to be convergent if and only if the double sequence (S_{mn}) is convergent, where $s_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} (m,n \in \mathbb{N})$.

A sequence $x = (x_{mn})$ is said to be double analytic if $\sup_{m,n} |x_{mn}|^{1/mn} < \infty$. The vector space of all double analytic sequences is denoted by \mathbb{A}^2.

A sequence $x = (x_{mn})$ is said to be a double gai sequence if $\left(\left(m+n \right) |x_{mn}|^{1/mn} \right) \to 0$ as $m,n \to \infty$. The set of all double gai sequences is denoted by \mathbb{x}^2. We denote \mathbb{A} as the set of all finite sequences.

The $(m,n)^{th}$ section, usually denoted by $x^{[m,n]}$, of the sequence $x = (x_{mn})$ is defined by $x^{[m,n]} = \sum_{i,j=1}^{m,n} x_{ij}$ for all $m,n \in \mathbb{N}$, where \mathbb{x}_y denotes the double sequence whose only non-zero term is $(i+j)!$ in the $(ij)^{th}$ place for each $i, j \in \mathbb{N}$.

The difference sequence space (for single sequences), usually denoted by $Z(\Delta)$, is defined as (KIZMAZ, 1981)

$$ Z(\Delta) = \{ x = (x_i) \in w : (\Delta x_i) \in Z \} $$

for $Z = c, c_0$ and l_∞, $\Delta(x_i) = x_i + x_{i+1}$, for all $k \in \mathbb{N}$, where w, c, c_0 and l_∞ denote the class of all, convergent, null, and bounded scalar valued single sequences respectively. The above space is a Banach space normed by $\|x\|_{\mathbb{A}} = |x| + \sup_{i \in \mathbb{N}} |\Delta x_i|$. In this paper we define the difference double sequence space as follows:

$$ Z(\Delta) = \{ x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z \} $$

where: $Z = \mathbb{A}^2, \mathbb{x}^2$ and

$$ \Delta x_{mn} = (x_{mn} - x_{mn+1}) = (x_{m+1,n} - x_{m,n+1}) \text{ for all } m,n \in \mathbb{N} $$

We also have, for all $m,n \in \mathbb{N}$,

$$ \Delta^m x_{mn} = \Delta(\Delta^{m-1} x_{mn}) = \Delta^{m-1} x_{mn} = \Delta^{m-1} x_{mn+1} \Delta^{m-1} x_{m+1,n} $$

A function $f: [0,\infty) \to [0, \infty)$ is said to be a modulus function (NAKANO, 1953) if and only if it satisfies

(i) $f(x) = 0$, if and only if, $x = 0$,
(ii) $f(x + y) \leq f(x) + f(y)$, for all $x \geq 0, y \geq 0$,
(iii) f is increasing,
(iv) f is continuous from the right at 0.

Since $|f(x) + f(y)| \leq f(|x+y|)$, it follows from (iv) that is continuous on $[0, \infty)$.

A double sequence $\lambda = \{ (f_n,u) \}$ is said to be a double λ-sequence if there exist two non-decreasing

\[\text{Acta Scientiarum. Technology}\]
sequences of positive numbers tending to infinity such that $\beta_{s+1} \leq \beta_s + 1, \beta_1 = 1$ and $u_{s+1} \leq u_s + 1, u_1 = 1$. The generalized double de Vallee-Poussin mean is defined as

$$t_{rs} = t_{rs}(x_{mn}) = \frac{1}{\lambda_{rs}} \sum_{m,n \in I_{rs}} x_{mn}$$

where:

$$\lambda_{rs} = \beta_s u_s + 1, u_1 = \{(mn): r - \beta_s + 1 \leq m \leq r, s - u_s + 1 \leq n \leq s\}.$$

A double sequence $x = (x_{mn})$ is said to be (α_2, β_2)-summable to a number L if $P-\lim_{r,s} t_{rs} = L$. If $\beta_s = rs$, then (α_2, β_2)-summability is reduced to $(C, 1, 1)$-summability.

Main results

Let $A = \left(\alpha_{r(i)}^{(m,n)}\right)$ is an infinite four dimensional matrix of complex numbers and $p = \left(p_{r(i)}^{(m,n)}\right)$ be a double analytic sequence of positive real numbers such that $0 < h = \inf p_{(m,n)} \leq \sup p_{(m,n)} = H < \infty$, and f be a modulus. We define

$$V_{\alpha_2, \beta_2}^{(2)} \left[A, A^\alpha, p, f \right] = \left\{ x = (x_{mn}) \in \mathbb{W}_2: \lim_{r,s \to \infty} \lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(A \left((m+n)! A^\alpha x_{mn} \right)^{1/(m+n)} \right) \right]^{p_{r(i)}^{(m,n)}} = 0 \right\}.$$

$$V_{\alpha_2, \beta_2}^{(2)} \left[A, A^\alpha, p, f \right] = \left\{ x = (x_{mn}) \in \mathbb{W}_2: \sup_{r,s} \lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(A \left((m+n)! A^\alpha x_{mn} \right)^{1/(m+n)} \right) \right]^{p_{r(i)}^{(m,n)}} < \infty \right\},$$

where: $A \left(A^\alpha \right)^x = \sum_{r,s} \sum_{\alpha_{r(i)}^{(m,n)}} A_{r(i)}^{(m,n)} A^\alpha x_{mn}$. In what follows in this paper we establish some of the topological properties of the above spaces and investigate inclusion relations between them. We prove:

Theorem-1

Let f be a modulus function. Then $V_{\alpha_2, \beta_2}^{(2)} \left[A, A^\alpha, p, f \right]$ is a linear space over the complex field C.

Proof: Let $x, y \in V_{\alpha_2, \beta_2}^{(2)} \left[A, A^\alpha, p, f \right]$ and $\alpha, \mu \in \mathbb{N}$. Then there exist integers D_x and D_y such that $|x|_{D_x} \leq D_x$ and $|y|_{D_y} \leq D_y$. By using (1) and the properties of modulus f, we have:

$$\lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(A \left((m+n)! A^\alpha x_{mn} \right)^{1/(m+n)} \right) \right]^{p_{r(i)}^{(m,n)}} \leq DD_{\alpha_2}^{\beta_2} \lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(A \left((m+n)! A^\alpha x_{mn} \right)^{1/(m+n)} \right) \right]^{p_{r(i)}^{(m,n)}} \leq DD_{\alpha_2}^{\beta_2} \lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(A \left((m+n)! A^\alpha x_{mn} \right)^{1/(m+n)} \right) \right]^{p_{r(i)}^{(m,n)}} + DD_{\alpha_2}^{\beta_2} \lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(A \left((m+n)! A^\alpha x_{mn} \right)^{1/(m+n)} \right) \right]^{p_{r(i)}^{(m,n)}}.$$

As $r, s \to \infty$, this proves that $V_{\alpha_2, \beta_2}^{(2)} \left[A, A^\alpha, p, f \right]$ is linear.

Theorem-2

Let f be a modulus function. Then the inclusion

$$V_{\alpha_2, \beta_2}^{(2)} \left[A, A^\alpha, p, f \right] \subset V_{\alpha_2, \beta_2}^{(2)} \left[A, A^\alpha, p, f \right]$$

holds.

Proof: Let $x \in V_{\alpha_2, \beta_2}^{(2)} \left[A, A^\alpha, p, f \right]$ such that $x \rightarrow \left(V_{\alpha_2, \beta_2}^{(2)} \left[A, A^\alpha, p, f \right]\right)$. Then we have

$$\sup_{r,s} \lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(A \left((m+n)! A^\alpha x_{mn} \right)^{1/(m+n)} \right) \right]^{p_{r(i)}^{(m,n)}} = \sup_{r,s} \lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(A \left((m+n)! A^\alpha x_{mn} \right)^{1/(m+n)} \right) \right]^{p_{r(i)}^{(m,n)}} \leq D \sup_{r,s} \lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(A \left((m+n)! A^\alpha x_{mn} \right)^{1/(m+n)} \right) \right]^{p_{r(i)}^{(m,n)}} + D \sup_{r,s} \lambda_{rs}^{-1} \sum_{m,n \in I_{rs}} \left[f \left(0 \right) \right]^{p_{r(i)}^{(m,n)}}.$$
\[D \sup_{\ell} \lambda_{\ell}^{-1} \sum_{mn \in I_{\ell}} \left[f \left(A \left((m+n)! \Delta^n x_{mn} \right) \right)^{1/n} \right]^{P(\omega)} \]

\[+ T \max \left\{ f(|\ell|)^{\alpha}, f(|\ell|)^{\beta} \right\} < \infty \]

Hence \(x \in V_{2,j} \left[A, \Delta^n, p, f \right] \). Therefore the inclusion

\[V_{2,j} \left[A, \Delta^n, p, f \right] \subset V_{2,j} \left[A, \Delta^n, p, f \right] \]

holds. This completes the proof.

Theorem 3

Let \(p = \left(p_{(\omega)} \right) \in \Lambda^2 \). Then \(V_{2,j} \left[A, \Delta^n, p, f \right] \) is a paranormed space with paranorm

\[g(x) = \sup_{\ell} \left\{ \lambda_{\ell}^{-1} \sum_{mn \in I_{\ell}} \left[f \left(A \left((m+n)! \Delta^n x_{mn} \right) \right)^{1/n} \right]^{P(\omega)} \right\}^{1/\|\ell\|} \]

where: \(M = \max(1, \sup, p_{(\omega)}) \).

Proof: Clearly \(g(-x) = g(x) \). It is trivial that \((m+n)! \Delta^n x_{mn} = 0 \) for \(x_{mn} = 0 \). Hence we get \(g(0) = 0 \). Further since \(\frac{p_{(\omega)}}{M} \leq 1 \) and \(M \geq 1 \), using Minkowski's inequality and definition of modulus, for each \((r, s)\), we have

\[\lambda_{r,s}^{-1} \sum_{mn \in I_{r,s}} \left[f \left(A \left((m+n)! \Delta^n (x_{mn} + y_{mn}) \right) \right)^{1/n} \right]^{P(\omega)} \]

\[\leq \lambda_{r,s}^{-1} \sum_{mn \in I_{r,s}} \left[f \left(A \left((m+n)! \Delta^n x_{mn} \right) \right)^{1/n} \right]^{P(\omega)} \]

\[+ \lambda_{r,s}^{-1} \sum_{mn \in I_{r,s}} \left[f \left(A \left((m+n)! \Delta^n y_{mn} \right) \right)^{1/n} \right]^{P(\omega)} \]

This follows that \(g(x) \) is sub-additive. Next, for any complex number \(a \) and the definition of modulus function, we have

\[g(ax) = \sup_{\ell} \left\{ \lambda_{\ell}^{-1} \sum_{mn \in I_{\ell}} \left[f \left(A \left((m+n)! \Delta^n a x_{mn} \right) \right)^{1/n} \right]^{P(\omega)} \right\}^{1/\|\ell\|} \]

where \(K = 1 + \left[\frac{p_{(\omega)}}{\|\ell\|} \right] \) and \(\|\ell\| \) denotes the integral part of \(\ell \).

Since \(f \) is modulus, we have \(x \to 0 \) implies \(g(x) \to 0 \). Similarly \(x \to 0 \) and \(a \to 0 \) implies \(g(ax) \to 0 \).

Thus we have for \(x \) fixed and \(a \to 0 \), \(g(ax) \to 0 \). This completes the proof.

Theorem 4

Let \(f \) be a modulus function. Then \(V_{2,j} \left[A, \Delta^n, p \right] \subset V_{2,j} \left[A, \Delta^n, p, f \right] \).

Proof: Let \(x \in V_{2,j} \left[A, \Delta^n, p \right] \). Then for every \(\varepsilon > 0 \), there exists a \(\delta > 0 \), such that for every \(t \in [0, \infty) \) with \(0 < t \delta < \infty \). Now we have

\[\lambda_{r,s}^{-1} \sum_{mn \in I_{r,s}} \left[f \left(A \left((m+n)! \Delta^n x_{mn} \right) \right)^{1/n} \right]^{P(\omega)} \]

\[= \lambda_{r,s}^{-1} \sum_{mn \in I_{r,s}} A \left((m+n)! \Delta^n x_{mn} \right) \]

\[\leq \max \left\{ f(\varepsilon)^{\alpha}, f(\varepsilon)^{\beta} \right\} + \max \left\{ 1, 2f(1)^{\delta^{-1}} \right\} \lambda_{r,s}^{-1} \sum_{mn \in I_{r,s}} A \left((m+n)! \Delta^n x_{mn} \right) \]
\[
\left[f \left(A, \left(m+n \right)! \Delta^n x_{mn} \right)^{1/(m+n)} \right]^{\gamma_{(mn)}}
\]

Therefore \(x \in V_{2,x} \left[A, \Delta^n, p, f \right] \). This completes the proof.

Theorem-5

Let \(0 < p_{(mn)} < q_{(mn)} \) and \(\left[\frac{q_{(mn)}}{p_{(mn)}} \right] \) be bounded. Then \(V_{2,x} \left[A, \Delta^n, q, f \right] \subseteq V_{2,x} \left[A, \Delta^n, p, f \right] \)

Proof: Let

\[
x \in V_{2,x} \left[A, \Delta^n, q, f \right]
\]

Then

\[
\lambda_{rs}^{-1} \sum_{m \in \mathbb{Z}} \left[f \left(A, \left(m+n \right)! \Delta^n x_{mn} \right)^{1/(m+n)} \right]^{\gamma_{(mn)}}
\]

\[
\rightarrow 0, \text{ as } r, s \to \infty
\]

Let

\[
t_i = \lambda_{rs}^{-1} \sum_{m \in \mathbb{Z}} \left[f \left(A, \left(m+n \right)! \Delta^n x_{mn} \right)^{1/(m+n)} \right]^{\gamma_{(mn)}} \text{ and }
\]

\[
\gamma_{(mn)} = \frac{p_{(mn)}}{q_{(mn)}}
\]

Since \(p_{(mn)} \leq q_{(mn)} \), we have \(0 \leq \gamma_{(mn)} \leq 1 \). Take \(0 < \gamma < \gamma_{(mn)} \) Define

\[
u_i = u_i \left(t_i \geq 1 \right); \quad u_0 = 0 \left(t_i < 1 \right);
\]

\[
u_i = v_i \left(t_i \geq 1 \right); \quad v_i = t_i \left(t_i < 1 \right);
\]

\[
t_i = u_i + v_i; \quad t_i^{\gamma_{(mn)}} = u_i^{\gamma_{(mn)}} + v_i^{\gamma_{(mn)}}
\]

Then it follows that

\[
u_i^{\gamma_{(mn)}} \leq u_i \leq t_i \text{ and } v_i^{\gamma_{(mn)}} \leq v_i
\]

Hence by (4)

\[
t_i^{\gamma_{(mn)}} = u_i^{\gamma_{(mn)}} + v_i^{\gamma_{(mn)}} \leq t_i + v_i
\]

That is

\[
\lambda_{rs}^{-1} \sum_{m \in \mathbb{Z}} \left[f \left(A, \left(m+n \right)! \Delta^n x_{mn} \right)^{1/(m+n)} \right]^{\gamma_{(mn)}}
\]

\[
\leq \lambda_{rs}^{-1} \sum_{m \in \mathbb{Z}} \left[f \left(A, \left(m+n \right)! \Delta^n x_{mn} \right)^{1/(m+n)} \right]^{\gamma_{(mn)}}
\]

But as, by (3)

\[
\lambda_{rs}^{-1} \sum_{m \in \mathbb{Z}} \left[f \left(A, \left(m+n \right)! \Delta^n x_{mn} \right)^{1/(m+n)} \right]^{\gamma_{(mn)}}
\]

\[
\rightarrow 0, \text{ as } r, s \to \infty.
\]

Hence \(x \in V_{2,x} \left[A, \Delta^n, p, f \right] \). This establishes the theorem.

Theorem-6

(i) Let \(0 < \inf p_i \leq 1 \). Then \(V_{2,x} \left[A, \Delta^n, p, f \right] \subset V_{2,x} \left[A, \Delta^n, f \right] \).

(ii) Let \(1 \leq p_i \sup p_i < \infty \). Then \(V_{2,x} \left[A, \Delta^n, f \right] \subset V_{2,x} \left[A, \Delta^n, p, f \right] \).

(iii) Let \(0 < p_i \leq q_i < \infty \). Then
\[V_{j,2} \left[A_{p}, \Delta^{n}, p, f \right] \subset V_{j,2} \left[A_{p}, \Delta^{n}, q, f \right]. \]

Proof: The proof is a routine verification.

Conclusion

We give natural relationship between strongly generalized difference \(V_{j,2} \left[A_{p}, \Delta^{n}, p, f \right] \) summable sequences with respect to \(f \). We also examine some topological properties of \(V_{j,2} \left[A_{p}, \Delta^{n}, p, f \right] \) spaces and investigate some inclusion relations between these spaces.

Acknowledgements

The authors express their sincere thanks and gratitude to the referee for his valuable suggestions towards the improvement of the paper.

References

DAS, P.; KOSTYRKO, P.; WILCZYNSKI, W.; MALIK, P. \(\ell^{1} \) and \(\ell_{*}^{1} \) convergence of double sequences. *Mathematika Slovaca*, v. 58, p. 605-620, 2008.

Received on February 29, 2012.

Accepted on November 12, 2012.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.