Properties of Γ^2 defined by a modulus function

C. Murugesan and N. Subramanian

Abstract: In this article, we introduce the generalized difference paranormed double sequence spaces $\Gamma^2(\Delta^m_\gamma, f, p, q, s)$ and $\Lambda^2(\Delta^m_\gamma, f, p, q, s)$ defined over a semi-normed sequence space (X, q).

Key Words: entire sequence, analytic sequence, modulus function, semi norm, difference sequence, double sequence, duals.

Contents

1. Introduction 193
2. Definitions and Preliminaries 196
3. Definitions 198
4. Main Results 199

1. Introduction

Throughout w, χ and Λ denote the classes of all gai and analytic scalar valued single sequences, respectively. We write w^2 for the set of all complex sequences (x_{mn}), where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces are due to Bromwich [4]. Later, the double sequence spaces were studied by Hardy [5], Moricz [9], Moricz and Rhoades [10], Basarir and Solankan [2], Tripathy [17], Turkmenoglu [19], and many others.

Let us define the following sets of double sequences:

$$M_u(t) := \left\{ (x_{mn}) \in w^2 : \sup_{m,n \in \mathbb{N}} |x_{mn}|^{t_{mn}} < \infty \right\},$$

$$C_p(t) := \left\{ (x_{mn}) \in w^2 : p - \lim_{m,n \to \infty} |x_{mn} - t_{mn}| = 1 \text{ for some } t \in \mathbb{C} \right\},$$

$$C_0_p(t) := \left\{ (x_{mn}) \in w^2 : p - \lim_{m,n \to \infty} |x_{mn}|^{t_{mn}} = 1 \right\},$$

2000 Mathematics Subject Classification: 40A05, 40C05, 40D05
\[\mathcal{L}_u(t) := \left\{ \{x_{mn}\} \in \omega^2 : \sum_{m=1}^\infty \sum_{n=1}^\infty |x_{mn}|^{t_{mn}} < \infty \right\}, \]

\[\mathcal{C}_{bp}(t) := \mathcal{C}_p(t) \cap \mathcal{M}_u(t) \text{ and } \mathcal{C}_{bop}(t) = \mathcal{C}_0(t) \cap \mathcal{M}_u(t); \]

where \(t = (t_{mn}) \) is the sequence of strictly positive reals \(t_{mn} \) for all \(m,n \in \mathbb{N} \) and \(p = \lim_{m,n \to \infty} \) denotes the limit in the Pringsheim’s sense. In the case \(t_{mn} = 1 \) for all \(m,n \in \mathbb{N}; \mathcal{M}_u(t), \mathcal{C}_p(t), \mathcal{C}_{bop}(t), \mathcal{L}_u(t), \mathcal{C}_{bp}(t) \) and \(\mathcal{C}_{bop}(t) \) reduce to the sets \(\mathcal{M}_u, \mathcal{C}_p, \mathcal{C}_{bop}, \mathcal{L}_u, \mathcal{C}_{bp} \) and \(\mathcal{C}_{bop} \), respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Göklan and Colak[21,22] have proved that \(\mathcal{M}_u(t) \) and \(\mathcal{C}_p(t), \mathcal{C}_{bop}(t) \) are complete paranormed spaces of double sequences and gave the \(\alpha-\), \(\beta-\), \(\gamma-\) duals of the spaces \(\mathcal{M}_u(t) \) and \(\mathcal{C}_{bp}(t) \). Quite recently, in her PhD thesis, Zeltser [23] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen and Edely [24] have recently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Nextly, Mursaleen [25] and Mursaleen and Edely [26] have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the \(M- \) core for double sequences and determined those four dimensional matrices transforming every bounded double sequences \(x = (x_{ij}) \) into one whose core is a subset of the \(M- \) core of \(x \). More recently, Altay and Basar [27] have defined the spaces \(\mathcal{B}_k, \mathcal{B}_k(t), \mathcal{C}_k, \mathcal{C}_{bop}, \mathcal{C}_r, \mathcal{L}_u, \mathcal{C}_{bp} \) and \(\mathcal{B}_v \) of double sequences consisting of all double series whose sequence of partial sums are in the spaces \(\mathcal{M}_u, \mathcal{C}_p(t), \mathcal{C}_{bop}, \mathcal{C}_r \) and \(\mathcal{L}_u \), respectively, and also examined some properties of those sequence spaces and determined the \(\alpha-\) duals of the spaces \(\mathcal{B}_k, \mathcal{B}_k(t), \mathcal{C}_k, \mathcal{C}_{bop}, \mathcal{C}_r \) and the \(\beta(\theta) - \) duals of the spaces \(\mathcal{C}_{bop} \) and \(\mathcal{C}_r \) of double series. Quite recently Basar and Sever [28] have introduced the Banach space \(\mathcal{L}_q \) of double sequences corresponding to the well-known space \(\ell_q \) of single sequences and examined some properties of the space \(\mathcal{L}_u \). Quite recently Subramanian and Misra [29] have studied the space \(\chi_{2q}^0(p,q,n) \) of double sequences and gave some inclusion relations.

We need the following inequality in the sequel of the paper. For \(a, b \geq 0 \) and \(0 < p < 1 \), we have

\[(a + b)^p \leq a^p + b^p \quad (1) \]

The double series \(\sum_{m,n=1}^\infty x_{mn} \) is called convergent if and only if the double sequence \((s_{mn}) \) is convergent, where \(s_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m,n \in \mathbb{N}) \) (see [1]).

A sequence \(x = (x_{mn}) \) is said to be double analytic if \(\sup_{m,n} |x_{mn}|^{1/m+n} < \infty \). The vector space of all double analytic sequences will be denoted by \(\Lambda^2 \). A sequence \(x = (x_{mn}) \) is called double gai sequence if \(|x_{mn}|^{1/m+n} \to 0 \) as \(m,n \to \infty \). The double entire sequences will be denoted by \(\Gamma^2 \). By \(\phi \), we denote the set of all finite sequences.

Consider a double sequence \(x = (x_{ij}) \). The \((m,n)^{th} \) section \(x_{[m,n]} \) of the sequence
Properties of Γ^2 defined by a modulus function

is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \mathcal{I}_{ij}$ for all $m, n \in \mathbb{N}$; where \mathcal{I}_{ij} denotes the double sequence whose only non zero term is 1 in the $(i,j)^{th}$ place.

An FK-space (or a metric space) X is said to have AK property if (\mathcal{I}_{mn}) is a Schauder basis for X. Or equivalently $x^{[m,n]} \to x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings $x = (x_k) \to (x_{mn})(m, n \in \mathbb{N})$ are also continuous.

Orlicz [13] used the idea of Orlicz function to construct the space (L^M), Lindenstrauss and Tzafriri [7] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p, (1 \leq p < \infty)$. Subsequently, different classes of sequence spaces were defined by Parashar and Choudhary [14], Mursaleen et al. [11], Bektas and Altin [3], Tripathy et al. [18], Rao and Subramanian [15], and many others. The Orlicz sequence spaces are the special cases of Orlicz spaces studied in [6].

Recalling [13] and [6], an Orlicz function is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, non-decreasing, and convex with $M(0) = 0$, $M(x) > 0$, for $x > 0$ and $M(x) \to \infty$ as $x \to \infty$. If convexity of Orlicz function M is replaced by subadditivity of M, then this function is called modulus function, defined by Nakano [12] and further discussed by Ruckle [16] and Maddox [8], and many others.

An Orlicz function M is said to satisfy the Δ_2-condition for all values of u if there exists a constant $K > 0$ such that $M(2u) \leq KM(u)$ $(u \geq 0)$. The Δ_2-condition is equivalent to $M(\ell u) \leq K\ell M(u)$, for all values of u and for $\ell > 1$.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \right\} ,$$

The space ℓ_M with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\} ,$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^\alpha (1 \leq p < \infty)$, the spaces ℓ_M coincide with the classical sequence space ℓ_p.

If X is a sequence space, we give the following definitions:

(i)$X' = \text{the continuous dual of } X$;

(ii)$X^\alpha = \left\{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} |a_{mn}x_{mn}| < \infty, \text{ for each } x \in X \right\}$;
(iii) $X^\beta = \{ a = (a_{mn}) : \sum_{m,n=1}^{\infty} a_{mn} x_{mn} is convergent, for each x \in X \}$;

(iv) $X^\gamma = \{ a = (a_{mn}) : \sup_{M,N} \geq 1 | \sum_{m,n=1}^{M,N} a_{mn} x_{mn} | < \infty, for each x \in X \}$;

(v) let $X be a Banach space with the norm Φ; then $X^f = \{ f(\beta_{mn}) : f \in X^f \}$;

(vi) $X^s = \{ a = (a_{mn}) : \sup_{m,n} |a_{mn} x_{mn}|^{1/m+n} < \infty, for each x \in X \}$.

$X^\alpha, X^\beta, X^\gamma$ and X^s are called α–(or Köthe–Toeplitz) dual of X, β–(or generalized Köthe–Toeplitz) dual of X, γ–dual of X, and s–dual of X respectively. X^α is defined by Gupta and Kamptan [20]. It is clear that $X^\alpha \subset X^\beta$ and $X^\alpha \subset X^\gamma$, but $X^\alpha \subset X^\gamma$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference spaces of single sequences was introduced by Kizmaz [30] as follows

$$Z(\Delta) = \{ x = (x_k) \in w : (\Delta x_k) \in Z \}$$

for $Z = c, c_0$ and ℓ_∞, where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$. Here w, c, c_0 and ℓ_∞ denote the classes of all, convergent, null and bounded scalar valued single sequences respectively. The above difference spaces are Banach spaces normed by

$$||x|| = |x_1| + \sup_{k \geq 1} |\Delta x_k|$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$Z(\Delta) = \{ x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z \}$$

where $Z = \Lambda^2, \Gamma^2$ and $\Delta x_{mn} = (x_{m,n} - x_{m+n+1}) - (x_{m,n+1} - x_{m+n}) = x_{mn} - x_{mn+1} - x_{m+n} + x_{m+n+1}$ for all $m, n \in \mathbb{N}$

2. Definitions and Preliminaries

Γ^2_3 and Λ^2_3 denote the Pringsheim’s sense of double Orlicz space of entire sequences and Pringsheim’s sense of double Orlicz space of bounded sequences respectively.

The notion of a modulus function was introduced by Nakano [12]. We recall that a modulus f is a function from $[0, \infty) \rightarrow [0, \infty)$, such that

(1) $f(x) = 0$ if and only if $x = 0$

(2) $f(x + y) \leq f(x) + f(y)$, for all $x \geq 0, y \geq 0$,

(3) f is increasing,

(4) f is continuous from the right at 0. Since $|f(x) - f(y)| \leq f(|x - y|)$, it follows from condition (4) that f is continuous on $[0, \infty)$.

Let $p = (p_{mn})$ be a sequence of strictly positive real numbers and $s \geq 0$. Let X be semi normed space over the field \mathbb{C} of complex numbers with the semi norm q. The symbol $w^2(X)$ denotes the space of all sequences defined over X, such that
Define the sets:

\[\Gamma^2_M = \left\{ x \in \mathbb{R}^2 : \left(M \left(\frac{(|x_m|^{1/m+n})}{\rho} \right) \right) \to 0 \text{ as } m, n \to \infty \text{ for some } \rho > 0 \right\} \]

and

\[\Lambda^2_M = \left\{ x \in \mathbb{R}^2 : \sup_{m,n \geq 1} \left(M \left(\frac{|x_m|^{1/m+n}}{\rho} \right) \right) < \infty \text{ for some } \rho > 0 \right\} . \]

The space \(\Gamma^2_M \) and \(\Lambda^2_M \) is a metric space with the metric

\[d(x, y) = \inf \left\{ \rho > 0 : \sup_{m,n \geq 1} \left(M \left(\frac{|x_m - y_n|}{\rho} \right) \right)^{1/m+n} \leq 1 \right\} \]

Now we define the following sequence spaces:

\[\Gamma^2(\Delta^m_w, f, p, q, s) = \left\{ x \in \mathbb{R}^2(X) : (mn)^{-s} \left(f(\Delta^m_w x_m) \right)^{m+n} \to 0 \text{ as } m, n \to \infty , s \geq 0 \right\} \]

\[\Lambda^2(\Delta^m_w, f, p, q, s) = \left\{ x \in \mathbb{R}^2(X) : \sup_{m,n} (mn)^{-s} \left(f(\Delta^m_w x_m) \right)^{m+n} < \infty , s \geq 0 \right\} \]

where

\[\Delta^0_w x_m = (v_m x_m) , \Delta^w x_m = (v_m x_m - v_{m+1} x_{m+1} - v_{m+1} x_{m+1} + v_{m+1} x_{m+1}) \]

\[\Delta^m_w x_m = \Delta^m x_m - \Delta^{m-1} x_m = \Delta^m x_m - \Delta^m x_{m+1} - \Delta^{m-1} x_{m+1} + \Delta^{m-1} x_{m+1} \]

where \(f \) is a modulus function. The following inequality will be used through this article. Let \(p = (p_{mn}) \) be a sequence of positive real numbers with \(0 < p_{mn} \leq \sup_{mn} p_{mn} = H , D = \max \{ 1, 2^H \} \) . Then, for \(a_{mn}, b_{mn} \in \mathbb{C} \), we have

\[|a_{mn} + b_{mn}|^{p_{mn}} \leq D \{ |a_{mn}|^{p_{mn}} + |b_{mn}|^{p_{mn}} \} \]

Some well-known spaces are obtained by specializing \(f, s, q, v, \) and \(m \).

(1) If \(f(x) = x \), \(m = 0 \), \(v = (v_{mn}) = \)

\[
\begin{pmatrix}
1, & 1, & \ldots, & 1, & 0, \\
1, & 1, & \ldots, & 1, & 0, \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1, & 1, & \ldots, & 1, & 0, \\
0, & 0, & \ldots, & 0, & 0,
\end{pmatrix}
\]

with 1 in the upto \((m, n)^{th} \) position and zero other wise and \(q(x) = |x| \), then

\(\Gamma^2(\Delta^0_w, f, p, q, s) = \Gamma^2(p, s) \) and \(\Lambda^2(\Delta^0_w, f, p, q, s) = \Lambda^2(p, s) \).
Definition 3.3. (1) A sequence space \(x \in X \) whenever \((m, n) \) all

\[
\begin{pmatrix}
1, 1, \ldots, 1, 1, 0, \\
1, 1, \ldots, 1, 1, 0, \\
\quad \\
1, 1, \ldots, 1, 1, 0, \\
0, 0, \ldots, 0, 0, 0, \\
\end{pmatrix}
\]

\(v \) with \(1 \) in the upto \((m, n)\)th position and zero other wise and \(q(x) = |x|, s = 0, \) then \(\Gamma^2 (\Delta^m, f, p, q, s) = \Gamma^2 (p) \) and \(\Lambda^2 (\Delta^m, f, p, q, s) = \Lambda^2 (p) \).

(2) Symmetric if

(3) Sequence algebra if

Definition 3.4. Let \(p, q \) be semi norms on a linear space \(X. \) Then \(p \) is said to be stronger than \(q \) if \((x_{mn}) \) is a sequence such that \(p(x_{mn}) \to 0, \) whenever \(q(x_{mn}) \to 0. \) If each is stronger than the other, then the \(p \) and \(q \) are said to be equivalent.

Lemma 3.2. Let \(p \) and \(q \) be semi norms on a linear space \(X. \) Then \(p \) is stronger than \(q \) if and only if there exists a constant \(M \) such that \(q(x) \leq Mp(x) \) for all \(x \in X. \)

Definition 3.3. (1) A sequence space \(X \) is said to be solid or normal if \((\alpha_{mn}x_{mn}) \in X \) whenever \((x_{mn}) \in X \) and for all sequences of scalars \((\alpha_{mn}) \) with \(|\alpha_{mn}| \leq 1, \) for all \(m, n \in \mathbb{N}. \)

(2) Symmetric if \((x_{mn}) \in X \) implies \((x_{\pi(mn)}) \in X, \) where \(\pi (mn) \) is a permutation of \(\mathbb{N} \times \mathbb{N}; \)

(3) Sequence algebra if \(x \cdot y \in X \) whenever \(x, y \in X. \)

Definition 3.4. A sequence space \(X \) is said to be monotone if it contains the canonical pre-images of all its step spaces.

Remark 3.5. From Definition 3.3 and 3.4, it is clear that if a sequence space \(X \) is solid then \(X \) is monotone.

Definition 3.6. A sequence space \(X \) is said to be convergence free if \((y_{mn}) \in X \) whenever \((x_{mn}) \in X \) and \(x_{mn} = 0 \) implies that \(y_{mn} = 0. \)
4. Main Results

Theorem 4.1. Let \(p = (p_{mn}) \) be a analytic sequence. Then \(\Gamma^2 (\Delta^m_v, f, p, q, s) \) are linear spaces.

Proof: Let \(x, y \in \Gamma^2 (\Delta^m_v, f, p, q, s) \). For \(\lambda, \mu \in \mathbb{C} \), there exists positive integers \(M_\lambda \) and \(N_\mu \), such that \(|\lambda| \leq M_\lambda \) and \(|\mu| \leq N_\mu \). Since \(f \) is subadditive, \(q \) is a seminorm, and \(\Delta^m_v \) is linear, we have

\[
(\sum mn (\lambda x_{mn} + \mu y_{mn}))^{-s} \left[f \left(q \left(|\Delta^m_v (\lambda x_{mn} + \mu y_{mn})| \right) \right) \right] \leq D \left(\max (1, |M_\lambda|^H) \right) (\sum mn (mn)^{-s} \left[f \left(q \left(|\Delta^m_v x_{mn}| \right) \right) \right])^{p_{mn}} + \\
D \left(\max (1, |N_\mu|^H) \right) (\sum mn (mn)^{-s} \left[f \left(q \left(|\Delta^m_v y_{mn}| \right) \right) \right])^{p_{mn}} \rightarrow 0 \text{ as } m, n \rightarrow \infty.
\]

This means that \(\lambda x + \mu y \in \Gamma^2 (\Delta^m_v, f, p, q, s) \). Hence, \(\Gamma^2 (\Delta^m_v, f, p, q, s) \) is a linear space.

Theorem 4.2. The space \(\Gamma^2 (\Delta^m_v, f, p, q, s) \) is a paranormed space, paranormed by \(g(x) = \sum_{i=1}^n \sum_{j=1}^n f (q(v_{ij} w_{ij} + \sup_m (mn)^{-s} \left[f \left(q \left(|\Delta^m_v x_{mn}| \right) \right) \right])^{p_{mn}/M} \)

where \(M = \max (1, \sup_m p_{mn}) \)

Proof: Clearly \(g(x) = g(-x) \) for all \(x \in \Gamma^2 (\Delta^m_v, f, p, q, s) \). It is trivial that \((|\Delta^m_v x_m|)^{-s} = \theta \) for \(x_m = \theta \),

\[
\begin{pmatrix}
\theta, \theta, \ldots, \theta, \\
\theta, \theta, \ldots, \theta,
\end{pmatrix}
\]

and is the zero element of \(X \). Since \(q(\theta) = 0 \) and \(f(0) = 0 \), we get \(g(\theta) = 0 \). Since \(t_{mn} = p_{mn}/M \leq 1 \), if \(a_{mn} \) and \(b_{mn} \) are complex numbers, then we have

\[
|a_{mn} + b_{mn}|_{t_{mn}} \leq D \left(|a_{mn}|_{t_{mn}} + |b_{mn}|_{t_{mn}} \right)
\]

Since \(M \geq 1 \), the above inequality implies that

\[
\sum_{i=1}^n \sum_{j=1}^n f (q(v_{ij} x_{ij} + \sup_m (mn)^{-s} \left[f \left(q \left(|\Delta^m_v x_{mn}| \right) \right) \right])^{p_{mn}/M} + \\
\sum_{i=1}^n \sum_{j=1}^n f (q(v_{ij} y_{ij} + \sup_m (mn)^{-s} \left[f \left(q \left(|\Delta^m_v y_{mn}| \right) \right) \right])^{p_{mn}/M}.
\]

Now, it follows that \(g \) is subadditive. Next, let \(\lambda \) be a non-zero scalar. The continuity of scalar multiplication follows from the inequality

\[
g(\lambda x) \leq K_{\lambda} \sum_{i=1}^n \sum_{j=1}^n f (q(v_{ij} x_{ij} + \sup_m (mn)^{-s} \left[f \left(q \left(|\Delta^m_v x_{mn}| \right) \right) \right])^{p_{mn}/M} \leq \max (1, K_{\lambda}^{H/M}) \quad g(x),
\]

where \(K_{\lambda} \) is an integer such that \(|\lambda| < K_{\lambda} \). This completes the proof.
Theorem 4.3. Let f, f_1 and f_2 be modulus functions, q, q_1 and q_2 be seminorms, and s, s_1 and $s_2 ≥ 0$. Then,

1. $f_2^2 (Δ_m^q, f_1, p, q, s) ⊆ f^2 (Δ_m^q, f_1, p, q, s)\) ,
2. $f_2^2 (Δ_m^q, f_1, p, q, s) \cap f^2 (Δ_m^q, f_2, p, q, s) \subseteq f^2 (Δ_m^q, f_1 + f_2, p, q, s)\) ,
3. $f_2^2 (Δ_m^q, f_1, p, q, s) \cap f^2 (Δ_m^q, f, p, q_2, s) \subseteq f^2 (Δ_m^q, f_1, p, q_1 + q_2, s)\) ,
4. If $q_1 < q_2$, then $f^2 (Δ_m^q, f, p, q_1, s) \subseteq f^2 (Δ_m^q, f, p, q_2, s)\) ,
5. If $s_1 \leq s_2$, then $f_2^2 (Δ_m^q, f, p, q, s_1) \subseteq f_2^2 (Δ_m^q, f, p, q, s_2)\) .

Proof: Let $S_{mn} = (mn)^{-s} \left[f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \right]^{p_{mn}} \to 0, (m, n \to \infty)$

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f (t) < \epsilon$ for $0 \leq t \leq \delta$. Now we write

$I_1 = \{ (m, n) \in \mathbb{N} : f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \leq \delta \}$,

$I_2 = \{ (m, n) \in \mathbb{N} : f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) > \delta \}$,

If $x \in f_2^2 (Δ_m^q, f_1, p, q, s)$, then for $f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) > \delta$, we have

$f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) < f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \delta^{-1} < 1 + \left[f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \delta^{-1} \right]$

where $m, n \in I_2$ and $[u]$ denotes the integer part of u. Given $\epsilon > 0$, by the definition of f, we have for $f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) > \delta$, $f \left(f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \right) \leq (1 + \left[f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \delta^{-1} \right] f (1) \leq 2 f (1) \left(f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \delta^{-1} \right)$ and hence,

$\left(mn \right)^{-s} \left[f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \right]^{p_{mn}} \leq \left(2 f (1) \delta^{-1} \right)^{s} S_{mn} < \epsilon, (m, n \in I_2)$

and $m, n > m_2 n_2$. If $x \in f_2^2 (Δ_m^q, f_1, p, q, s)$, for $f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) < \epsilon$, where $(m, n) \in I_1$. Therefore, given $\epsilon > 0$ if $m, n \in I_2$, we have

$\left(mn \right)^{-s} \left[f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \right]^{p_{mn}} \leq \left(mn \right)^{-s} \max \left(\epsilon^{inf p_{mn}}, \epsilon^{sup p_{mn}} \right) < \epsilon$

$(m, n \in I_1), mn > m_1 n_1$

From (2) and (3) for every $m, n > \max \{ (m_1 n_1), (m_2 n_2) \}$,

$\left(mn \right)^{-s} \left[f_1 \left(q \left(|Δ_m^q x_{mn}| \right) \right) \right]^{p_{mn}} < \epsilon.$
Hence, \(x \in \Gamma^2 (\Delta^m_v, f \circ f_1, p, q, s) \). Thus, \(\Gamma^2 (\Delta^m_v, f_1, p, q, s) \subseteq \Gamma^2 (\Delta^m_v, f \circ f_1, p, q, s) \).

(2) It follows from the inequality

\[
(mn)^{-s} \left[(f_1 + f_2) \left(\left| \Delta^m_v x_{mn} \right| \right)^{\frac{1}{p+q}} \right] \leq \frac{D}{(mn)^{-s}} \left[f_1 \left(\left| \Delta^m_v x_{mn} \right| \right)^{\frac{1}{p+q}} \right] + \frac{D}{(mn)^{-s}} \left[f_2 \left(\left| \Delta^m_v x_{mn} \right| \right)^{\frac{1}{p+q}} \right].
\]

Since (3), (4) and (5) can be established by the same way, we omit the detail. \(\square \)

Proposition 4.4. The following inclusion relations hold:

1. \(\Gamma^2 (\Delta^m_v, p, q, s) \subseteq \Gamma^2 (\Delta^m_v, f \circ f_1, p, q, s) \),
2. \(\Gamma^2 (\Delta^m_v, f, p, q) \subseteq \Gamma^2 (\Delta^m_v, f, p, q, s) \),
3. \(\Gamma^2 (\Delta^m_v, p, q) \subseteq \Gamma^2 (\Delta^m_v, f, p, q, s) \).

The proof of the inclusions in (1)-(3) is routine verification. So, we leave it to the reader.

Proposition 4.5. If \(q_1 \geq q_2 \), then \(\Gamma^2 (\Delta^m_v, f, p, q_1, s) = \Gamma^2 (\Delta^m_v, f, p, q_2, s) \).

Theorem 4.6. For any two sequences \(p = (p_{mn}) \) and \(t = (t_{mn}) \) of strictly positive real numbers and for any two semi norms \(q_1 \) and \(q_2 \) on \(X \), the spaces \(\Gamma^2 (\Delta^m_v, f, p, q_1, s) \) and \(\Gamma^2 (\Delta^m_v, f, p, q_2, s) \) are not disjoint.

Proof: Since the zero element belongs to each of the above classes of double sequences, the intersection is non empty. \(\square \)

Theorem 4.7. For any two sequences \((p_{mn}) \) and \((t_{mn}) \), we have \(\Gamma^2 (\Delta^m_v, f, t, q) \subset \Gamma^2 (\Delta^m_v, f, p, q) \) if and only if \(\liminf \frac{p_{mn}}{t_{mn}} > 0 \).

Proof: If we take \(y_{mn} = f \left(q \left(\left| \Delta^m_v x_{mn} \right| \right) \right) \) for all \(m, n \in \mathbb{N} \). \(\square \)

Theorem 4.8. For any two sequences \((p_{mn}) \) and \((t_{mn}) \), the spaces \(\Gamma^2 (\Delta^m_v, f, t, q) \) and \(\Gamma^2 (\Delta^m_v, f, p, q) \) are identical if and only if \(\liminf \frac{p_{mn}}{t_{mn}} > 0 \) and if and only if \(\liminf \frac{t_{mn}}{p_{mn}} > 0 \).

Theorem 4.9. \(\Gamma^2 (\Delta^m_v, f, p, q, s) \) is not solid for \(m > 0 \)

To prove that the space \(\Gamma^2 (\Delta^m_v, f, p, q, s) \) is not solid, in general, we give the following counter-example: Let \(X = \mathbb{C} \), \(f(x) = x, q(x) = |x|, \alpha_{mn} = (-1)^{p_{mn}}, s = 0, v = (v_{mn}) \) with \(v = (v_{mn}) = p_{mn} = 1 \) for all \(m, n \in \mathbb{N} \). Then, \(|x_{mn}|^{\frac{1}{p_{mn}}} = (mn)^{m-1} \in \Gamma^2 (\Delta^m_v, f, p, q, s) \), but \(\alpha_{mn} x_{mn} \notin \Gamma^2 (\Delta^m_v, f, p, q, s) \).

Theorem 4.10. \(\Gamma^2 (\Delta^m_v, f, p, q, s) \) is not sequence algebra.
Example 4.13. Let \(q(x) = |x|, f(x) = x, s = 0, v = (v_{mn}) = \begin{pmatrix} 1, & 1, & \ldots & 1 \\ 1, & 1, & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1, & 1, & \ldots & 1 \end{pmatrix} \) and \(p_{mn} = 1 \) for all \(m, n \in \mathbb{N} \).

Consider \(|x_{mn}|^{\frac{1}{m+n}} = (mn)^{m-1} \) and \(|y_{mn}|^{\frac{1}{m+n}} = (mn)^{m-1} \), then \(x, y \in \Gamma^2(\Delta_v^m, f, p, q, s) \) and \(x \cdot y \notin \Gamma^2(\Delta_v^m, f, p, q, s) \).

Theorem 4.11. The space \(\Gamma^2(\Delta_v^m, f, p, q, s) \) is not convergence free in general.

Proof: To prove that the space \(\chi^2(\Delta_v^m, f, p, q, s) \) is not convergence free, in general, we give the following counter-example: Consider the sequences \((\Delta_v^m x_{mn})\), \((\Delta_v^m y_{mn})\) \(\in \Gamma^2(\Delta_v^m, f, p, q, s)\) defined by \((\Delta_v^m x_{mn}) = \left(\frac{1}{m+n}\right)^{m+n}\) and \((\Delta_v^m y_{mn}) = \left(\frac{m-n}{m+n}\right)^{m+n}\) for all \(m, n \in \mathbb{N} \). Then,

\[
(mn)^{-s} \left[f \left(q \left(\frac{1}{m+n} \right) \right) \right]^{p_{mn}} \rightarrow 0, \quad \text{as} \quad m, n \rightarrow \infty,
\]

which implies that \((\Delta_v^m x_{mn}) \rightarrow 0\) as \(m, n \rightarrow \infty \). Similarly, \((mn)^{-s} \left[f \left(q \left(\frac{m-n}{m+n} \right) \right) \right]^{p_{mn}} \rightarrow 0 \) as \(m, n \rightarrow \infty \). But, \(\{\Delta_v^m y_{mn}\} \) does not tends to zero, as \(m, n \rightarrow \infty \). This step completes the proof. \(\square \)

Theorem 4.12. Let \(f \) be a modulus function. Then \(\Gamma^2(\Delta_v^m, f, p, q, s) \subseteq \Lambda^2(\Delta_v^m, f, p, q, s) \) and the inclusions are strict.

Proof:

\[
(mn)^{-s} \left[f \left(q \left(|\Delta_v^m x_{mn}| \right) \right) \right]^{p_{mn}} \leq D(mn)^{-s} \left[f \left(q \left(|\Delta_v^m x_{mn}| \right) \right) \right]^{p_{mn}} \]

Then, there exists an integer \(K \) such that

\[
(mn)^{-s} \left[f \left(q \left(|\Delta_v^m x_{mn}| \right) \right) \right]^{p_{mn}} \leq D(mn)^{-s} \left[f \left(q \left(|\Delta_v^m x_{mn}| \right) \right) \right]^{p_{mn}} + \max \left[1, (K)^H \right].
\]

Therefore, \(x \in \Lambda^2(\Delta_v^m, f, p, q, s) \). \(\square \)

Example 4.13. Let \(q(x) = |x|, f(x) = 0, s = 0, v = (v_{mn}) = \begin{pmatrix} 1, & 1, & \ldots & 1 \\ 1, & 1, & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1, & 1, & \ldots & 1 \end{pmatrix} \) and \(p_{mn} = 1 \) for all \(m, n \in \mathbb{N} \). Then \(x = (mn)^{m+n} = (mn)^{m^2+mn} \in \Lambda^2(\Delta_v^m, f, p, q, s) \), but \(x \notin \Gamma^2(\Delta_v^m, f, p, q, s) \). Since \(|\Delta_v^m (mn)^{m-n} = (-1)^m \cdot m! \).
Properties of Γ^2 defined by a modulus function

References

22. A.Gökhan and R.Colak, Double sequence spaces ℓ_2^p, ibid., 160(1), (2005), 147-153.

