Statistical convergence of double sequences on probabilistic normed spaces defined by $[V, \lambda, \mu]$-summability

Pankaj Kumar, S.S. Bhatia and Vijay Kumar

ABSTRACT: In this paper, we aim to generalize the notion of statistical convergence for double sequences on probabilistic normed spaces with the help of two nondecreasing sequences of positive real numbers $\lambda = (\lambda_n)$ and $\mu = (\mu_n)$ such that each tending to ∞, also $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$, and $\mu_{n+1} \leq \mu_n + 1$, $\mu_1 = 1$. We also define generalized statistically Cauchy double sequences on PN space and establish the Cauchy convergence criteria in these spaces.

Key Words: Statistical convergence; λ-statistical convergence; Probabilistic normed spaces.

Contents

1 Introduction 59
2 Background and preliminaries 60
3 Strong (λ, μ)-statistical convergence of double sequences on a PN-space 62

1. Introduction

Before we go into the motivation for this paper and present main results, we move through the background of the topic. Menger [12] provoked a crucial generalization of a metric space and called it a probabilistic metric space. This concept was further developed by various authors [2,3,4], [6], [11] and [23,24]. Probabilistic normed space, which is an important family of probabilistic metric spaces, were firstly defined by Šterneš [25]. Alsina et al. [1] gave a new definition of probabilistic normed space making Šterneš definition a special case. As a result, a productive theory agreeable with ordinary normed spaces and probabilistic metric spaces originated.

The notion of statistical convergence of sequence of numbers was introduced by Fast [5] and Schoenberg [22] independently in 1951 and discussed by [7], [13,14], [16,17,18,19,20,21], [26,27], [29] and [31]. During last few years, statistical convergence has been applied in various fields like fourier analysis, ergodic theory and number theory. Mursaleen [15] generalized the notion of statistical convergence with the help of a non-decreasing sequence $\lambda = (\lambda_n)$ of positive numbers tending to ∞ with $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$ and called respectively λ-statistical convergence. Karakus extended the concept of the statistical convergence for single and double
sequences on probabilistic normed spaces in [8] and [9]. Tripathy et al. [28] discussed the double sequence spaces with the help of Orlicz function and in [30], they extended the concept to double sequence spaces of fuzzy numbers. Recently, Kumar and Mursaleen [10] defined (λ, μ)-statistical convergence of double sequences on intuitionistic fuzzy normed spaces. Following Kumar and Mursaleen [10], in this paper, we aim to define strongly (λ, μ)-statistical convergence of double sequences on probabilistic normed spaces.

2. Background and preliminaries

First, we recall some notations and basic definitions those will be used in this paper. By a distribution function we mean a function $F : \mathbb{R} \cup \{-\infty, +\infty\} \to [0, 1]$ that is left-continuous and non-decreasing on \mathbb{R} with $F(-\infty) = 0$ and $F(\infty) = 1$. We normalize all distribution functions to be left continuous on unextended real line $\mathbb{R} = (-\infty, +\infty)$. Moreover, for any $a \geq 0$, ε_a is the distribution function defined by

$$\varepsilon_a(x) = \begin{cases} 0, & x \leq a \\ 1, & x > a \end{cases}.$$

Let Δ denotes the set of all the distribution functions, $\Delta^+ = \{F : F \in \Delta \text{ with } F(0) = 0\}$ and $D^+ \subseteq \Delta^+$ is the set $D^+ = \{F \in \Delta^+ : \lim_{t \to -\infty} F(t) = 1\}$ where $\lim_{t \to -\infty} F(t) = \lim_{x \to -\infty} F(t(x))$. For $F, G \in \Delta^+$, $F \leq G$ if $F(x) \leq G(x)$ for all $x \in \mathbb{R}$ and (Δ^+, \leq) is a partially ordered set. The maximal element for Δ^+ in this order is the d.f. given by

$$\varepsilon_0(x) = \begin{cases} 0, & x \leq 0 \\ 1, & x > 0 \end{cases}.$$

Definition 2.1. A triangle function is a mapping τ from $\Delta^+ \times \Delta^+$ into Δ^+ such that, for all F, G, H, K in Δ^+,

(i) $\tau(F, \varepsilon_0) = F$;

(ii) $\tau(F, G) = \tau(G, F)$;

(iii) $\tau(F, G) \leq \tau(H, K)$ whenever $F \leq H, G \leq K$;

(iv) $\tau(\tau(F, G), H) = \tau(F, \tau(G, H))$.

Particular and relevant triangle functions are the functions τ_T, τ_{T^*} and those of the form Π_T which, for any continuous t-norm T, and any $x > 0$, are given by

$$\tau_T(F, G)(x) = \sup\{T(F(s), G(t)) : s + t = x\}$$

$$\tau_{T^*}(F, G)(x) = \inf\{T^*(F(s), G(t)) : s + t = x\}$$

and

$$\Pi_T(F, G)(x) = T(F(x), G(x)).$$

In 1993, using triangle functions, Alsina et al. [1] defined probabilistic normed spaces as follows:
Definition 2.2. [1] A probabilistic normed space, briefly PN-space, is a quadruple \((V, v, \tau, \tau^*)\) where \(V\) is a real linear space, \(\tau\) and \(\tau^*\) are continuous triangle functions with \(\tau \leq \tau^*\) and \(v\), the probabilistic norm, is a mapping from \(V\) into the space of distribution function \(\Delta^+\) such that writing \(v_p\) for \(v(p)\) for all \(p, q \in V\), the following conditions hold:

(i) \(v_p = \varnothing\) if and only if \(p = \theta\), the null vector in \(V\),
(ii) \(v_{-p} = v_p\),
(iii) \(v_{p+q} \geq \tau(v_p, v_q)\),
(iv) \(v_p \leq \tau^*(v_{1-p}, v_{1-(1-\alpha)p})\) for every \(\alpha \in [0, 1]\).

If, instead of (i), we only have \(v_p = \varepsilon_0\), then we shall speak of a probabilistic pseudo normed space, briefly a PPN-space. If the inequality (iv) is replaced by the equality \(v_p = \tau_{\alpha p}(v_{1-p}, v_{1-(1-\alpha)p})\), then the PN-space is called a Šerstnev space, in this case, a condition stronger than (ii) holds, namely
\[v_{\lambda p} = v_p(\frac{\lambda}{\alpha}), \forall \lambda \neq 0, \forall p \in V,\]

here \(j\) is the identity map on \(\mathbb{R}\). A Šerstnev space is denoted by \((V, v, \tau)\).

There is a natural topology in PN-space \((V, v, \tau, \tau^*)\), called the strong topology. It is defined, for \(t > 0\), by the neighbourhoods
\[N_p(t) = \{q \in V : d_S(v_{q-p}, \varepsilon_0) < t\} = \{q \in V : v_{q-p}(t) > 1 - t\}\]

The strong neighbourhood system for \(V\) is the union \(\bigcup_{p \in V} N_p \lambda\) where \(N_p = \{N_p \lambda : \lambda > 0\}\). The strong neighbourhood system for \(V\) determines a Hausdroff topology for \(V\).

Definition 2.3. Let \((V, v, \tau, \tau^*)\) be a PN-space. A sequence \((p_n)_n\) in \(V\) is said to be strongly convergent to \(p\) in \(V\) if for each \(\lambda > 0\), there exists a positive integer \(N\) such that \(p_n \in N\lambda(\lambda), \forall n \geq N\).

Definition 2.4. Let \((V, v, \tau, \tau^*)\) be a PN-space. A sequence \((p_n)_n\) in \(V\) is called strongly Cauchy sequence if, for every \(\lambda > 0\), there is a positive integer \(N\) such that \(v_{p_n - p_m}(\lambda) > 1 - \lambda\), whenever \(m, n > N\).

Definition 2.5. A PN-space \((V, v, \tau, \tau^*)\) is said to be strongly complete in the strong topology if and only if every strongly Cauchy sequence in \(V\) is strongly convergent to a point in \(V\).

Lemma 2.6. If \(|\alpha| \leq |\beta|\), then \(v_{\beta p} \leq v_{\alpha p}\) for every \(p \in V\).

Definition 2.7. The natural density of a set \(K\) of positive integers is defined by
\[\delta(K) = \lim_{n \to \infty} \frac{1}{n} \{k \in K : k \leq n\}\] Where \(|\{k \in K : k \leq n\}|\) denotes the number of elements of \(K\) not exceeding \(n\).

Definition 2.8. Let \((V, v, \tau, \tau^*)\) be a PN-space. A sequence \((p_n)_n\) in \(V\) is said to be strongly statistical convergent to \(p\) in \(V\) if for each \(\lambda > 0\),
\[\delta\{n \in N : p_n \notin N\lambda(\lambda)\} = 0\]
The element p is called the statistical limit of the sequence $(p_n)_n$ with respect to the probabilistic norm v and we write $st_v \rightarrow \lim p_n = p$

Definition 2.9. Let (V, v, τ, τ^*) be a PN-space. A sequence $(p_n)_n$ in V is called strongly statistical Cauchy sequence if, for every $\lambda > 0$, there is a positive integer N such that

$$\delta(\{n \in N : p_n \notin N_{p_n}(\lambda)\}) = 0.$$
Namely, (p_n) is strongly statistically Cauchy if and only if, for every $\lambda > 0$ there exists a number N such that $d_{L}(v_{p_n - p_N}, \varepsilon_0) < \lambda$ for a.a.n.

3. **Strong (λ, μ)-statistical convergence of double sequences on a PN-space**

In this section we define and study Strong (λ, μ)-statistical convergence of double sequences on probabilistic normed spaces.

Definition 3.1. Let $\lambda = (\lambda_n)$ and $\mu = (\mu_n)$ be two nondecreasing sequences of positive real numbers such that each tending to ∞ and

$$\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1,$$

$$\mu_{n+1} \leq \mu_n + 1, \mu_1 = 1.$$
Let $I_n = [n - \lambda_n + 1, n]$ and $I_m = [m - \mu_m + 1, m]$. For any set $K \subseteq N \times N$, the number

$$\delta_{\lambda, \mu}(K) = \lim_{m,n \to \infty} \frac{1}{\lambda_n \mu_m}|\{(i, j) : i \in I_n, j \in I_m, (i,j) \in K\}|,$$

is called the (λ, μ)-density of the set K provided the limit exists.

A double sequence $x = (x_{ij})$ of numbers is said to be (λ, μ)-statistical convergent to a number ξ provided that for each $\varepsilon > 0$,

$$\lim_{m,n \to \infty} \frac{1}{\lambda_n \mu_m}|\{(i, j) : i \in I_n, j \in I_m, |x_{ij} - \xi| \geq \varepsilon\}| = 0,$$

i.e., the set $K(\varepsilon) = \frac{1}{\lambda_n \mu_m}|\{(i, j) : i \in I_n, j \in I_m, |x_{ij} - \xi| \geq \varepsilon\}$ has (λ, μ)-density zero. In this case the number ξ is called the (λ, μ)-statistical limit of the sequence $x = (x_{ij})$ and we write $St_{(\lambda, \mu)} - \lim_{i,j \to \infty} x_{ij} = \xi$.

Now we define the strong (λ, μ)-statistical convergence of double sequences with respect to PN-space.

Definition 3.2. Let (V, v, τ, τ^*) be a PN-space. A double sequence $x = (x_{ij})$ of elements in V is said to be strongly (λ, μ)-statistical convergent to ξ in V if for each $\lambda > 0$,

$$\delta_{\lambda, \mu}(\{(i, j) : i \in I_n, j \in I_m, x_{ij} \notin N_{\xi}(\lambda)\}) = 0.$$
equivalently

$$\delta_{\lambda, \mu}(\{(i, j) : i \in I_n, j \in I_m, x_{ij} \in N_{\xi}(\lambda)\}) = 1.$$
In this case the element ξ is called the strong (λ, μ)-statistical limit of the sequence $x = x_{ij}$ with respect to the probabilistic norm v and we write $s(l_{v, 1}^{(\lambda, \mu)}) \rightarrow \lim_{i,j \rightarrow \infty} x_{ij} = \xi$.

Let $S(l_{v, 1}^{(\lambda, \mu)})$ denotes the set of all strongly (λ, μ)-statistical convergent double sequences with respect to the probabilistic norm v.

Lemma 3.3. Let (V, v, τ, τ^*) be a PN-space and $x = x_{ij}$ be a double sequence of elements in V. Then for each $\lambda > 0$, the following statements are equivalent

(i) $s(l_{v, 1}^{(\lambda, \mu)}) \rightarrow \lim_{i,j \rightarrow \infty} x_{ij} = x$.
(ii) $\delta_{(\lambda, \mu)} \{ \{ i, j \} : i \in I_n, j \in I_m, x_{ij} \notin N_\epsilon(\lambda) \} = 0$.
(iii) $\delta_{(\lambda, \mu)} \{ \{ i, j \} : i \in I_n, j \in I_m, x_{ij} \notin N_\epsilon(\lambda) \} = 1$.
(iv) $s(l_{v, 1}^{(\lambda, \mu)}) \rightarrow \lim_{i,j \rightarrow \infty} v_{x_{ij} - \xi} = 1$.

Theorem 3.4. Let (V, v, τ, τ^*) be a PN-space. If a double sequence $x = x_{ij}$ of elements in V is strongly (λ, μ)-statistical convergent with respect to probabilistic norm v, then its $s(l_{v, 1}^{(\lambda, \mu)})$-limit is unique.

Proof: The proof of the Theorem can be established using standard techniques, so we omit. □

Theorem 3.5. Let (V, v, τ, τ^*) be a PN-space. If $x = x_{ij}$ be a double sequence of elements in V such that $v - \lim_{i,j \rightarrow \infty} x_{ij} = \xi$ then $s(l_{v, 1}^{(\lambda, \mu)}) - \lim_{i,j \rightarrow \infty} x_{ij} = \xi$.

Proof: Let $v - \lim_{i,j \rightarrow \infty} x_{ij} = \xi$. For each $\lambda > 0$, there exists a positive integer m such that $v_{x_{ij} - \xi(\lambda)} > 1 - \lambda$ for every $i, j \geq m$. It follows that the set $\{ \{ i, j \} : i \in I_n, j \in I_m, x_{ij} \notin N_\epsilon(\lambda) \}$ has atmost finitely many terms. It follows that

\[
\delta_{(\lambda, \mu)} \{ \{ i, j \} : i \in I_n, j \in I_m, x_{ij} \notin N_\epsilon(\lambda) \} = 0
\]

This shows that $s(l_{v, 1}^{(\lambda, \mu)}) - \lim_{i,j \rightarrow \infty} x_{ij} = \xi$. □

Theorem 3.6. Let (V, v, τ, τ^*) be a PN space. The $s(l_{v, 1}^{(\lambda, \mu)}) - \lim_{i,j \rightarrow \infty} x_{ij} = \xi$, if and only if, there exists a subset $K = \{ \{ i, j \} : i, j = 1, 2, 3, \ldots \}$ such that $\delta_{(\lambda, \mu)}(K) = 1$ and $v - \lim_{(i,j) \in K, i,j \rightarrow \infty} x_{ij} = \xi$.

Proof: **Necessity**— Suppose that $s(l_{v, 1}^{(\lambda, \mu)}) - \lim_{i,j \rightarrow \infty} x_{ij} = \xi$. For $\lambda > 0$, consider the sets

\[
M_v(\lambda) = \{ \{ i, j \} : i \in I_n, j \in I_m, v_{x_{ij} - \xi(\lambda)} > 1 - \frac{1}{\lambda} \}
\]

\[
K_v(\lambda) = \{ \{ i, j \} : i \in I_n, j \in I_m, v_{x_{ij} - \xi(\lambda)} \leq 1 - \frac{1}{\lambda} \}
\]

Since $s(l_{v, 1}^{(\lambda, \mu)}) - \lim_{i,j \rightarrow \infty} x_{ij} = \xi$, it follows that $\delta_{(\lambda, \mu)}(K_v(\lambda)) = 0$. Furthermore, for $\lambda = 1, 2, 3, \ldots$, we observe $M_v(\lambda) \supset M_v(\lambda + 1)$ and

\[
\delta_{(\lambda, \mu)}(M_v(\lambda)) = 1. \tag{3.1}
\]
Now we have to show that for \((i, j) \in M_v(\lambda)\), \(v - \lim_{i,j \to \infty} x_{ij} = \xi\). Suppose, for \((i, j) \in M_v(\lambda)\), \((x_{ij})\) is not convergent to \(\xi\) with respect to the probabilistic norm \(v\). Then, there exists some \(\beta > 0\) such that
\[
\{ (i, j) : i \in I_n, j \in I_m, v_{x_{ij}} - \xi(\lambda) \leq 1 - \beta \}
\]
for infinitely many terms \((x_{ij})\).

Let \(M_v(\beta) = \{ (i, j) : i \in I_n, j \in I_m, v_{x_{ij}} - \xi(\lambda) > 1 - \beta \}\) and \(\beta > \frac{1}{2}\) for \(\lambda = 1, 2, 3, ...\). Then, we have
\[
\delta_{(\lambda, \mu)}(M_v(\beta)) = 0. \tag{3.2}
\]

Also, \(M_\delta(\lambda) \subset M_v(\beta)\) implies that \(\delta_{(\lambda, \mu)}(M_\delta(\lambda)) = 0\). In this way, we obtained a contradiction to (3.1) as \(\delta_{(\lambda, \mu)}(M_v(\lambda)) = 1\). Hence \(v - \lim_{i,j \to \infty} x_{ij} = \xi\).

Sufficiency - Suppose that there exists a subset \(K = \{ (i, j) : i, j = 1, 2, 3, ... \}\) such that \(\delta_{(\lambda, \mu)}(K) = 1\) and \(v - \lim_{i,j \in K \to \infty} x_{ij} = \xi\). But then for \(\lambda > 0\), we can find out a positive integer \(m\) such that
\[
v_{x_{ij} - \xi(\lambda)} > 1 - \lambda
\]
for all \(i, j \geq m\). If we take,
\[
K_v(\lambda) = \{ (i, j) : i \in I_n, j \in I_m, x_{ij} \notin N_\xi(\lambda) \}
\]
Then, it is easy to see that
\[
K_v(\lambda) \subseteq N \times N - \{ (i, j) : i \in I_n, j \in I_m, x_{ij} \in N_\xi(\lambda) \}
\]
and consequently
\[
\delta_{(\lambda, \mu)} K_v(\lambda) \leq 1 - 1 = 0.
\]
Hence, \(st_v(\lambda, \mu) - \lim_{i,j \to \infty} x_{ij} = \xi\). \qed

Now we define strongly \((\lambda, \mu)\)-statistically Cauchy double sequences in PN-space and establish the Cauchy convergence criteria in these spaces.

Definition 3.7. Let \((V, v, \tau, \tau^*)\) be a PN-space. A double sequence \(x = (x_{ij})\) of elements in \(V\) is said to be strongly \((\lambda, \mu)\)-statistically Cauchy with respect to the probabilistic norm \(v\) if for each \(\lambda > 0\) there exists a positive integers \(n\) and \(m\) such that for all \(i, p \geq n\) and \(j, q \geq m\),
\[
\delta_{(\lambda, \mu)} \{ (i, j) : i \in I_n, j \in I_m, v_{x_{ij} - x_{pq}}(\lambda) \leq 1 - \lambda \} = 0.
\]
or equivalently
\[
\delta_{(\lambda, \mu)} \{ (i, j) : i \in I_n, j \in I_m, v_{x_{ij} - x_{pq}}(\lambda) > 1 - \lambda \} = 1.
\]

Theorem 3.8. Let \((V, v, \tau, \tau^*)\) be a PN-space. If a double sequence \(x = x_{ij}\) of elements in \(V\) is strongly \((\lambda, \mu)\)-statistical convergent, if and only if, it is strongly \((\lambda, \mu)\)-statistical Cauchy with respect to probabilistic norm \(v\).

Proof: First suppose that there exists \(\xi \in V\) such that \(st_v^{(\lambda, \mu)} - \lim_{i,j \to \infty} x_{ij} = \xi\). Let \(\lambda > 0\) be given. Choose \(\gamma > 0\) such that
\[
\tau(1 - \gamma, 1 - \gamma) > 1 - \lambda \tag{3.3}
\]
For \(\lambda > 0\), if we define
\[
A(\gamma) = \{ (i, j) : i \in I_n, j \in I_m, v_{x_{ij} - \xi(\lambda)}(\lambda) \leq 1 - \gamma \}
\]
then
\[A^C(\gamma) = \{ (i, j) : i \in I_n, j \in I_m, v_{x_{ij}} - \xi(\frac{1}{\lambda}) > 1 - \gamma \} \]

Since \(a_{x_{ij}}^{(\lambda, \mu)} \rightarrow_{i,j \rightarrow \infty} x_{ij} = \xi \), it follows that \(\delta_{(\lambda, \mu)}(A(\gamma)) = 0 \) and consequently \(\delta_{(\lambda, \mu)}(A^C(\gamma)) = 1 \). Let \((p, q) \in (A^C(\lambda))\). Then

\[v_{x_{pq}} - \xi(\frac{1}{\lambda}) > 1 - \gamma. \] \hspace{1cm} (3.4)

If we take

\[B(\lambda) = \{ (i, j) : i \in I_n, j \in I_m, v_{x_{ij}} - x_{pq}(\lambda) \leq 1 - \lambda \}, \]

then to prove the result it is sufficient to prove that \(B(\lambda) \subseteq A(\gamma) \). For \((m, n) \in B(\lambda), v_{x_{mn}} - x_{pq}(\lambda) \leq 1 - \lambda \)

If \(v_{x_{mn}} - x_{pq}(\lambda) \leq 1 - \lambda \), then we have \(v_{x_{mn}} - \xi(\frac{1}{\lambda}) \leq 1 - \gamma \) and therefore \((m, n) \in A(\gamma)\). As otherwise i.e., if \(v_{x_{mn}} - \xi(\lambda) > 1 - \lambda \), then by using (3.3) and (3.4) we have

\[1 - \lambda \geq v_{x_{ij}} - x_{pq}(\lambda) \geq \tau(v_{x_{mn}} - \xi(\frac{1}{\lambda}), v_{x_{pq}} - \xi(\frac{1}{\lambda})) > \tau(1 - \gamma, 1 - \gamma) > 1 - \lambda, \]

which is not possible. Hence \(B(\lambda) \subseteq A(\gamma) \).

Conversely- Suppose that \(x = (x_{ij}) \) is strongly \((\lambda, \mu)\)-statistical Cauchy but not strongly \((\lambda, \mu)\)-statistical convergent with respect to the probabilistic norm \(v \).

Then there exists positive integers \(p \) and \(q \) such that if we take

\[A(\lambda) = \{ (i, j) : i \in I_n, j \in I_m, v_{x_{ij}} - x_{pq}(\lambda) \leq 1 - \lambda \} \]

and

\[B(\lambda) = \{ (i, j) : i \in I_n, j \in I_m, v_{x_{ij}} - \xi(\frac{1}{\lambda}) > 1 - \lambda \}. \]

then \(\delta_{(\lambda, \mu)}(A(\lambda)) = \delta_{(\lambda, \mu)}(B(\lambda)) = 0 \) and consequently

\[\delta_{(\lambda, \mu)}(A^C(\lambda)) = \delta_{(\lambda, \mu)}(B^C(\lambda)) = 1. \] \hspace{1cm} (3.5)

Since

\[v_{x_{ij}} - x_{pq}(\lambda) \geq 2v_{x_{ij}} - \xi(\frac{1}{\lambda}) > 1 - \lambda \]

If \(v_{x_{ij}} - \xi(\frac{1}{\lambda}) > \frac{1 - \lambda}{2} \).

It follows that

\[\delta_{(\lambda, \mu)}\{(i, j) : i \in I_n, j \in I_m, v_{x_{ij}} - x_{pq}(\lambda) > 1 - \lambda \} = 0 \}

i.e., \(\delta_{(\lambda, \mu)}(A^C(\lambda)) = 0 \). But then we obtained a contradiction to (3.5) as \(\delta_{(\lambda, \mu)}(A^C(\lambda)) = 1 \). Hence, \((x_{ij})\) is strongly \((\lambda, \mu)\)-statistical convergent with respect to the probabilistic norm \(v \).

On combining Theorem 3.6 and Theorem 3.8, we obtain the following result.

Theorem 3.9. Let \((V, v, \tau, \tau^*)\) be a PN-space and \(x = x_{ij} \) be a double sequence of elements in \(V \). Then, the following conditions are equivalent:

(i) \(x \) is a strongly \((\lambda, \mu)\)-statistical convergent with respect to the probabilistic norm \(v \).

(ii) \(x \) is a strongly \((\lambda, \mu)\)-statistical Cauchy with respect to the probabilistic norm \(v \).

(iii) there exists a subset \(K = \{(i, j) : i, j = 1, 2, 3, \ldots \} \) such that \(\delta_{(\lambda, \mu)}(K) = 1 \) and \(v - \lim_{(i, j) \in K, i, j \rightarrow \infty} x_{ij} = \xi \).
Acknowledgments

The authors are grateful to the referees of the papers for their valuable suggestions which improved the readability of the paper.

References

5. H.Fast, Surla convergence statistique, colloq. Math., 2(1951), 241-244.
10. V.Kumar and M.Mursaleen, On \((\lambda, \mu)\)-statistiscal convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25(2)(2011), 109-120.

Pankaj Kumar
School of Mathematics and Computer Application,
Thapar University, Patiala-147001,
Punjab, India.
E-mail address: pankaj.lankesh@yahoo.com

and

S. S. Bhatia
School of Mathematics and Computer Application,
Thapar University, Patiala-147001,
Punjab, India.
E-mail address: ssbhatia63@yahoo.com

and

Vijay Kumar
Department of Mathematics,
HCTM Technical Campus, Kaithal-136027,
Haryana, India.
E-mail address: vjy_kaushik@yahoo.com