Some New Properties of b-closed spaces

N. Rajesh

Abstract: In [5], the authors introduced the notion of b-closed spaces and investigated its fundamental properties. In this paper, we investigate some more properties of this type of closed spaces.

Key Words: Topological spaces, b-open sets, b-θ-open sets.

Contents

1 Introduction and Preliminaries 39
2 $b(\theta)$-convergence and $b(\theta)$-adherence 40
3 b-closedness and grills 41
4 Sets which are b-closed relative to a space 46

1. Introduction and Preliminaries

Generalized open sets play a very important role in General Topology and they are now the research topics of many topologists worldwide. Indeed a significant theme in General Topology and Real Analysis concerns the variously modified forms of continuity, separation axioms etc. by utilizing generalized open sets. For a subset A of a topological space (X, τ), $\text{Cl}(A)$ and $\text{Int}(A)$ denote the closure of A and the interior of A, respectively. A subset A of a topological space (X, τ) is called a b-open [1] (= γ-open [4]) set if $A \subset \text{Int}(\text{Cl}(A)) \cup \text{Cl}(\text{Int}(A))$. The complement of a b-open set is called a b-closed set. The intersection of all b-closed sets of X containing A is called the b-closure [1] of A and is denoted by $b\text{Cl}(A)$. For each $x \in X$, the family of all b-open sets of (X, τ) containing a point x is denoted by $BO(X, x)$. The b-interior of A is the union of all b-open sets contained in A and is denoted by $b\text{Int}(A)$. A set A is called a b-regular set [5] if it is both b-open and b-closed. The b-θ-closure [5] of a subset A, denoted by $b\text{Cl}_{\theta}(A)$, is the set of all $x \in X$ such that $b\text{Cl}(U) \cap A \neq \emptyset$ for every $U \in BO(X, x)$. A subset A is called b-θ-closed [5] if $A = b\text{Cl}_{\theta}(A)$. By [5], it is proved that, for a subset A, $b\text{Cl}_{\theta}(A)$ is the intersection of all b-θ-closed sets containing A. The complement of a b-θ-closed set is called a b-θ-open set. In [5], the authors introduced the notion of b-closed spaces and investigated its fundamental properties. In this paper, we investigate some more properties of this type of closed spaces.

2000 Mathematics Subject Classification: 54D20, 54D99
2. $b(\theta)$-convergence and $b(\theta)$-adherence

Definition 2.1 [2] A grill \mathcal{G} on a topological space X is defined to be a collection of nonempty subsets of X such that (i) $A \in \mathcal{G}$ and $A \subseteq B \subseteq X \Rightarrow B \in \mathcal{G}$ and (ii) $A, B \subseteq X$ and $A \cup B \in \mathcal{G} \Rightarrow A \in \mathcal{G}$ or $B \in \mathcal{G}$.

Definition 2.2 A grill \mathcal{G} on a topological space X is said to be:

(i) $b(\theta)$-adhere at $x \in X$ if for each $U \in BO(X, x)$ and $G \in \mathcal{G}$, $b\text{Cl}(U) \cap G \neq \emptyset$.

(ii) $b(\theta)$-converge to a point $x \in X$ if for each $U \in BO(X, x)$, there is some $G \in \mathcal{G}$, such that $G \subseteq b\text{Cl}(U)$.

Remark 2.3 A grill \mathcal{G} is $b(\theta)$-convergent to a point $x \in X$ if and only if \mathcal{G} contains the collection $\{b\text{Cl}(U) : U \in BO(X, x)\}$.

Definition 2.4 A filter \mathcal{F} on a topological space X is said to be $b(\theta)$-adhere at $x \in X$ (resp. $b(\theta)$-converge to $x \in X$) if for each $F \in \mathcal{F}$ and each $U \in BO(X, x), F \cap b\text{Cl}(U) \neq \emptyset$ (resp. to each $U \in BO(X, x)$, there corresponds $F \in \mathcal{F}$ such that $F \subseteq b\text{Cl}(U)$).

Definition 2.5 [6] If \mathcal{G} is a grill (or a filter) on a topological space X, then the section of \mathcal{G}, denoted by $\text{sec}\mathcal{G}$, is given by,

$$\text{sec}\mathcal{G} = \{A \subseteq X : A \cap G \neq \emptyset \text{ for all } G \in \mathcal{G}\}.$$

Theorem 2.6 [6] Let X be a topological space. Then we have

(i) For any grill (filter) \mathcal{G} on X, $\text{sec}\mathcal{G}$ is a filter (resp. grill) on X.

(ii) If \mathcal{F} and \mathcal{G} are respectively a filter and a grill on X with $\mathcal{F} \subseteq \mathcal{G}$, then there is an ultrafilter \mathcal{U} on X such that $\mathcal{F} \subseteq \mathcal{U} \subseteq \mathcal{G}$.

Theorem 2.7 If a grill \mathcal{G} on a topological space X, $b(\theta)$-adheres at some point $x \in X$, then \mathcal{G} is $b(\theta)$-converges to x.

Proof: Let a grill \mathcal{G} on X, $b(\theta)$-adheres at some point $x \in X$. Then for each $U \in BO(X, x)$ and each $G \in \mathcal{G}$, $b\text{Cl}(U) \cap G \neq \emptyset$ so that $b\text{Cl}(U) \in \text{sec}\mathcal{G}$ for each $U \in BO(X, x)$, and hence $X \setminus b\text{Cl}(U) \notin \mathcal{G}$. Then $b\text{Cl}(U) \in \mathcal{G}$ (as \mathcal{G} is a grill and $X \in \mathcal{G}$) for each $U \in BO(X)$. Hence \mathcal{G} must $b(\theta)$-converge to x. \(\square\)

Example 2.8 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$ and $\mathcal{G} = \{\{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Then the grill \mathcal{G} is $b(\theta)$-convergent but not $b(\theta)$-adheres.

Definition 2.9 Let X be a topological space. Then for any $x \in X$, we adopt the following notation:

$\mathcal{G}_{(b(\theta), x)} = \{A \subseteq X : x \in b\text{Cl}(A)\}$,

$\text{sec}\mathcal{G}_{(b(\theta), x)} = \{A \subseteq X : A \cap G \neq \emptyset, \text{ for all } G \in \mathcal{G}_{(b(\theta), x)}\}$.

Theorem 2.10 A grill \mathcal{G} on a topological space X, $b(\theta)$-adheres to a point x of X if and only if $\mathcal{G} \subseteq \text{sec}\mathcal{G}_{(b(\theta), x)}$.
Proof: A grill \mathcal{G} on a topological space X, $b(\theta)$-adheres to a point x of X, we have $b\text{Cl}(U) \cap G \neq \emptyset$ for all $U \in BO(X, x)$ and all $G \in \mathcal{G}$; hence $b\text{Cl}_G(G)$ for all $G \in \mathcal{G}$. Then $G \in \mathcal{G}(b(\theta), x)$, for all $G \in \mathcal{G}$; hence $\mathcal{G} \subseteq \mathcal{G}(b(\theta), x)$. Conversely, let $\mathcal{G} \subseteq \mathcal{G}(b(\theta), x)$. Then for all $G \in \mathcal{G}$, $b\text{Cl}(U) \cap G \neq \emptyset$, so that for all $U \in BO(X, x)$ and for all $G \in \mathcal{G}$, $b\text{Cl}(U) \cap G \neq \emptyset$. Hence \mathcal{G} $b(\theta)$-adheres at x. \hfill \Box

Theorem 2.11 A grill \mathcal{G} on a topological space X, $b(\theta)$-convergent to a point x of X if and only if $\text{sec}(b(\theta), x) \subseteq \mathcal{G}$.

Proof: Let \mathcal{G} be a grill on a topological space X, $b(\theta)$-convergent to a point $x \in X$. Then for each $U \in BO(X, x)$ there exists $G \in \mathcal{G}$ such that $G \subseteq b\text{Cl}(U)$, and hence $b\text{Cl}(U) \subseteq \mathcal{G}$ for each $U \in BO(X, x)$. Now, $B \in \text{sec}(b(\theta), x) \Rightarrow X \setminus B \notin \mathcal{G}(b(\theta), x) \Rightarrow x \notin b\text{Cl}(X \setminus B) \Rightarrow$ there exists $U \in BO(X, x)$ such that $b\text{Cl}(U) \cap (X \setminus B) = \emptyset \Rightarrow b\text{Cl}(U) \subseteq B$, where $U \in BO(X, x) \Rightarrow B \in \mathcal{G}$. Conversely, let if possible, \mathcal{G} not $b(\theta)$-convergent to x. Then for some $U \in BO(X, x)$, $b\text{Cl}(U) \notin \mathcal{G}$ and hence $b\text{Cl}(U) \notin \text{sec}(b(\theta), x)$. Thus for some $A \in \mathcal{G}(b(\theta), x)$, $A \cap b\text{Cl}(U) = \emptyset$. But $A \in \mathcal{G}(b(\theta), x) \Rightarrow x \in b\text{Cl}(A) \Rightarrow b\text{Cl}(A) \cap U \neq \emptyset$. \hfill \Box

3. b-closedness and grills

Definition 3.1 A nonempty subset A of a topological space X is called b-closed relative to X [5] if for every cover \mathcal{U} of A by b-open sets of X, there exists a finite subset \mathcal{U}_0 of \mathcal{U} such that $A \subseteq \cup \{b\text{Cl}(U) : U \in \mathcal{U}_0\}$. If, in addition, $A = X$, then X is called a b-closed space.

Theorem 3.2 For a topological space X, the following statements are equivalent:

(i) X is b-closed;

(ii) Every maximal filter base $b(\theta)$-converges to some point of X;

(iii) Every filter base $b(\theta)$-adhere to some point of X;

(iv) For every family $\{V_\alpha : \alpha \in I\}$ of b-closed sets that $\cap \{V_i : i \in I\} = \emptyset$, there exists a finite subset I_0 of I such that $\cap \{b\text{Int}(V_i) : i \in I_0\} = \emptyset$.

Proof: (i) \Rightarrow (ii): Let \mathcal{F} be a maximal filter base on X. Suppose that \mathcal{F} does not b-converge to any point of X. Since \mathcal{F} is maximal, \mathcal{F} does not b-θ-accumulate at any point of X. For each $x \in X$, there exist $F_x \in \mathcal{F}$ and $V_x \in BO(X, x)$ such that $b\text{Cl}(V_x) \cap F_x = \emptyset$. The family $\{V_x : x \in X\}$ is a cover of X by b-open sets of X. By (i), there exists a finite number of points x_1, x_2, \ldots, x_n of X such that $X = \cup \{b\text{Cl}(V_x) : i = 1, 2, \ldots, n\}$. Since \mathcal{F} is a filter base on X, there exists $F_0 \in \mathcal{F}$ such that $F_0 \subseteq \cap \{F_x : i = 1, 2, \ldots, n\}$. Therefore, we obtain $F_0 = \emptyset$. This is a contradiction. (ii) \Rightarrow (iii): Let \mathcal{F} be any filter base on X. Then, there exists a maximal filter base \mathcal{F}_0 such that $\mathcal{F} \subseteq \mathcal{F}_0$. By (ii), \mathcal{F}_0 b-θ-converges to some point $x \in X$. For every $F \in \mathcal{F}$ and every $V \in BO(X, x)$, there exists $F_0 \in \mathcal{F}_0$.
such that \(F_0 \subseteq b\text{Cl}(V) \); hence \(\emptyset \neq F_0 \cap F \subseteq b\text{Cl}(V) \cap F \). This shows that \(\mathcal{F} \) does not \(b\theta \)-accumulate at any point. \(\Box \)

Theorem 3.3 A topological space \(X \) is \(b\theta \)-closed if and only if every grill on \(X \) is \(b(\theta) \)-convergent in \(X \).

Proof: Let \(\mathcal{G} \) be any grill on a \(b\theta \)-closed space \(X \). Then by Theorem 2.6, sec\(\mathcal{G} \) is a filter on \(X \). Let \(B \in \text{sec}\mathcal{G} \), then \(X \setminus B \notin \mathcal{G} \) and hence \(B \in \mathcal{G} \) (as \(\mathcal{G} \) is a grill). Thus sec\(\mathcal{G} \) is a filter on \(X \). Then by Theorem 2.6(ii), there exists an ultrafilter \(\mathcal{U} \) on \(X \) such that sec\(\mathcal{G} \) is not a subset of \(\mathcal{U} \) and \(\mathcal{U} \subseteq \mathcal{G} \). Now as \(X \) is \(b\theta \)-closed, in view of Theorem 3.2, the ultrafilter \(\mathcal{U} \) is \(b\theta \)-convergent to some point \(x \in X \). Then for each \(U \in \text{BO}(X,x) \), there exists \(F \in \mathcal{U} \) such that \(F \subseteq \text{Cl}(U) \). Consequently, \(\text{bCl}(U) \in \mathcal{U} \subseteq \mathcal{G} \). That is \(\text{bCl}(U) \in \mathcal{G} \), for each \(U \in \text{BO}(X,x) \). Hence \(\mathcal{G} \) is \(b\theta \)-convergent to \(x \). Conversely, if every grill on \(X \) be \(b\theta \)-convergent to some point of \(X \). By virtue of Theorem 3.2 it is enough to show that every ultrafilter on \(X \) is \(b\theta \)-converges in \(X \), which is immediate from the fact that an ultrafilter on \(X \) is also a grill on \(X \). \(\Box \)

Theorem 3.4 A topological space \(X \) is \(b\theta \)-closed relative to \(X \) if and only if every grill \(\mathcal{G} \) on \(X \) with \(A \in \mathcal{G} \), \(b\theta \)-converges to a point in \(A \).

Proof: Let \(A \) be \(b\theta \)-closed relative to \(X \) and \(\mathcal{G} \) a grill on \(X \) satisfying \(A \in \mathcal{G} \) such that \(\mathcal{G} \) does not \(b\theta \)-converges to any point in \(A \). Then to each \(a \in A \), there corresponds some \(U_a \in \text{BO}(X,a) \) such that \(\text{bCl}(U_a) \notin \mathcal{G} \). Now \(\{U_a : a \in A \} \) is a cover of \(A \) by \(b\theta \)-open sets of \(X \). Then for each \(a \in A \), let \(U_a \) be \(b\theta \)-open set of \(X \). Then \(A \subseteq \bigcup_{i=1}^{n} \text{Cl}(U_n) = U \) (say) for some positive integer \(n \). Since \(\mathcal{G} \) is a grill, \(U \notin \mathcal{G} \); hence \(A \notin \mathcal{G} \), which is a contradiction. Consequently, let \(A \) be not \(b\theta \)-closed relative to \(X \). Then for some cover \(\mathcal{U} = \{U_n : a \in I \} \) of \(A \) by \(b\theta \)-open sets of \(X \), \(\mathcal{F} = \{A \setminus \bigcup_{a \in I} \text{bCl}(U_a) : I_0 \text{ is finite subset of } I \} \) is a filterbase on \(X \). Then the family \(\mathcal{F} \) can be extended to an ultrafilter \(\mathcal{F}^{*} \) on \(X \). Then \(\mathcal{F}^{*} \) is a grill on \(X \) with \(A \in \mathcal{F}^{*} \) (as each \(F \) of \(\mathcal{F} \) is a subset of \(A \)). Now for each \(x \in A \), there must exists \(\beta \in I \) such that \(x \in U_\beta \), as \(\mathcal{U} \) is a cover of \(A \). Then for any \(G \in \mathcal{F}^{*} \), \(G \cap (A \setminus \text{bCl}(U_\beta)) \neq \emptyset \), so that \(G \supset \text{bCl}(U_\beta) \) for all \(G \in \mathcal{G} \). Hence \(\mathcal{F}^{*} \) cannot \(b\theta \)-converges to any point of \(A \). The contradiction proves the desired result. \(\Box \)
Theorem 3.5 If X is any topological space such that every grill \mathcal{G} on X with the property that $\bigcap_{i=1}^{n} b\text{Cl}_{b}(G_i) \neq \emptyset$ for every finite subfamily $\{G_1, G_2, \ldots, G_n\}$ of \mathcal{G}, $b(\theta)$-adheres in X, then X is a b-closed space.

Proof: Let \mathcal{U} be an ultrafilter on X. Then \mathcal{U} is a grill on X and also for each finite subcollection $\{U_1, U_2, \ldots, U_n\}$ of \mathcal{U}, $\bigcap_{i=1}^{n} b\text{Cl}_{b}(U_i) \supseteq \bigcap_{i=1}^{n} U_i \neq \emptyset$, so that \mathcal{U} is a grill on X with the given condition. Hence by hypothesis, \mathcal{U}, $b(\theta)$-adheres. Consequently, by Theorem 3.2, X is b-closed.

Theorem 3.6 [5] For any $A \subseteq X$, $b\text{Cl}_{b}(A) = \cap\{b\text{Cl} : A \subseteq U \in BO(X)\}$.

Definition 3.7 A grill \mathcal{G} on a topological space X is said to be:

(a) $b(\theta)$-linked if for any two members $A, B \in \mathcal{G}$, $b\text{Cl}_{b}(A) \cap b\text{Cl}_{b}(B) \neq \emptyset$,

(b) $b(\theta)$-conjoint if for every finite subfamily A_1, A_2, \ldots, A_n of \mathcal{G}, $b\text{Int}(\bigcap_{i=1}^{n} b\text{Cl}_{b}(A_i)) \neq \emptyset$.

It is clear that every $b(\theta)$-conjoint grill is $b(\theta)$-linked. The following example shows that the converse is need not be true in general.

Example 3.8 Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{G} = \{\{c\}, \{b, c\}, \{a, c\}, X\}$. Then the grill \mathcal{G} is $b(\theta)$-linked but not $b(\theta)$-conjoint.

Theorem 3.9 In a b-closed space X, every $b(\theta)$-conjoint grill $b(\theta)$-adheres in X.

Proof: Consider any $b(\theta)$-conjoint grill \mathcal{G} on a b-closed space X. We first note from Theorem 3.5 that for $A \subseteq X$, $b\text{Cl}_{b}(A)$ is b-closed (as an arbitrary intersection of b-closed sets is b-closed). Thus $\{b\text{Cl}_{b}(A) : A \in \mathcal{G}\}$ is a collection of b-closed sets in X such that $b\text{Int}(\bigcap_{i=1}^{n} b\text{Cl}_{b}(A_i)) \neq \emptyset$ for any finite subcollection A_1, A_2, \ldots, A_n of \mathcal{G}. Then $b\text{Int}(\bigcap_{i=1}^{n} (b\text{Cl}_{b}(A_i))) \neq \emptyset$ for any finite subcollection A_1, A_2, \ldots, A_n of \mathcal{G}. Thus by Theorem 3.2, $\cap_{A \in \mathcal{G}} \{b\text{Cl}_{b}(A) : A \in \mathcal{G}\} \neq \emptyset$. That is there exists $x \in X$ such that $x \in b\text{Cl}_{b}(A)$ for all $A \in \mathcal{G}$. Hence $\mathcal{G} \subseteq \mathcal{G}(b(\theta), x)$ so that by Theorem 2.10, \mathcal{G}, $b(\theta)$-adheres at $x \in X$.

Definition 3.10 A subset A of a topological space X is called b-regular open if $A = b\text{Int}(b\text{Cl}(A))$. The complement a b-regular open set is called a b-regular closed set.

Definition 3.11 A topological space X is called b-almost regular if for each $x \in X$ and each b-regular open set V in X with $x \in V$, there is a b-regular open set U in X such that $x \in U \subseteq b\text{Cl}(U) \subseteq V$.

Theorem 3.12 In a b-almost regular b-closed space X, every grill \mathcal{G} on X with the property $\bigcap_{i=1}^{n} b\text{Cl}_{b}(G_i) \neq \emptyset$ for every finite subfamily $\{G_1, G_2, \ldots, G_n\}$ of \mathcal{G}, $b(\theta)$-adheres in X.

Proof: Let X be a b-almost regular b-closed space and $\mathcal{G} = \{G_\alpha : \alpha \in I\}$ a grill on X with the property that $\bigcap_{\alpha \in I_0} b \text{Cl}_b(G_\alpha) \neq \emptyset$ for every finite subset I_0 of I. We consider $\mathcal{F} = \{\bigcap_{\alpha \in I_0} b \text{Cl}_b(G_\alpha) : I_0$ is a finite subfamily of $I\}$. Then \mathcal{F} is a filterbase on X. By the b-closedness of X, \mathcal{F}, $b(\theta)$-adheres at some $x \in X$, that is, $x \in b \text{Cl}_b(b \text{Cl}_b(G))$ for all $G \in \mathcal{G}$, that is, $\mathcal{G} \subseteq (b(\theta), x)$. Hence by Theorem 2.10, \mathcal{G} $b(\theta)$-adheres at $x \in X$.

Corollary 3.13 In a b-almost regular space X, the following statements are equivalent:

(i) Every grill \mathcal{G} on X with the property that $\bigcap_{i=1}^n b \text{Cl}_b(G_i) \neq \emptyset$ for every finite subfamily $\{G_1, G_2, ..., G_n\}$ of \mathcal{G}, $b(\theta)$-adheres in X.

(ii) X is b-closed.

(iii) Every $b(\theta)$-conjugate grill $b(\theta)$-adheres in X.

Theorem 3.14 Every grill \mathcal{G} on a topological space X with the property that $\bigcap \{b \text{Cl}_b(G) : G \in \mathcal{G}_0\} \neq \emptyset$ for every finite subsets \mathcal{G}_0 of \mathcal{G}, $b(\theta)$-adheres in X if and only if for every family \mathcal{F} of subsets of X for which the family $\{b \text{Cl}_b(F) : F \in \mathcal{F}\}$ has the finite intersection property, we have $\bigcap \{b \text{Cl}_b(F) : F \in \mathcal{F}\} \neq \emptyset$.

Proof: Let every grill on a topological space X satisfying the given condition, $b(\theta)$-adhere in X, and suppose that \mathcal{F} is a family of subsets of X such that the family $\mathcal{G}^* = \{b \text{Cl}_b(F) : F \in \mathcal{F}\}$ has the finite intersection property. Let \mathcal{U} be the collection of all those families \mathcal{G} of subsets of X for which $\mathcal{G}^* = \{b \text{Cl}_b(G) : G \}$ has the finite intersection property and $\mathcal{F} \subseteq \mathcal{G}$. Then $\mathcal{F} \in \mathcal{U}$ is a partially ordered set under set inclusion in which every chain clearly has an upper bound. By Zorn’s lemma, \mathcal{F} is then contained in a maximal family $\mathcal{U}^* \in \mathcal{U}$. It is easy to verify that \mathcal{U}^* is a grill with the stipulated property. Hence $\bigcap \{b \text{Cl}_b(F) : F \in \mathcal{F}\} \supseteq \bigcap \{b \text{Cl}_b(U) : F \in \mathcal{U}\} \neq \emptyset$. Conversely, if \mathcal{F} is a grill on X with the given property, then for every finite subfamily \mathcal{G}_0 of \mathcal{F}, $\bigcap \{b \text{Cl}_b(F) : F \in \mathcal{F} \neq \emptyset\}$. So, by hypothesis, $\bigcap \{b \text{Cl}_b(F) : F \in \mathcal{F}\} \neq \emptyset$. Hence \mathcal{F}, $b(\theta)$-adheres in X.

Definition 3.15 A topological space X is called $b(\theta)$-linkage b-closed if every $b(\theta)$-linked grill on X, $b(\theta)$-adheres.

Theorem 3.16 Every $b(\theta)$-linkage b-closed space is b-closed.

Proof: The proof is clear.

Proposition 3.17 [5] Let A be a subset of a topological space (X, τ). Then:

(i) If $A \in BO(X)$, then $b \text{Cl}(A) = b \text{Cl}_b(A)$.

(ii) If A is b-regular, then A is $b(\theta)$-closed.
Theorem 3.18 In the class of \(b \)-almost regular spaces, the concept of \(b \)-closedness and \(b(\theta) \)-linkage \(b \)-closedness become identical.

Proof: In view of Theorem 3.16, it is enough to show that a \(b \)-almost regular \(b \)-closed space is \(b(\theta) \)-linkage \(b \)-closed. Let \(\mathcal{G} \) be any \(b(\theta) \)-linked grill on a \(b \)-almost regular \(b \)-closed space \(X \) such that \(\mathcal{G} \) does not \(b(\theta) \)-adhere in \(X \). Then for each \(x \in X \), there exists \(G_x \in \mathcal{G} \) such that \(x \notin b\text{Cl}_b(G_x) = b\text{Cl}_b(b\text{Cl}_b(G_x)) \). Then there exists \(U_x \in BO(X, x) \) such that \(b\text{Cl}(U_x) \cap b\text{Cl}_b(G_x) = \emptyset \), which gives \(b\text{Cl}_b(U_x) \cap b\text{Cl}_b(G_x) = \emptyset \) by Proposition 3.17. Since \(b\text{Cl}_b(G_x) \in \mathcal{G} \) and \(\mathcal{G} \) is a \(b(\theta) \)-linked grill on \(X \), \(b\text{Cl}_b(U_x) = b\text{Cl}(U_x) \notin \mathcal{G} \). Now, \(\{U_x : x \in X\} \) is a cover of \(X \) by \(b \)-open sets of \(X \). So by \(b \)-closedness of \(X \), \(X = \cup \{b\text{Cl}(U_x_i) : i = 1, 2, ..., n\} \), for a finite subset \(\{x_1, x_2, ..., x_n\} \) of \(X \). It is then follows that \(x \notin \mathcal{G} \) for \(i = 1, 2, ..., n \), which is a contradiction. Hence \(\mathcal{G} \) must \(b(\theta) \)-adhere in \(X \), proving \(X \) to be \(b(\theta) \)-linkage \(b \)-closed.

Definition 3.19 A topological space \(X \) is said to be \(b \)-compact \([3]\) if every cover \(U \) of \(X \) by \(b \)-open sets of \(X \) has a finite subcover.

Definition 3.20 A topological space \(X \) is \(b(\theta) \)-regular if every grill on \(X \) which \(b(\theta) \)-converges must \(b \)-converge (not necessarily to the same point), where \(b \)-convergence of a grill is defined in the usual way. That is a grill \(\mathcal{G} \) on \(X \) is said to \(b \)-converge to \(x \in X \) if \(BO(X, x) \subseteq \mathcal{G} \).

Theorem 3.21 A topological space \(X \) is \(b \)-compact if and only if every grill \(b \)-converges.

Proof: Let \(\mathcal{G} \) be a grill on a \(b \)-compact space such that \(\mathcal{G} \) does not \(b \)-converge to any point \(x \in X \). Then for each \(x \in X \), there exists \(U_x \in BO(X, x) \) with (⋆) \(U_x \notin \mathcal{G} \). As \(\{U_x : x \in X\} \) is a cover of the \(b \)-compact space \(X \) by \(b \)-open sets, there exist finitely many points \(x_1, x_2, ..., x_n \) in \(X \) such that \(X = \bigcap_{i=1}^{n} U_{x_i} \). Since \(X \in \mathcal{G} \) for some \(i \), \(1 \leq i \leq n \), \(U_{x_i} \notin \mathcal{G} \), which goes against (⋆). Conversely, let every grill on \(X \) \(b \)-converge and if possible, let \(X \) be not \(b \)-compact. Then there exists a cover \(\mathcal{U} \) of \(X \) by \(b \)-open sets of \(X \) having no finite subcover. Then \(\mathcal{F} = \{X \cup \bigcup_{\mathcal{U}_0} : \mathcal{U}_0 \text{ is a finite subcollection of } \mathcal{U} \} \) is a filterbase on \(X \). Then \(\mathcal{F} \) is contained in an ultrafilter \(\mathcal{G} \), and then \(\mathcal{G} \) \(b \)-converges to some point \(x \in X \). Then for some \(U \in \mathcal{U} \), \(x \in U \), and hence \(U \in \mathcal{G} \). But \(X \cup U \in \mathcal{F} \subseteq \mathcal{U} \). Thus \(U \) and \(X \cup U \) both belong to \(\mathcal{U} \), which is a filter, so giving a contradiction.

Theorem 3.22 A \(b \)-compact space \(X \) is \(b \)-closed, while the converse is also true if \(X \) is \(b(\theta) \)-regular.

Proof: The proof is clear.
Definition 3.23 A topological space \((X, \tau)\) is said to be \(b\)-regular [5] if for any closed set \(F \subseteq X\) and any point \(x \in X \setminus F\), there exists disjoint \(b\)-open sets \(U\) and \(V\) such that \(x \in U\) and \(F \subseteq V\).

Theorem 3.24 A topological space \(X\) is \(b\)-regular [5] if and only if for each \(x \in X\) and each \(U \in BO(X, x)\), there exists \(V \in BO(X, x)\) such that \(b\text{Cl}(V) \subseteq U\).

Theorem 3.25 Every \(b\)-regular space is \(b(\theta)\)-regular.

Proof: Let \(\mathcal{G}\) be a grill on a \(b\)-regular \(X\), \(b(\theta)\)-converging to a point \(x\) of \(X\). For each \(U \in BO(X, x)\), there exists, by \(b\)-regularity of \(X\), a \(V \in BO(X, x)\) such that \(b\text{Cl}(V) \subseteq U\). By hypothesis, \(b\text{Cl}(V) \in \mathcal{G}\). Hence \(\mathcal{G}\) \(b\)-converges to \(x\), proving \(X\) to be \(b(\theta)\)-regular. \(\square\)

Example 3.26 Let \(X = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}\). Clearly, \(X\) is \(b\)-compact. Hence by Theorem 3.21, every grill on \(X\) must \(b\)-converge in \(X\). Thus, \(X\) is \(b(\theta)\)-regular. But it is easy to check that \(X\) is not \(b\)-regular.

Theorem 3.27 If a topological space \(X\) is \(b\)-closed \(b\)-regular, then \(X\) is \(b\)-compact.

Proof: Let \(X\) be a \(b\)-closed and \(b\)-regular space. Let \(\{V_\alpha : \alpha \in I\}\) be any open cover of \(X\). For each \(x \in X\), there exists an \(\alpha(x) \in I\) such that \(x \in V_{\alpha(x)}\). Since \(X\) is \(b\)-regular, there exists \(U(x) \in BO(X, x)\) such that \(U(x) \subseteq b\text{Cl}(U(x)) \subseteq V_{\alpha(x)}\). Then, \(\{U(x) : x \in X\}\) is a \(b\)-open cover of the \(b\)-closed space \(X\) and hence there exists a finite amount of points, say, \(x_1, x_2, \ldots, x_n\) such that \(X = \bigcup_{i=1}^{n} b\text{Cl}(U(x_i)) = \bigcup_{i=1}^{n} V_{\alpha(x_i)}\). This shows that \(X\) is compact. \(\square\)

4. Sets which are \(b\)-closed relative to a space

Theorem 4.1 For a topological space \(X\), the following statements are equivalent:

(i) \(A\) is \(b\)-closed relative to \(X\);

(ii) Every maximal filter base \(b(\theta)\)-converges to some point of \(X\);

(iii) Every filter base \(b(\theta)\)-adhere to some point of \(X\);

(iv) For every family \(\{V_\alpha : \alpha \in I\}\) of \(b\)-closed sets such that \(\bigcap\{V_\alpha : i \in I\} \cap A = \emptyset\), there exists a finite subset \(I_0\) of \(I\) such that \(\bigcap\{b\text{Int}(V_i) : i \in I_0\} \cap A = \emptyset\).

Proof: The proof is clear. \(\square\)

Theorem 4.2 If \(X\) is a \(b\)-closed space, then every cover of \(X\) by \(b\)-\(\theta\)-open set has a finite subcover.
Proof: Let \(\{V_\alpha : \alpha \in I \} \) be any cover of \(X \) by \(b\theta \)-open subsets of \(X \). For each \(x \in X \), there exists \(\alpha(x) \in I \) such that \(x \in V_{\alpha(x)} \) is \(b\theta \)-open, there exists \(V_x \in BO(X, x) \) such that \(V_x \subseteq b\text{Cl}(V_x) \subseteq V_{\alpha(x)} \). The family \(\{V_x : x \in X\} \) is a \(b\)-open cover of \(X \). Since \(X \) is \(b\)-closed, there exists a finite number of points, say, \(x_1, x_2, \ldots, x_n \) such that \(X = \bigcup_{i=1}^{n} b\text{Cl}(V_{x_i}) \). Therefore, we obtain that \(X = \bigcup_{i=1}^{n} V_{x_i} \). \(\square \)

Theorem 4.3 Let \(A, B \) be subsets of a topological space \(X \). If \(A \) is \(b\theta\)-closed and \(B \) is \(b\)-closed relative to \(X \), then \(A \cap B \) is \(b\)-closed relative to \(X \).

Proof: Let \(\{V_\alpha : \alpha \in I\} \) be any cover of \(A \cap B \) by \(b \)-open subsets of \(X \). Since \(X \setminus A \) is \(b\theta \)-open, for each \(x \in B \setminus A \) there exists \(W_x \in BO(X, x) \) such that \(b\text{Cl}(W_x) \subseteq X \setminus A \). The family \(\{W_x : x \in B \setminus A \} \cup \{V_\alpha : \alpha \in I\} \) is a cover of \(B \) by \(b \)-open sets of \(X \). Since \(B \) is \(b\)-closed relative to \(X \), there exists a finite number of points, say, \(x_1, x_2, \ldots, x_n \) in \(B \setminus A \) and a finite subset \(I_0 \) of \(I \) such that \(B \subseteq \bigcup_{i=1}^{n} b\text{Cl}(W_{x_i}) \cup \bigcup_{\alpha \in I_0} b\text{Cl}(V_\alpha) \). Since \(b\text{Cl}(W_{x_i}) \cap A = \emptyset \) for each \(i \), we obtain that \(A \cap B \subseteq \bigcup_{\alpha \in I_0} \{b\text{Cl}(V_\alpha) : \alpha \in I_0\} \). This shows that \(A \cap B \) is \(b\)-closed relative to \(X \). \(\square \)

Corollary 4.4 If \(K \) is \(b\theta\)-closed of a \(b\)-closed space \(X \), then \(K \) is \(b\)-closed relative to \(X \).

Definition 4.5 A topological space \(X \) is called \(b\)-connected [5] if \(X \) cannot be expressed as the union of two disjoint \(b \)-open sets. Otherwise, \(X \) is \(b \)-disconnected.

Theorem 4.6 Let \(X \) be a \(b \)-disconnected space. Then \(X \) is \(b \)-closed if and only if every \(b \)-regular subset of \(X \) is \(b \)-closed relative to \(X \).

Proof: Necessity: Every \(b \)-regular set is \(b\theta \)-closed by Proposition 3.17. Since \(X \) is \(b \)-closed, the proof is completed by Corollary 4.4.

Sufficiency: Let \(\{V_\alpha : \alpha \in I\} \) be any cover of \(X \) by \(b \)-open subsets of \(X \). Since \(X \) is \(b \)-disconnected, there exists a proper \(b \)-regular subset \(A \) of \(X \). By our hypothesis, \(A \) and \(X \setminus A \) are \(b \)-closed relative to \(X \). There exist finite subsets \(A_1 \) and \(A_2 \) of \(A \) such that \(A \subseteq \bigcup_{\alpha \in A_1} b\text{Cl}(V_\alpha) \), \(X \setminus A \subseteq \bigcup_{\alpha \in A_2} b\text{Cl}(V_\alpha) \). Therefore, we obtain that \(X = \bigcup \{b\text{Cl}(V_\alpha) : \alpha \in A_1 \cup A_2\} \). \(\square \)

Theorem 4.7 If there exists a proper \(b \)-regular subset \(A \) of a topological space \(X \) such that \(A \) and \(X \setminus A \) are \(b \)-closed relative to \(X \), then \(X \) is \(b \)-closed.

Proof: This proof is similar to the Theorem 4.6 and hence omitted. \(\square \)

Definition 4.8 A function \(f : (X, \tau) \to (Y, \sigma) \) is called \(b \)-irresolute [4] if \(f^{-1}(V) \) is \(b \)-open in \(X \) for every \(b \)-open subset \(V \) of \(Y \).
Lemma 4.9 A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is b-irresolute if and only if for each subset A of X, $f(b\text{Cl}(A)) \subseteq b\text{Cl}(f(A))$.

Theorem 4.10 If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is b-irresolute surjection and K is b-closed relative to X, then $f(K)$ is b-closed relative to Y.

Proof: Let $\{V_\alpha : \alpha \in I\}$ be any cover of $f(K)$ by b-open subsets of Y. Since f is b-irresolute, $\{f^{-1}(V_\alpha) : \alpha \in I\}$ is a cover of K by b-open subsets of X, where K is b-closed relative to X. Therefore, there exists a finite subset I_0 of I such that $K \subseteq \bigcup_{\alpha \in A_0} b\text{Cl}(f^{-1}(V_\alpha))$. Since f is b-irresolute surjective, by Lemma 4.9, we have $f(K) \subseteq \bigcup_{\alpha \in A_0} f(b\text{Cl}(f^{-1}(V_\alpha))) \subseteq \bigcup_{\alpha \in A_0} f(b\text{Cl}(V_\alpha))$. \qed

Corollary 4.11 If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is b-irresolute surjection and X is b-closed, then Y is b-closed.

Acknowledgments

The authors thank the referee for his valuable comments and suggestions.

References

4. A. A. El-Atik, A study of some types of mappings on topological spaces, Master’s Thesis, Faculty of Science, Tata University, Tanta, Egypt (1997).

N. Rajesh
Department of Mathematics
Rajah Serfoji Govt. College
Thanjavur-613005
Tamilnadu, India.
E-mail address: nrajeshtopology@yahoo.co.in