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ABSTRACT. In this paper we introduce and study the concepts of asymptotically s  statistical 
equivalent and strongly asymptotically    equivalent sequences for interval numbers and prove some 
inclusion relations. In the last section we introduce the concept of Cesaro asymptotically    equivalent 
sequences defined by Orlicz function of multiple L  and we have established  some relation between those 
classes. 
Keywords:   sequence, asymptotic equivalence, interval numbers. 

Sequências estatísticas equivalentes assintoticamente a  de números intervalares 

RESUMO. Este artigo apresenta e analisa os conceitos de equivalente estatístico assintoticamente a s   e 
sequências equivalentes fortemente assintóticas a s   para números intervalares e comprova algumas 
relações de inclusão. Na última seção, apresentamos o conceito de sequência equivalente assintótica a    
de Cesaro definido pela função de Orlicz de múltiplo L  e estabelecemos algumas relações entre essas 
classes. 

Palavras chave: sequência  , equivalência assintótica, números intervalares. 

Introduction 

Currently the sequence of interval numbers 
and usual convergence of sequences of interval 
numbers are studied by Chiao (2002). Later, is 
introduced and studied  bounded and convergent 
sequence spaces of interval numbers and showed 
that these spaces are complete metric space by 
Sengonul and Eryilmaz (2010). Recently Esi 
(2011, 2012) introduced and studied strongly 
almost   convergence and statistically almost 
  convergence of interval numbers and lacunary 
sequence spaces of interval numbers, respectively. 
For more information about interval numbers  
one may refer to Sengonul and Eryilmaz (2010), 
Dwyer (1951, 1953), Fischer (1958), Moore 
(1959), Moore and Yang (1958, 1962), Markov 
(2005) and may refer to Esi (2011), Tripathy and 
Borgogain (2011), Tripathy and Dutta (2010a and 
b), Tripathy and Sarma (2011), Tripathy and Das 
(2011), Fast (1952), Krasnoselskii and Rutitsky 
(1961) and Chiao (2002). 

The idea of statistical convergence for single 
sequences was introduced by Fast (1952). 
Schoenberg (1959) studied  statistical convergence 
as a summability method and listed some of 

elementary  properties of statistical convergence. 
Both of these authors noted that if bounded 
sequence is statistically convergent, then it is 
Cesaro summable. 

A set consisting of a closed interval of real 
numbers x such that a x b   is called an interval 
number. A real interval can also be considered as a  
set. We denote the set of all real valued closed 
intervals by I�  Any elements of I� is a closed 
interval and denoted by x . That is 

{ : }.x x a x b   �  Hence an interval number x  
is a closed subset of real numbers (CHIAO, 2002). 
Let lx  and rx  be first and last points of x  interval 

number, respectively. For 
1 2,x x  I� , we have, 

1 2 1l
x x x  = 2l

x , 1r
x = 2 .

r
x  

  1 2 1 2 1 2: ,
l l r r

x x x x x x x x      �
 

and if 0,   then  1 1:  
l r

x x x x x     �
 

 and if 0,   then  1 1:  ,
r l

x x x x x     �
 

 

 
 

1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2 1 2

: min , , ,
,

max , , ,

l l l r r l r r

l l l r r l r r

x x x x x x x x x x
x x

x x x x x x x x

     
  

�
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 
 

1 2 1 2 1 2 1 2
1

2 1 2 1 2 1 2 1 2

: min / , / , / , /
,

max / , / , / , /

l l l r r l r r

l l l r r l r r

x x x x x x x x x xx

x x x x x x x x x

     
  

�

if 20 x . 

 
The set of all interval numbers  I�  is a complete 
metric space defined by 
   1 2 1 2 1 2, max ,  

l l r r
d x x x x x x    (CHIAO, 2002) 

In the special case  1 ,x a a  and  2 , ,x b b  we 
obtain usual metric of � . 

Let us define transformation :f � �  by 
  ,k f k x    .kx x  Then  kx x  is called sequence 

of interval numbers. The kx  is called thk  term of 

sequence  .kx x  iw  denotes the set of all interval 
numbers with real  terms and the algebraic 

properties of iw  can be found in Chiao (2002). 
 
Now we give the definition of convergence of 

interval numbers: 
 
Definition 1.1. Chiao (2002) a sequence  kx x  

of interval numbers is said to be convergent to the 
interval number 

ox  if for each 0   there exists a 

positive integer ok  such that  ,k od x x   for all ok k  
and we denote it by lim .k o

k
x x  

Thus, lim lim
l lk o k o

k k
x x x x    and lim .

r rk o
k

x x  

Main results 

In this paper, we introduce and study the 
concepts of asymptotically s   statistical equivalent 

and strongly    asymptotically equivalent 
sequences for interval numbers. 

Let  n   be a non-decreasing sequence of  

positive numbers such that 1 1,n n     for all .n�  
1 1, n    as n  and  1,n nI n n    and let   

denote the set of  all non-decreasing sequences 
 .n   
Definition 2.1. Two sequences  kx x  and 
 ky y  of interval numbers with 0 ky  for all k�  

are said to be asymptotically equivalent if 
 

 lim , 1 0,  denoted by .k
k kk

k

x
d x y

y

 
 

 
�  

 
In Esi (2011), introduced the concept of 

statistical   convergence of interval numbers as 
follows: 

Definition 2.2. A sequence  kx x  of interval 
numbers is said to be    statistically convergent to 
interval number ox  if for every 0   

 

  1
lim :  , 0.n k o

n
n

k I d x x 


    

 
In this case we write lim .k os x x    If ,n n   

then    statistically  convergence reduces to 
statistically convergence as follows: 

 

  1
lim :  , 0.k o

n
k n d x x

n
    

 
In this case we write lim .k os x x   
 
Following this result we introduce two new 

notions, namely  asymptotically   statistical 
equivalent of multiple L  and strong asymptotically 
   equivalent of multiple L . 

 
The next definition is natural combination of 

Definition 2.1 and 2.2. 
 
Definition 2.3. Two sequences  kx x  and 
 ky y  of interval numbers with 0 ky  for all k�  

are said to be asymptotically s  statistical  
equivalent of multiple L  provided that for every 

0  . 
 

Ls

k k

1
lim :  , 0, denoted by x yk

nn
n k

x
k I d L

y






                  
�

 

 
and simply asymptotically s  statistical 

equivalent if 1.L   
 
If we take ,n n   the above definition reduces to 

following definition: 
 
Definition 2.4.  Two sequences  kx x  and 
 ky y  of  interval numbers with 0 ky  for all k�  

are said to be asymptotically statistical equivalent of 
multiple L  provided that for every 0   

 
Ls

k k

1
lim :  , 0, denoted by x yk

n
k

x
k n d L

n y


           
     

�
 

 
and simply asymptotically s  statistical 

equivalent if  1.L   
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Definition 2.5. Two sequences  kx x  and 
 ky y  of  interval numbers with 0 ky  for all k �  

are said to be strongly asymptotically    equivalent 
of multiple L  provided that 

 
LV

k k

1
lim , 0,  denoted by x y

n

k
k I

n
n k

x
d L

y



 

  
        

 �  

 
and simply strongly   asymptotically 

equivalent if 1.L   
 
If we take ,n n   the above definition reduces to 

following definition: 
Definition 2.6. Two sequences  kx x  and 
 ky y  of interval numbers with 0 ky  for all k�  

are said to be strongly Cesaro asymptotically 
equivalent of multiple L   provided that 

 

1

1
lim , 0,  denoted by 

Ln C
k

k k
n

k k

x
d L x y

n y





  
        

 �  

 
and simply strongly Cesaro asymptotically 

equivalent if 1.L   
Theorem 2.1. 

Let .   

(i) If ,
LV

k kx y


�  then .
Ls

k kx y


�  

(ii) If  kx x  and   ky y  are in   and 

,
Ls

k kx y


�  then 
LV

k kx y


�  and hence ,
LC

k kx y


�  

(iii) If , ,x y    then ,
Ls

k kx y


�  if and only if 
LV

k kx y


�  

where 

    :  sup , .
l rk k k

k
x x x x      

 

Proof. (i) If 0   and 
LV

k kx y


�  then 

,

1 1
, ,

n n
xkd L
yk

k k
k I k I

n k n k

x x
d L d L

y y


   
  

 

 

   
   

   
    

k

k

x
: d , L .

yn
n

k I
 


       
   

 

Therefore .
Ls

k kx y


�  

(ii) Suppose that  kx x   and  ky y  are 

in   and .
Ls

k kx y


�  Then we can assume that  

,  k

k

x
d L A

y

 
 

 
for all k� . 

Given 0   

,

1 1
, ,

n n
xkd L
yk

k k
k I k I

n k n k

x x
d L d L

y y


   
  

 

 

   
   

   
  +

,

1
,

n
xkd L
yk

k
k I

n k

x
d L

y


  
  

 



 
 
 

  

:  , .k
n

n k

xA
k I d L

y
 


        
   

 

Therefore .
LV

k kx y


�  Further, we have 

1 1

1 1 1
, , ,

n

n

nn
k k k

k I
k kk k k

x x x
d L d L d L

n y n y n y




 

     
      

     
   

 

1

1 1
, ,

n

n

n
k k

k I
kn k n k

x x
d L d L

y y



 






   
    

   


2
, .

n

k
k I

n k

x
d L

y 

 
  

 
  

Hence ,
LC

k kx y


�  since .
LV

k kx y


�  

 
(iii) Follows from (ii) and (iii). 
 
Theorem 2.2. 

Ls

k kx y�  implies 
Ls

k kx y


�  if liminf 0n

n n


 . 

Proof. For given 0  , we have 

:  , :  , .k k
n

k k

x x
k n d L k I d L

y y
 

                   
         

 

Therefore 
1 1

:  , : ,k k
n

k k

x x
k n d L k I d L

n y n y
 

                   
         

 

1
. :  , .n k

n
n k

x
k I d L

n y

 


       
   

 

 

Taking limit as n   and using lim inf 0n

n n


 , 

we get desired result. 
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Theorem 2.3. 
Ls

k kx y


�  implies 
Ls

k kx y�  if 

1

limsup .n

n n


 

   

 

Proof. Let 
1

limsup ,n

n n


 

   then there exists 

a 0 0n   such that 0
1

,n

n

n

 

  for 

every .n�  Let 0.   From ,
Ls

k kx y


�  we 

can  find constants M  and K  such that 

1
: ,k

n n
n k

x
A k I d L

y



        
   

ò   

and  1
: ,k

n
n k

x
k I d L K

y
       
   

ò  

for all .n�  Now let t  be any integer number 
such that  1 ,r rt     where r>M. Then we 

have: 
 

1

1 1
: , : ,t t

r
t r t

x x
t n d L t d L

t y y


 

                    
         

ò ò  

 

1 2
1 1

1 1
: , : ,t t

r t r t

x x
t I d L t I d L

y y  

                    
         

ò ò  

 

1 1

1 1
: , : ,t t

M r
r t r t

x x
t I d L t I d L

y y  

                      
         

 ò ò  

 

1 2
1 2

1 1 1 2

: , : ,
· ·

t t

r t r t

x x
t I d L t I d L

y y

 
    

                    
         

ò ò

 

1 1

: , : ,
· ·

t tM r
M r

r M t r r t

x x
t I d L t I d L

y y

 
    

                      
         

 ò ò
 

 
1 2

1 2
1 1 1 1

.M r
M r

r r r r

A A A A
    
      

        

 
Finally we conclude this section by stating a 

definition which generalizes Definition 2.5. of this 
section and Theorem 2.2 related to this definition. 

Definition 2.7. Let  0, .p   Two sequences 

 kx x  and  ky y  of interval numbers with 0 ky  

for all k�  are said to be strong asymptotically 
p   equivalent of multiple L  provided that 

 

1
lim , 0,  denoted by 

L
p

n

p V
k

k I k kn
n k

x
d L x y

y



 

   
          

 �  

 
and simply strong asymptotically p   equivalent if 

1.L   If ,n n   then strong asymptotically p   
equivalence reduces to strong Cesaro asymptotically 

p   equivalence as follows: 
 

L
p

C

k k
1

1
lim , 0, denoted by x y

p
n

k

n
k k

x
d L

n y





   
          

 � . 

 
The following theorem is similar to that of 

Theorem 2.1., so the proof omitted. 
 
Theorem 2.4. Let .  

(i) If ,

L
p

V

k kx y


�  then .
Ls

k kx y


�  

(ii) If  kx x  and   ky y  are in   and 

,
Ls

k kx y


�  then 

L
p

V

k kx y


�  and hence ,

L
p

C

k kx y


�  

(iii) If , ,x y    then 
Ls

k kx y


�  if and only if 

.

L
p

V

k kx y


�  

Asympotically    statically equivalent with 
respect to Orlicz function 

In this section we will introduce Cesaro 
asymptotically   statistical equivalence with 
respect to an Orlicz function. An Orlicz function is 
a function : (0, ] (0, ]M     which is continuous, 
nondecreasing and convex with M (0) = 0, M (x) > 
0 for x > 0 and ( )M x   as .x   It is well 
known that if M is a convex function and M (0) = 0 
then ( ) · ( )M x M x   for all   with 0 1.   

An Orlicz function M is said to satisfy the 2 -

condition for all values u, if there exists a constant L 
> 0 such that (2 ) ( ), 0M u LM u u   
(KRASNOSELSKII; RUTITSKY, 1961). We will 
define the following asymptotically    statistical 
equivalences: 

Definition 3.1. Two sequences ( )kx  and ( )ky  
with 0 ky  for all k�  are Cesaro asymptotically 
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   equivalent of multiple L  with respect to an 
Orlicz function provided that 

 

1

1
lim , 0,

n
k

n
k k

x
M d L

n y

  
     

  

 

(denoted by 1 ( )

~
L M

k kx y
 ), and simply Cesaro 

asymptotically   equivalent with respect to an 
Orlicz function if 1.L   

Definition 3.2. Two sequences ( )kx  and ( )ky  
with 0 ky  for all k�  are Cesaro strong 
asymptotically    equivalent of multiple L  with 
respect to an Orlicz function provided that 

 

1
lim , 0,

r

k
k I

r
r k

x
M d L

y 

  
     

  

 

(denoted by 1 ( )

~
LS M

k kx y
 ), and simply Cesaro 

strong asymptotically    equivalent with respect to 
an Orlicz function if 1.L   

Theorem 3.1. Let M be an Orlicz function 
which satisfies the 2 -conditions. Two sequences 
( )kx  and ( )ky  are said to be ( )

~
LS M

k kx y  of multiple L  

with respect to Orlicz function, provided that for 
every 0,ò  

 

1
lim the number of : , 0.i

r
r

r i

x
i I M d L

y

              
ò  

 

Then 
Ls

k kx y�  implies 
( )

~ .
LS M

k kx y  

 
Proof. From fact that M satisfies 

2 -conditions 

it follows that: 
 

, · , ,k k

k k

x x
M d L K d L

y y

    
         

 

 
for some constant 0,K   in both cases where 

, 1k

k

x
d L

y

 
 

 
 and , 1.k

k

x
d L

y

 
 

 
 Really in first case 

it follows directly from definition of the Orlicz 
function. In  second case we have: 

 

2.1 
(1) 2 (2) ( ), 2· 2 · 2 · ,s sk

k

x
d L R R R

y

 
    

 


such that ( ) 1.sR   Now taking into consideration 
2  

conditions of Orlicz functions, we get the following 
estimation: 
 

2.2 
( ), · · (1) · , ,sk k

k k

x x
M d L T R M K d L

y y

    
          

 
where T and K are constants. Now proof of 
Theorem follows from relations (2.1) and (2.2). 

Proposition 3.2. Let M be an Orlicz function 

and 
1

sup .n

n n


 

   Then for any two sequences ( )kx  and 

( )ky  we have: 
( )

~
LS M

k kx y  implies .
Ls

k kx y�  

 
Proof. Proof of the proposition is similar to that 

given in Theorem 2.3, using into consideration that 
M is non-decreasing function, so it is omitted. 

Conclusion 

In this paper are given and  studied the  concepts 
of asymptotically s  statistical equivalent and 
strongly asymptotically    equivalent sequences 
for interval numbers and are proved some inclusion 
relations. This results are extension of the known 
results from asymptotically equivalent real 
numerical sequences. Also are given the  concept of 
Cesaro asymptotically    equivalent sequences 
defined by Orlicz function of multiple L  and we 
have established  some relation between those 
classes. 
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