On recognition of simple group L2(r) by the number of Sylow subgroups

Alireza Khalili Asboei, Reza Mohammadyari

Resumo


Let G be a finite group and n_{p}(G) be the number of Sylow <sub>p- subgroup of G. In this work it is proved if G is a centerless group and n_{p}(G)=n_{p}(L_{2}(r)), for every prime p in pi (G), where r is prime number, r^2 does not divide |G| and r is not Mersenne prime, then L_{2}(r)<=G<=Aut(L_{2}(r).

Texto completo:

PDF (English) (baixado


DOI: http://dx.doi.org/10.4025/actascitechnol.v36i3.16471





ISSN 1806-2563 (impresso) e ISSN 1807-8664 (on-line) e-mail: actatech@uem.br

  

Resultado de imagem para CC BY