Warfield p-Invariants in Abelian Group Rings of Characteristic p

Peter Danchev

ABSTRACT: We calculate Warfield p-invariants $W_{\alpha,p}(V(RG))$ of the group of normalized units $V(RG)$ in a commutative group ring RG of prime $\text{char}(RG) = p$ in each of the following cases:

1. G_0/G_p is finite and R is an arbitrary direct product of indecomposable rings;
2. G_0/G_p is bounded and R is a finite direct product of fields;
3. $\text{id}(R)$ is finite (in particular, R is finitely generated).

Moreover, we give a general strategy for the computation of the above Warfield p-invariants under some restrictions on R and G. We also point out an essential incorrectness in a recent paper due to Mollov and Nachev in Commun. Algebra (2011).

Key Words: Abelian groups, commutative rings, indecomposable rings, units, Warfield p-invariants.

Contents

1 Introduction 183

2 Main Results 184

1. Introduction

Everywhere in the text, let R be a commutative unital ring of prime characteristic p and G an Abelian group written multiplicatively as is customary when discussing group rings. For such R and G, suppose RG is the group ring of G over R with unit group $U(RG)$ and its normalized component $V(RG)$; note that the decomposition $U(RG) = V(RG) \times U(R)$ holds, where $U(R)$ is the unit group (that is, the multiplicative group of units of R). As usual, $\text{id}(R) = \{ e \in R \mid e^2 = e \}$ is the set of all idempotents of R.

Imitating [11], for any multiplicative group A we define the following ordinal-to-cardinal functions, called in the existing literature Warfield p-invariants

$$W_{\alpha,p}(A) = r(A^p\alpha/(A^{\alpha+1}p)),$$

where $\alpha \geq 0$ is an ordinal.

These invariants were the object of a series of explorations [1]-[6]. They were calculated for both $U(RG)$ and $V(RG)$ under some limitations on R and G only in their terms and divisions. The most important achievements are these:

(i) $G_0 = G_p$ (i.e., G is p-mixed) and R is arbitrary;
(ii) G_0/G_p is bounded and R is perfect;
(iii) G_0/G_p is bounded and R is a field;

2000 Mathematics Subject Classification: 16S34, 16U60
(iv) G_0/G_p is finite and R is indecomposable;
(v) G is arbitrary and R is perfect indecomposable.

Actually, the last result is proved in [1] for a perfect integral domain and in [2] for a perfect field, but according to the main theorem of [7] the same idea also works for an indecomposable ring.

Some other useful estimations of $W_{\alpha,p}(U(RG))$ and $W_{\alpha,p}(V(RG))$ are also obtained there.

Mollov and Nachev [10] have duplicated the results of ours from [1], [2], [3] and [4]. Even more, they have partly plagiarized results (i) and (v) as well as the ideas for their proofs without any concrete correct citation of the articles [2], [3] and [4].

Moreover, they wrongly cited in ([10], p.2300, the last sentence before Section 2) that [1] is the unique article of the current author which treated the problem for calculation of $W_{\alpha,p}(V(RG))$, but seeing the cited bibliography listed below this is apparently false.

The main purpose here is to add two more points to the list (i)-(v) given above, that are:

(vi) G_0/G_p is finite and R is an arbitrary direct product of indecomposable rings - thus extending (iv).

(vii) G_0/G_p is bounded and R is a finite direct product of fields - thus extending (iii).

We also give a general strategy for the computation of $W_{\alpha,p}(U(RG))$ over some special rings R.

2. Main Results

We first begin with a crucial technicality (see also [2]).

Lemma 2.1. Let $A = \prod_{i \in I} A_i$ be an abelian group. Then, for any ordinal α,

$$W_{\alpha,p}(A) = \sum_{i \in I} W_{\alpha,p}(A_i).$$

Proof: Observe that for any ordinal β we have $A^p^\beta = \prod_{i \in I} A_i^p^\beta$, and hence $A^p^\beta = \prod_{i \in I} (A_i^p^\beta)_p = \prod_{i \in I} (A_i^p)^\beta$. Therefore, $A^p^\alpha / (A^p^{\alpha+1} A_p^\alpha) = \prod_{i \in I} [A_i^p^\alpha / (A_i^p)^\alpha]$, whence by a simple appeal to the additive property of the rank of an abelian group we derive that $r(A^p^\alpha / (A^p^{\alpha+1} A_p^\alpha)) = \sum_{i \in I} r(A_i^p^\alpha / (A_i^p)^\alpha)$. The last is just equivalent to the desired equality. \qed

If $\{R_i\}_{i \in I}$ is a system of commutative unital rings for some finite or infinite index set I, then by $\prod_{i \in I} R_i$ we will denote the arbitrary direct product of rings in the following sense: Any element $r \in \prod_{i \in I} R_i$ is of the form of a vector (finite or infinite) $r = (\cdots, r_i, \cdots)$ equipped with the operations for an other element $f = (\cdots, f_i, \cdots)$ given by $r + f = (\cdots, r_i + f_i, \cdots)$ and $rf = (\cdots, r_if_i, \cdots)$. Clearly the zero element is $0 = (\cdots, 0_i, \cdots)$ where 0_i is the corresponding zero element.
in R_i, and the identity element is $1 = (\cdots, 1_i, \cdots)$ where 1_i is the corresponding identity element in R_i.

Under these circumstances, it is not difficult to check that $U(\prod_{i \in I} R_i) = \prod_{i \in I} U(R_i)$ which fact will be used in the sequel without a concrete referring.

Note that in some existing literature such a product is also called a coproduct of these rings R_i.

The next statement is well known but we will prove it for completeness and for the reader’s convenience.

Proposition 2.2. Let A be a finite group and let $K = \times_{j \in J} K_j$ be a finite direct product of rings. Then the following isomorphisms hold:

$$(a) \ (\prod_{i \in I} R_i)A \cong \prod_{i \in I} (R_iA)$$

where I is an arbitrary index set.

$$(b) \ KG \cong \times_{j \in J} (K_jG).$$

Proof: (a) For any $v = \sum_{a \in A_v} r_\alpha a$ where $r_\alpha = (\cdots, r_{\alpha a}, \cdots) \in \prod_{i \in I} R_i$ and A_v is a finite subset of A depending on the element v, define the map $\phi : (\prod_{i \in I} R_i)A \rightarrow \prod_{i \in I} (R_iA)$ via the equality $\phi(v) = (\cdots, \sum_{a \in A_v} r_{\alpha a} a, \cdots)$. Furthermore, it is only a routine technical exercise to verify that ϕ is an isomorphism of R-algebras, as required.

(b) Follows in the same manner. \hfill \square

Remark 2.1. We will further identify with no loss of generality $(\prod_{i \in I} R_i)A$ with $\prod_{i \in I} (R_iA)$, and $(\times_{j \in J} K_j)G$ with $\times_{j \in J} (K_jG)$, so that the two isomorphisms in points (a) and (b) will be formal equalities, indeed.

We are now ready to state and prove the following first main result.

Theorem 2.3. Suppose G is a group whose factor G_0/G_p is finite and $R = \prod_{i \in I} R_i$ where each R_i is indecomposable for $i \in I$. Then the following formula is valid:

$$W_{\alpha,p}(U(RG)) = \mu \cdot W_{\alpha,p}(G) + \sum_{i \in I} \sum_{d \mid \exp (G_0/G_p)} (l_d/(R_i(\zeta_d) : R_i)) \cdot W_{\alpha,p}(U(R_i(\zeta_d))),$$

where $l_d = |\{a \in G_0/G_p : o(a) = d\}|$.

Proof: Since $\prod_{q \neq p} G_q$ is finite and pure in G, one may write $G = (\prod_{q \neq p} G_q) \times M$ for some p-mixed group M. Consequently, Proposition 2.2 (a) leads to $RG = [R(\prod_{q \neq p} G_q)]M = [(\prod_{i \in I} R_i) (\prod_{q \neq p} G_q)]M = (\prod_{i \in I} R_i (\prod_{q \neq p} G_q)) M$. Furthermore, as in [6], $W_{\alpha,p}(U(RG)) = \mu \cdot W_{\alpha,p}(G) + W_{\alpha,p}(U(\prod_{i \in I} R_i (\prod_{q \neq p} G_q)))$ where
Let G be an abelian group for which G_0/G_p is infinite bounded and $R = F_1 \times \cdots \times F_n$ where every F_i is a field; $i \in [1, n]$, where n is natural. Then

$$W_{\alpha, p}(U(RG)) = |\text{id}(R)| \cdot |\prod_{q \notin p} G_q| \cdot W_{\alpha, p}(G) + \sum_{i=1}^{n} \prod_{m=0}^{\infty} W_{\alpha, p}(F_i(\zeta_m))$$

with $a_i(m) = |\{g \in \prod_{q \notin p} G_q : \alpha(g) = d\}|/(F_i(\zeta_m) : F_i)$.

Proof: Since $RG = F_1 G \times \cdots \times F_n G$, we derive $U(RG) = U(F_1 G) \times \cdots \times U(F_n G)$. Therefore, using Lemma 2.1, we deduce that $W_{\alpha, p}(U(RG)) = \sum_{i=1}^{n} W_{\alpha, p}(U(F_i G))$. Utilizing ([6], Theorem 2.2 (1)), $W_{\alpha, p}(U(F_i G))$ are completely computed, so that the wanted equality follows. \[\square\]

Remark 2.2. When G_0/G_p is finite bounded, things are settled in Theorem 2.3 listed above.

The next statement somewhat supersedes Theorem 3.9 from [10].

Theorem 2.5. Suppose R is a perfect ring with a finite number of idempotents (in particular, R is perfect finitely generated). Then the following formula holds:

$$W_{\alpha, p}(U(RG)) = \left(\sum_{k=1}^{n} \sum_{d/k} l(d)/\lambda(d) \right) \cdot W_{\alpha, p}(G),$$

provided $W_{\alpha, p}(G) \neq 0$ and $\prod_{q \notin p} G_q$ is finite of exponent k where $l_d = |\{g \in \prod_{q \notin p} G_q : \alpha(g) = d\}|$, $\lambda(d)$ is the boundary defined as in ([10], (3.8)) and

$$W_{\alpha, p}(U(RG)) = \max(|\prod_{q \notin p} G_q|, W_{\alpha, p}(G)),$$

provided $W_{\alpha, p}(G) \neq 0$ and $\prod_{q \notin p} G_q$ is infinite,

or

$$W_{\alpha, p}(U(RG)) = 0,$$

provided $W_{\alpha, p}(G) = 0$.
Proof: Since \(id(R)\) is finite, \(R\) possesses \(2^n\) idempotents where \(n\) is the number of primitive idempotents of \(R\), say \(\{e_1, \cdots, e_n\}\) is such a system. Furthermore, owing to a folklore ring-theoretic fact, one may decompose \(R\) like this:

\[
R = (Re_1) \oplus \cdots \oplus (Re_n) = (Re_1) \times \cdots \times (Re_n)
\]

where each \(Re_i\) is an indecomposable subring of \(R\); \(i \in [1, n]\). Thus, in view of Proposition 2.2 (b), one can write that \(RG = (Re_1)G \times \cdots \times (Re_n)G\), whence \(U(RG) = U((Re_1)G) \times \cdots \times U((Re_n)G)\). Applying Lemma 2.1, \(W_{\alpha,p}(U(RG)) = W_{\alpha,p}(U((Re_1)G)) + \cdots + W_{\alpha,p}(U((Re_n)G))\). It is readily seen that every \(Re_i\) is a perfect ring of characteristic \(p\) as well; \(1 \leq i \leq n\). Moreover, ([2], Theorem 6 - see also [10], Theorem 3.9) applies to calculate all functions \(W_{\alpha,p}(U((Re_i)G))\) where \(i \in [1, n]\). Thus we obtain the explicit form of \(W_{\alpha,p}(U(RG))\) stated above.

Remark 2.3. Unfortunately, there is no result of that type for infinite decompositions of \(R\). For example, take \(R = \prod_{n=1}^{\infty} F_n / \oplus_{n=1}^{\infty} F_n\) where all \(F_n\) are fields. Therefore, the set of idempotents in \(R\) is a quotient of boolean algebras: \(id(R) = B/J\) where \(B\) is the boolean algebra of subsets of the set \(\mathbb{N}\) of natural numbers and \(J\) is the ideal of finite subsets. Since \(|B| = 2^{\aleph_0}\) and \(|J| = \aleph_0\), we get that \(|id(R)| = 2^{\aleph_0}\). However, \(id(R)\) has no atoms (= primitive idempotents), so no ring direct summand of \(R\) is indecomposable.

One source of the problem is that cardinality information is much stronger in the finite case: in fact, any finite boolean algebra is generated by its atoms, so if \(|id(R)| = 2^n\), then \(id(R)\) is set-theoretically isomorphic to the boolean algebra of subsets of \(\{1, \cdots, n\}\) and thus \(id(R)\) always possesses primitive idempotents. Consequently, a more promising hypothesis would be to assume that \(id(R)\) is isomorphic to the boolean algebra \(2^n\) of subsets of an infinite set \(I\). Nevertheless, it looks like even this is not completely sufficient. For instance, start with \(S = \prod_{n=1}^{\infty} F_n\) where each \(F_n\) is a copy of some large field \(F\) (larger than its prime subfield), choose a nontrivial maximal ideal \(M\) in \(S\) (meaning one that contains \(\oplus_{n=1}^{\infty} F_n\)), and take \(R = K \cdot 1 + M\), where \(K\) is a proper subfield of \(F\). Then \(R\) contains all the idempotents of \(S\), so that \(|id(R)| \cong 2^{\aleph_0}\), but \(R\) is not an infinite direct product of indecomposable rings. E.g., since \(R\) is a commutative von Neumann regular ring, it could only be a direct product of indecomposable rings if it were a direct product of fields. That fact would imply \(R\) is self-injective, but it is not - in fact, its injective hull, equal to its maximal quotient ring, is \(S\).

We now start the procedure for giving up of a useful algorithm calculating successfully \(W_{\alpha,p}(U(RG))\) in a rather general situation for an arbitrary \(p\)-divisible group \(G\) and with a restriction only on the coefficient ring \(R\). To this aim, suppose \(R\) is a ring in which every finitely generated (in particular, each indecomposable) subring is pure – we may also take \(R\) to be perfect finitely generated.

And so, let \(x \in U(RG)/U^p(RG) = U(RG)/(U(RpG)^p) = U(RG)/U(RpG)\), where the last equality follows by taking into account that \(G = C^p\). Thus \(x \in U(LG)U(RpG)/U(RpG) \cong U(LG)/(U(LG) \cap U(RpG)) = U(LG)/U((L \cap R^p)G) = U(LG)/U((L \cap R^p)G) = U(LG)/U((L \cap R^p)G) = U((L \cap R^p)G)\).
$U(LG)/U(L^pG)$ for some finitely generated subring L of R containing the same identity as that of R. Furthermore, $L \cong R_1 \times \cdots \times R_n$ where each R_i is indecomposable $(1 \leq i \leq n)$, and hence $LG \cong R_1G \times \cdots \times R_nG$ with $U(LG) \cong U(R_1G) \times \cdots \times U(R_nG)$ and $U(L^pG) \cong U(R_1^pG) \times \cdots \times U(R_n^pG)$ under the same isomorphism. We consequently will have $U(LG)/U(L^pG) \cong [U(R_1G)/U(R_1^pG)] \times \cdots \times [U(R_nG)/U(R_n^pG)]$, whence we may formally write $x \in [U(R_1G)/U(R_1^pG)] \times \cdots \times [U(R_nG)/U(R_n^pG)]$. Finally, $U(RG)/U(R^pG) = \bigcup [U(R_iG)/U(R_i^pG)] \times \cdots \times [U(R_nG)/U(R_n^pG)]$, where the union is taken over each finite family $\{R_i\}_{1 \leq i \leq n}$ of indecomposable subrings R_i of R.

On the other hand, if we calculate separately $W_{\alpha,p}(U(R_iG))$ for each index i, then utilizing some set-theoretical gymnastics, there is a way to compute $W_{\alpha,p}(U(RG))$ as well. However, this will be the theme of some other research exploration.

Remark 2.4. Note also that if G_0/G_p is finite, then $G = M \times K$ where M is finite p-divisible and K is p-mixed. Therefore, $U(RG) \cong U(RM) \times V((RM)K)$ and $V(RG) \cong V(RM) \times V((RM)K)$. Thus, in accordance with Lemma 2.1, the Warfield p-invariants of $U(RG)$ and $V(RG)$ are respectively sums of the Warfield p-invariants of $U(RM)$ plus these of $V((RM)K)$, and of the Warfield p-invariants of $V(RM)$ plus these of $V((RM)K)$. But the Warfield p-invariants of $V((RM)K)$ are completely calculated in [4] because $\text{char}(RM) = p$. So, what remains to compute are $W_{\alpha,p}(U(RM))$ or $W_{\alpha,p}(V(RM))$. In this aspect does it follow that $|V(RM)/V(R^pM)| = |R/R^p|^?$

Finally, we assert that if K is a commutative indecomposable unital ring and G is a finite abelian group of exponent which inverts in K, then $KG \cong KH$ for some group H if, and only if, H is finite of the same exponent as that of G and $KG_p \cong KH_p$ for every prime p. The complete proof will be the theme of some other research exploration.

Correction: In [6], pp.7-8 there is a series of identical typos. In fact, in ([6], p. 8, Claim) the equality $|\bigcup_{i \in I} A_i| = \sum_{i \in I} |A_i|$ should be read and written as $|\bigcup_{i \in I} A_i| \leq \sum_{i \in I} |A_i|$. In general, an equality cannot be happen. The next two examples manifestly demonstrate this.

If $A_i = A_j$ for all indexes i and j, or $A_i \supset A_{i+1}$ for all indices $i \in I$, the equality is trivially false.

A less trivial construction is the following: There exist continuum ($= c$) countable subsets A_i ($i \in c$) of $\mathbb{Z} \oplus \mathbb{Z}$ such that $A_i \cap A_j$ is finite for all $i \neq j$, and $\bigcup_{i \in c} A_i = \mathbb{Z} \oplus \mathbb{Z}$. Therefore, $|\bigcup_{i \in c} A_i| = c$ while $\sum_{i \in c} |A_i| = c$. The examples are shown.

However, if all sets A_i are disjoint (i.e., $A_i \cap A_j = \emptyset$ for all indices i and j), the desired equality holds, that is, $|\bigcup_{i \in I} A_i| = \sum_{i \in I} |A_i|$ - see, e.g., Dugundji, Topology, Allyn and Bacon, Boston, 1966, p.30.

So, the statement of Proposition 2.8 on p.7, the equality for $W_{\alpha,p}(U(RG))$ should be written as the inequality "$\leq\$". The same correction appears two more times on lines 4 and 8 after the Claim.
Acknowledgments

The author would like to express his deep thanks to Professors Ken Goodearl and Luigi Salce for the valuable correspondence.

References

5. P. V. Danchev, Warfield invariants of $V(RG)/G$, Note Mat. 29 (2009), 213-218.