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ABSTRACT. In this paper we introduce and study the concepts of asymptotically S, —statistical

equivalent and strongly asymptotically 41— equivalent sequences for interval numbers and prove some
inclusion relations. In the last section we introduce the concept of Cesaro asymptotically 41— equivalent

sequences defined by Orlicz function of multiple L and we have established some relation between those

classes.

Keywords: ) — sequence, asymptotic equivalence, interval numbers.

Sequéncias estatisticas equivalentes assintoticamente a - de niimeros intervalares

RESUMO. Este artigo apresenta e analisa os conceitos de equivalente estatistico assintoticamente a 5.~ e
sequéncias equivalentes fortemente assintdticas a S, — para ndmeros intervalares e comprova algumas

relages de inclusio. Na tltima se¢io, apresentamos o conceito de sequéncia equivalente assintética a 1 —

de Cesaro definido pela funcio de Orlicz de multiplo [ e estabelecemos algumas relagdes entre essas

classes.
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Introduction

Currently the sequence of interval numbers
and usual convergence of sequences of interval
numbers are studied by Chiao (2002). Later, is
introduced and studied bounded and convergent
sequence spaces of interval numbers and showed
that these spaces are complete metric space by
Sengonul and Eryilmaz (2010). Recently Esi
(2011, 2012) introduced and studied strongly
almost 1 -convergence and statistically almost
A —convergence of interval numbers and lacunary
sequence spaces of interval numbers, respectively.
For more information about interval numbers
one may refer to Sengonul and Eryilmaz (2010),
Dwyer (1951, 1953), Fischer (1958), Moore
(1959), Moore and Yang (1958, 1962), Markov
(2005) and may refer to Esi (2011), Tripathy and
Borgogain (2011), Tripathy and Dutta (2010a and
b), Tripathy and Sarma (2011), Tripathy and Das
(2011), Fast (1952), Krasnoselskii and Rutitsky
(1961) and Chiao (2002).

The idea of statistical convergence for single
sequences was introduced by Fast (1952).
Schoenberg (1959) studied statistical convergence
as a summability method and listed some of

elementary properties of statistical convergence.
Both of these authors noted that if bounded
sequence is statistically convergent, then it is
Cesaro summable.

A set consisting of a closed interval of real
numbers x such that a<x<b is called an interval
number. A real interval can also be considered as a
set. We denote the set of all real valued closed
intervals by 10 Any elements of 10 is a closed
interval and denoted by X. That is
X={xel :a<x<b}. Hence an interval number X
is a closed subset of real numbers (CHIAO, 2002).

Let X, and X, be first and last points of X interval
number, respectively. For X, X, € 10, we have,
X =% <X =Xy X X
X +X, :{XED X Xy SXSX +x2,},
and if @20, then aX:{XED Dax SXSale}

and if <0, then ai:{XGD Dax, SXSO{XL},

__ |xel :min{xllle,X1|X2r,X1rX2,,X1,Xz,}3X
XX, = '
SmaX{XLXZI,XLXZr,XerZIlxlrxzr}
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i_ xel :min{xlllle,xL/xzr,xlr/le,xlr/xzr}sx

X, smax{x]1 1% % 1% % 1%, % /er}

ifOeEX_Z.

The set of all interval numbers |[] is a complete
metric space defined by

d(X,%,)= max{‘xll — x| % =%, ‘} (CHIAO, 2002)
In the special case % =[aa] and X =[b.b], we

obtain usual metric of [] .

Let us define transformation f:0 —0 by
k— f(k)=%, X=(X). Then x=(%) is called sequence

of interval numbers. The X is called k™ term of

sequence X =(%,). W' denotes the set of all interval

numbers with real  terms and the algebraic

properties of W' can be found in Chiao (2002).

Now we give the definition of convergence of
interval numbers:

Definition 1.1. Chiao (2002) a sequence x=(x,)
of interval numbers is said to be convergent to the

interval number X, if for each £ >0 there exists a

positive integer k. such that 4(X.%)<¢ for all K=k,
and we denote it by iM% =X,

Thus, limx, =%, < limx, =x, and limx,_ =x, .
k k 1 ( k T T

Main results

In this paper, we introduce and study the
concepts of asymptotically 5, — statistical equivalent

and strongly 1-  asymptotically equivalent
sequences for interval numbers.

Let 1=(4,) be a non-decreasing sequence of
positive numbers such that 4,,, <4, +1 for all nel.
A4=12,-% as Nn—>oo and I,=[n-24,+Ln] and let A
denote the set of
/1=(Z.n).

Definition 2.1. Two sequences X=(%) and

all non-decreasing sequences

¥=(Y,) of interval numbers with 0¢ ¥y, for all k []
are said to be asymptotically equivalent if

Ii{nd[xk,lJ:O, (denoted by X, [ ¥, ).

Yi

In Esi (2011), introduced the concept of
statistical 4 - convergence of interval numbers as
follows:

Esi and Braha

Definition 2.2. A sequence X=(%) of interval
numbers is said to be 41— statistically convergent to

interval number X if for every £>0
|imi\{ke| L d(%.%,) 2 el =0.
n ﬂ“n n

In this case we write S;—liMX =X If 4,=n,
then A-— statistically  convergence reduces to
statistically convergence as follows:

|inm%\{ksn: d(%.%,)=¢}[=0.

In this case we write S—-limX, =X.

Following this result we introduce two new
notions, asymptotically A — statistical

equivalent of multiple L and strong asymptotically
A — equivalent of multiple L.

namely

The next definition is natural combination of
Definition 2.1 and 2.2.

Definition 2.3. Two sequences X=(X) and
¥=(¥,) of interval numbers with 0¢ Y, for all keD
asymptotically
equivalent of multiple L provided that for every
e>0.

are said to be S, — statistical

lim— 1k e l,: d[xk,szg =0, [denoted by X, 0 ykj
" ﬂ‘n yk
and  simply  asymptotically 5, —statistical

equivalent if L=1.

If we take A, =n, the above definition reduces to

following definition:

Definition 2.4.
y=(¥,) of interval numbers with 0¢¥y, for all kel

Two sequences X=(X) and

are said to be asymptotically statistical equivalent of
multiple L provided that for every £ >0

el

and  simply
equivalent if C=1.

1
lim=
nn

=0, [denoted by X, 0 ykj

asymptotically S — statistical
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Definition 2.5. Two sequences X=(%) and
y=(V,) of interval numbers with 0¢y, for all kel
are said to be strongly asymptotically 4 — equivalent
of multiple L provided that

imLY  d [Xk LJ -0, [denoted by X, [ ykj
" A AV
A —asymptotically

and  simply  strongly

equivalent if L=1.

If we take 4 =n, the above definition reduces to
following definition:

Definition 2.6. Two sequences X=(%) and
y=(¥,) of interval numbers with 0gy, for all kel
are said to be strongly Cesaro asymptotically
equivalent of multiple [ provided that

_ cr
lim = Zd(xk ]:0, [denoted by X [ ykJ

and simply strongly Cesaro asymptotically
equivalent if L=1.
Theorem 2.1.

Let A € A.

k
(i) If7:(7k) and 7=( k)arein ?w and
s Vi ct
X Y., then X [ ¥, and hence X, U Y,,
_ s

l_, then Yk [ Vk' if and only if

(iii) If X,y €
— \7} —
X Yy

where
0, = {Y =(%,): Slip{‘xkl kar ‘} < oo}.

vE
Proof. (i) If £ >0 and X, [ Y, then

1 X —)_ 1 X, —
Tnzkelnd(élez_z kel d[%vLj

Therefore X, U Y.

(i) Suppose that X = (Yk ) and Y = (Vk ) are

5"
and X [ Y,.

in 0 Then we can assume that
d[xk.l-jﬁ A forall kel .

Y

Given € >0

Further, we have

M

=< ‘x\
;/

k

n-4, 2 —
d ﬁ,E}%Zke,nd(é,tj

Hence X, [l Y, since X, UY,.

(iii) Follows from (ii) and (iii).

Theorem 2.2.
st st A
Xk [ yk implies Xk D yk if I|m|nf—> 0.

n
Proof. For given & >0, we have

kSn:d(Xk,LJZg ) keln:d(X",L]Z‘s .
Yy Yi
Therefore

i

n 1
A

P
n

. .. . oA
Taking limit as N — 00 and using liminf F" >0,
n

we get desired result.
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L 0
S, sL

Theorem 2.3. X LYy, implies X UV, if

. A,
limsup < oo,
n Ay

i A
Proof. Let limsup I - <00, then there exists
n

n-1

2’r\
an,> 0 such that <n,, for
ﬂ’n—l

every Nell. Let 6 >0. From X [Y,, we

can find constants M and K such that

1 X, —

A== keln:d[j“,szb <d
A Yi

1

keln:d[é,tjzo
A Yi

n

<K

and

for all N€l]. Now let t be any integer number

such that /1r71 <t< lr, where r>M. Then we
have:

1 tsn:d[X‘,LJZO si ts/ir:d(x‘,szc‘) =
t yt /lr—l yt

Finally we conclude this section by stating a
definition which generalizes Definition 2.5. of this
section and Theorem 2.2 related to this definition.

Definition 2.7. Let pe(0,0). Two sequences

x=(%) and ¥ =(¥) of interval numbers with O¢y,

Esi and Braha

for all kel are said to be strong asymptotically
4, — equivalent of multiple L provided that

= P Vi
Iim%zkel {d (XkLH =0, [denoted by X, [ yk]
"o A ’ Y

k

and simply strong asymptotically 4, — equivalent if
L=1 If 4=N then strong asymptotically 4,—
equivalence reduces to strong Cesaro asymptotically
4, — equivalence as follows:

T (e P ¢
Iimlz d(x", LJ =0, | denoted by X, [ y, |-
"N Yk

The following theorem is similar to that of
Theorem 2.1., so the proof omitted.

Theorem 2.4. Let A € A.
\7‘[
p

@I X, O V,, then X,

|
—J >x,‘_‘

Y-
(if) If X=(X,) and Y =(Y,) arein /, and
7

XY, then X, [ Y, and hence

ck,
X U Vi

S

then X, UY, if and only if

>

(iii) If X,y € ¢
Vi,

X 09,

0!

Asympotically j — statically equivalent with
respect to Orlicz function

introduce Cesaro
equivalence  with
respect to an Orlicz function. An Orlicz function is
a function M :(0,00] = (0,:0] which is continuous,

In this section we will
asymptotically 1 — statistical

nondecreasing and convex with M (0) = 0, M (x) >
0 for x > 0 and M(x) > as X—>00, It is well

known that if M is a convex function and M (0) = 0
then M (Ax) < A-M(x) forall 4 with 0<<1.

An Orlicz function M is said to satisfy the A, -
condition for all values u, if there exists a constant L
> 0 such that M (2u) < LM (u),u>0
(KRASNOSELSKII; RUTITSKY, 1961). We will
define the following asymptotically A - statistical
equivalences:

Definition 3.1. Two sequences (%) and (¥,)
with O0gy, for all kel are Cesaro asymptotically
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On asymptotically A-statistical equivalent sequences of interval numbers 519

A— equivalent of multiple [ with respect to an
Orlicz function provided that

1 X -
lim=> M|d|=,L||=0,
" n; [ [yk j]

(denoted by X, EILLM)yk), and simply Cesaro
asymptotically A equivalent with respect to an
Orlicz function if L=1.

Definition 3.2. Two sequences (X,) and (¥,)
with 0e¢y, for all kel are Cesaro strong
asymptotically 1— equivalent of multiple L with

respect to an Orlicz function provided that

.1 X, —
lim— M{d| =< L||=0,
r /'Lr Z:kelr ( (yk Jj

555 (M)

(denoted by X~ Vk)’ and simply Cesaro

strong asymptotically 4 — equivalent with respect to
an Orlicz function if L=1.
Theorem 3.1. Let M be an Orlicz function

which satisfies the A:-conditions. Two sequences
st)

(%) and (y,) are said to be %~ of multiple L[

with respect to Orlicz function, provided that for
every 0>0,

Iimi{the numberof iel, :M [d [Xi, LDZO}:O.
r v yI

Th S lies y S
en g [y, implies ¥ ~
Proof. From fact that M satisfies A, -conditions

it follows that:

M d(xk,Lj <Kd [XkLJ
Yi Yk
for some constant K >0, in both cases where
X — X, —
d[;,LJsl and d(k,szl. Really in first case
k k

it follows directly from definition of the Orlicz
function. In second case we have:

21 d (& EJ =2R®W =22R® =...=2°.R®

Yi

such that R® <1. Now taking into consideration A,

conditions of Orlicz functions, we get the following
estimation:

22 M d[xk,L] ST-R(S’-M(l)zK-d[Xk,L),
Y Yk

where T and K are constants. Now proof of
Theorem follows from relations (2.1) and (2.2).
Proposition 3.2. Let M be an Orlicz function
and supi@o. Then for any two sequences (x,) and
n

_ S=(M) S
(V) we have: x  ~ 'y,

; implies X [V,

Proof. Proof of the proposition is similar to that
given in Theorem 2.3, using into consideration that
M is non-decreasing function, so it is omitted.

Conclusion

In this paper are given and studied the concepts
of asymptotically s, -statistical equivalent and
strongly asymptotically A1- equivalent sequences
for interval numbers and are proved some inclusion
relations. This results are extension of the known
results from asymptotically equivalent real
numerical sequences. Also are given the concept of
Cesaro asymptotically A- equivalent sequences
defined by Orlicz function of multiple L and we
have established some relation between those
classes.
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