Biosorption of Cu (II) and Zn (II) with açaí endocarp Euterpe oleracea M. in contaminated aqueous solution

Affonso Celso Gonçalves Junior, Gustavo Ferreira Coelho, Daniel Schwantes, Angela Laufer Rech, Marcelo Ângelo Campagnolo, Alisson Junior Miola

Resumo


Current analysis investigates the capacity of the açaí endocarp (Euterpe oleracea M.) as a biosorbent for the removal of Cu2+ and Zn2+ in monoelementary water solutions. The best conditions for the ion adsorption process were pH of the solution at 4.0; 8 g L-1 of the biosorbent mass per volume of solution; best equilibrium time at 60 min. The application of kinetic models suggests that chemosorption may be the main limiting stage for metal ion adsorption. In the case of adsorption isotherms, Langmuir´s model had the best adjustment for biosorption and indicated adsorption in monolayers. A strong interaction of metals with the surface of the adsorbent was indicated due to low elution rates. Thermodynamic parameters showed that the biosorption process was spontaneous and endothermal. Results demonstrated that the use of the açaí endocarp as biosorbent is an alternative for the remediation of Cu2+ and Zn2+ contaminated waters since it is a natural, low-cost and highly available material.

 


Palavras-chave


adsorption process; kinetic parameters; isotherms; thermodynamic parameters

Texto completo:

PDF (English) (baixado


DOI: http://dx.doi.org/10.4025/actascitechnol.v38i3.28294





ISSN 1806-2563 (impresso) e ISSN 1807-8664 (on-line) e-mail: actatech@uem.br

  

Resultado de imagem para CC BY