Some remarks on statistical summability of order $\tilde{\alpha}$ defined by generalized De la Vallée-Poussin Mean

Meenakshi, Vijay Kumar and M. S. Saroa

ABSTRACT: In this article we define $(\lambda, \mu)-$statistical summability and $(V, \lambda, \mu)-$summability of order $\tilde{\alpha}$ for double sequences and obtain some relations between these summability methods. We demonstrate examples which shows our method of summability is more general for double sequences.

Key Words: Statistical Convergence, $\lambda-$statistical convergence, Double sequences.

Contents

1 Introduction 145
2 Main Results 148

1. Introduction

Fast [6] introduced the notion of statistical convergence as a generalized summability method in order to assign limits to those sequences which are not convergent in usual sense. He used the concept of natural density of subsets of \mathbb{N}, the set of positive integers. The natural density of a set $K \subset \mathbb{N}$, is denoted by $\delta(K)$ and is defined by

$$\delta(K) = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \chi_{K}(k)$$

provided the limit exists, where χ_{K} denotes the characteristic function of K. As the sum on the right side of the above expression denotes the cardinality of the set $\{k \leq n : k \in K\}$ so Fast [6] defined statistical convergence as follows.

Definition 1.1. [6] A sequence $x = (x_k)$ of numbers is said to be statistically convergent to a number L provided that, for every $\epsilon > 0$,

$$\delta(\{k \leq n : |x_k - L| > \epsilon\}) = 0.$$

In this case, we write $S = \lim_{k \to \infty} x_k = L$.

Let $S(x)$ denotes the set of all statistically convergent sequences.

Although, statistical convergence was introduced in the mid of last century but a rapid development on statistical convergence starts with the papers of Šalát [20].
Fridy [7] and Connor [5]. For more details and related concepts, we refer to [12], [19], [21,22,23,24] and [28].

In [13], Mursaleen presented an interesting extension of statistical convergence namely $\lambda-$statistical convergence and show how it is related with $(V, \lambda)-$summability.

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ with $\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1$. The generalized de la Vallée-Poussin mean is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$.

A sequence $x = (x_k)$ of numbers is said to be $(V, \lambda)-$summable to a number L (see [11]) if $t_n(x) \rightarrow L$ as $n \rightarrow \infty$.

Definition 1.2. [13] A sequence $x = (x_k)$ of numbers is said to be $\lambda-$statistically convergent to a number L provided that for every $\epsilon > 0$,

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} \left| \{ n - \lambda_n + 1 \leq k \leq n : |x_k - L| \geq \epsilon \} \right| = 0.$$

In this case, the number L is called $\lambda-$statistical limit of the sequence $x = (x_k)$ and we write $S_{\lambda} - \lim_{k \rightarrow \infty} x_k = L$. We denote the set of all $\lambda-$statistically convergent sequences by $S_{\lambda}(x)$.

Further, an interesting generalization of statistical convergence was introduced by Çolak [2] under the name of "$\text{statistical convergence of order } \alpha$" for some $\alpha \in (0,1]$. This new idea was further investigated by Çolak and Bektaş in [4] via $(V, \lambda)-$summability and obtained some interesting results. Before we go further we quote the following definition.

Definition 1.3. [3] Let $\lambda = (\lambda_n)$ be a sequence of real numbers as defined above and $0 < \alpha \leq 1$ be given. The sequence $x = (x_k)$ is said to be $\lambda-$statistically convergent of order α if there is a number L such that

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} \left| \{ k \in I_n : |x_k - L| \geq \epsilon \} \right| = 0.$$

In this case, we write $S_{\lambda}^{\alpha} - \lim_{k \rightarrow \infty} x_k = L$. The set of all $\lambda-$statistically convergent sequences of order α is denoted by $S_{\lambda}^{\alpha}(x)$.

We next give some ideas and developments on double sequences which have been frequently appeared in literature.

A double sequence $x = (x_{ij})$ of real numbers is said to be convergent in Priegshein’s sense or $P-$convergent (See [18]) if for every $\epsilon > 0$ there exists $n \in \mathbb{N}$ such that $|x_{ij} - L| < \epsilon$ whenever $i, j \geq n$. The number L is called Priegshein limit of $x = (x_{ij})$ and we write $P-\lim x = L$.

Double sequences were initially discussed by Bromwich [1] and Hardy [8]. Later, many authors including Móricz [16], Patterson [17], Tripathy and Sarma [25, 26, 27], Kumar [9] and Kumar and Mursaleen [10] etc. have shown their interest to study double sequences and related convergence problems. Mursaleen and Edely [15] and Mursaleen et al. [14] respectively extended Definition 1.1 and Definition 1.2 on double sequences and obtained some analogous results. However, Çolak and Altin [4] introduced statistical convergence of order \(\alpha \) for these kind of sequences.

Definition 1.4. [15] A double sequence \(x = (x_{ij}) \) of real numbers is said to be statistically convergent to \(L \) if for every \(\epsilon > 0 \)

\[
P - \lim_{n,m \to \infty} \frac{1}{nm} |\{(i,j) \in \mathbb{N} \times \mathbb{N}, i \leq n, j \leq m : |x_{ij} - L| \geq \epsilon\}| = 0.
\]

In this case, we write \(S_2 - \lim_{i,j \to \infty} x_{ij} = L \) and \(S_2(x) \) denotes the set of all statistically convergent double sequences.

Let \(\lambda = (\lambda_n) \) and \(\mu = (\mu_m) \) be two non-decreasing sequences of positive real numbers tending to \(\infty \) with \(\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1 \) and \(\mu_{m+1} \leq \mu_m + 1, \mu_1 = 1 \). The generalized de la Vallée-Poussin mean of \(x = (x_{ij}) \) is defined by

\[
t_{mn}(x) = \frac{1}{\lambda_n \mu_m} \sum_{(i,j) \in I_n \times I_m} x_{ij},
\]

where \(I_n = [n - \lambda_n + 1, n] \) and \(I_m = [m - \mu_m + 1, m] \). Moreover, a double sequence \(x = (x_{ij}) \) is said to be \((V, \lambda, \mu) \)-summable to a number \(L \) provided that \(t_{mn}(x) \to L \) as \(m, n \to \infty \).

Definition 1.5. [14] A double sequence \(x = (x_{ij}) \) of numbers is said to be \((\lambda, \mu) \)-statistically convergent to a number \(L \) provided for every \(\epsilon > 0 \),

\[
P - \lim_{n,m \to \infty} \frac{1}{\lambda_n \mu_m} |\{(i,j) \in I_n \times I_m : |x_{ij} - L| \geq \epsilon\}| = 0.
\]

In this case, the number \(L \) is called \((\lambda, \mu) \)-statistical limit of the sequence \(x = (x_{ij}) \) and we write \(S_{(\lambda, \mu)} - \lim_{i,j \to \infty} x_{ij} = L \).

Let, \(S_{(\lambda, \mu)}(x) \) denotes the set of all \((\lambda, \mu) \)-statistically convergent double sequences of numbers.

In this article, we aim to define \((\lambda, \mu)\)-statistical convergence and \((V, \lambda, \mu)\)-summability of order \(\alpha \) and obtain some relevant connections. Throughout we take \(a, b, c, d \in (0, 1] \) as otherwise indicated. We will write \(\tilde{\alpha} \) as an alternative of \((a, b)\) and \(\tilde{\beta} \) as an alternative of \((c, d)\). Also we define: \(\tilde{\alpha} \leq \tilde{\beta} \iff a \leq c \) and \(b \leq d \); \(\tilde{\alpha} < \tilde{\beta} \iff a < c \) and \(b < d \); \(\tilde{\alpha} \equiv \tilde{\beta} \iff a = c \) and \(b = d \); \(\tilde{\alpha} \in (0, 1] \iff a \in (0, 1] \) and \(\tilde{\beta} \in (0, 1] \iff c, d \in (0, 1] \); \(\tilde{\alpha} \geq 1 \) in case \(a = b = 1 \); \(\tilde{\beta} \geq 1 \) in case \(c = d = 1 \) and \(\tilde{\alpha} > 1 \) in case \(a > 1, b > 1 \).
2. Main Results

In this section, we present our main results. We begin with the following definition:

Definition 2.1. Let $\lambda = (\lambda_n)$ and $\mu = (\mu_m)$ be two non-decreasing sequences of positive real numbers tending to ∞ with

$$\lambda_{n+1} \leq \lambda_n + 1, \lambda_1 = 1; \mu_{m+1} \leq \mu_m + 1, \mu_1 = 1$$

and $\tilde{\alpha} \in (0, 1]$ be given.

A double sequence $x = (x_{ij})$ of numbers is said to be (λ, μ)–statistically convergent of order $\tilde{\alpha}$ if there exists a number L such that for every $\epsilon > 0$

$$\lim_{n,m \to \infty} \frac{1}{\lambda_n \mu_m} |\{(i, j) \in I_n \times I_m : |x_{ij} - L| \geq \epsilon\}| = 0,$$

where $\lambda^a = (\lambda^a_n) = (\lambda_1^a, \lambda_2^a, \lambda_3^a, \ldots)$; $\mu^b = (\mu^b_m) = (\mu_1^b, \mu_2^b, \mu_3^b, \ldots)$ and $\lambda^a_n \mu^b_m$ denotes the usual multiplication of the corresponding entries of the sequences λ^a and μ^b. In this case, the number L is called (λ, μ)–statistical limit of the sequence $x = (x_{ij})$ of order $\tilde{\alpha}$ and we write $S^{\tilde{\alpha}}_{(\lambda, \mu)} = \lim_{i,j} x_{ij} = L$.

Let $S^{\tilde{\alpha}}_{(\lambda, \mu)}(x)$ denotes the set of all (λ, μ)–statistically convergent double sequences of order $\tilde{\alpha}$.

For $\tilde{\alpha} = (a, b) = (1, 1)$, Definition 2.1 coincides with (λ, μ)–statistical convergence of double sequences of [14]. For the choice $\lambda = (n)$ and $\mu = (m)$, Definition 2.1 coincides with statistical convergence of double sequences of order $\tilde{\alpha}$ of [3]. Moreover, if we take $\lambda = (n); \mu = (m)$ and $\tilde{\alpha} = (a, b) = (1, 1)$, Definition 2.1 coincides with statistical convergence of double sequences of [15].

Theorem 2.2. For $\tilde{\alpha} \in (0, 1]$, if $S^{\tilde{\alpha}}_{(\lambda, \mu)} = \lim_{i,j} x_{ij} = x_0$, then x_0 is unique.

Proof: Easy, so omitted. \Box

We next provide an example to show that the Definition 2.1 is well defined for $\tilde{\alpha} \in (0, 1]$ but not for $\tilde{\alpha} > 1$ in general.

Example 2.3. Let $x = (x_{ij})$ be defined as follows:

$$x_{ij} = \begin{cases} 1 & \text{if } i + j \text{ even} \\ 0 & \text{if } i + j \text{ odd} \end{cases}$$

Then for $\tilde{\alpha} > 1$,

$$\lim_{n,m \to \infty} \frac{1}{\lambda_n \mu_m} |\{(i, j) \in I_n \times I_m : |x_{ij} - 1| \geq \epsilon\}| \leq \lim_{n,m \to \infty} \frac{[\lambda_n \mu_m] + 1}{2 \lambda_n \mu_m} = 0$$

and

$$\lim_{n,m \to \infty} \frac{1}{\lambda_n \mu_m} |\{(i, j) \in I_n \times I_m : |x_{ij} - 0| \geq \epsilon\}| \leq \lim_{n,m \to \infty} \frac{[\lambda_n \mu_m] + 1}{2 \lambda_n \mu_m} = 0.$$

This shows that $S^{\tilde{\alpha}}_{(\lambda, \mu)} = \lim_{i,j} x_{ij} = 0$ and $S^{\tilde{\alpha}}_{(\lambda, \mu)} = \lim_{i,j} x_{ij} = 1$ which leads to a contradiction to Theorem 2.2.
We state the following result without proof.

Theorem 2.4. Let \(x = (x_{ij}) \) and \(y = (y_{ij}) \) be two double sequences of complex numbers and \(\alpha \in (0,1] \).

(i) If \(S_{(\lambda,\mu)}^\alpha - \lim x_{ij} = L \) and \(c \in \mathbb{C} \), then \(S_{(\lambda,\mu)}^\alpha - \lim (c x_{ij}) = c L \).

(ii) If \(S_{(\lambda,\mu)}^\alpha - \lim x_{ij} = L \) and \(S_{(\lambda,\mu)}^\alpha - \lim y_{ij} = M \), then \(S_{(\lambda,\mu)}^\alpha - \lim (x_{ij} + y_{ij}) = L + M \).

Definition 2.5. Let \(\alpha \) be any real number such that \(\alpha \in (0,1] \) and \(p \) be a positive real number. A double sequence \(x = (x_{ij}) \) is said to be strongly \((V,\lambda,\mu)\)-summable of order \(\alpha \) to a number \(L \) provided that

\[
\lim_{n,m \to \infty} \frac{1}{\lambda_n \mu_m^p} \sum_{(i,j) \in I_n \times I_m} |x_{ij} - L|^p = 0,
\]

where \(I_n = [n - \lambda_n + 1, n] \) and \(I_m = [m - \mu_m + 1, m] \). In this case, the number \(L \) is called strong \((V,\lambda,\mu)\)-statistical limit of the sequence \(x = (x_{ij}) \) of order \(\alpha \).

Let \(|w_{ij}|_\alpha(x) \) denote the set of all strongly \((V,\lambda,\mu)\)-summable double sequences of order \(\alpha \).

For \(\alpha = (a,b) = (1,1) \), Definition 2.5 coincides with strong \((V,\lambda,\mu)\)-summability of double sequences of [14]. For \(\lambda = (n) \) and \(\mu = (m) \), Definition 2.5 coincides with strong \(p \)-Cesàro summability of double sequences of order \(\alpha \) of [3]. However, if we take \(\lambda = (n) \); \(\mu = (m) \) and \(\alpha = (a,b) = (1,1) \), Definition 2.5 coincides with strong \(p \)-Cesàro summability of double sequences of [15].

Theorem 2.6. Let \(\tilde{\alpha}, \tilde{\beta} \in (0,1] \) such that \(\alpha \preceq \tilde{\beta} \). Then \(S_{(\lambda,\mu)}^\alpha(x) \subseteq S_{(\lambda,\mu)}^{\tilde{\beta}}(x) \) and the inclusion is strict for some \(\tilde{\alpha} \) and \(\tilde{\beta} \) such that \(\alpha \prec \tilde{\beta} \).

Proof: Let \(x = (x_{ij}) \in S_{(\lambda,\mu)}^\alpha(x) \). Since, \(\alpha \preceq \tilde{\beta} \) so \(a \leq c \) and \(b \leq d \); which for any \(\epsilon > 0 \) gives the inequality

\[
\frac{1}{\lambda_n \mu_m^d} |\{(i,j) \in I_n \times I_m : |x_{ij} - L| \geq \epsilon\}| \leq \frac{1}{\lambda_n \mu_m^d} |\{(i,j) \in I_n \times I_m : |x_{ij} - L| \geq \epsilon\}|;
\]

and therefore the result follows immediately from the fact that \(x = (x_{ij}) \in S_{(\lambda,\mu)}^\alpha(x) \). For rest part of the Theorem we consider the following example. Define \(x = (x_{ij}) \) by

\[
x_{ij} = \begin{cases}
 ij, & \text{if } n - \lfloor \sqrt{n} \rfloor + 1 \leq i \leq n \text{ and } m - \lfloor \sqrt{m} \rfloor + 1 \leq j \leq m \\
 0, & \text{otherwise}
\end{cases}
\;
\text{then}
\]

\[
\frac{1}{\lambda_n \mu_m^d} |\{(i,j) \in I_n \times I_m : |x_{ij} - 0| \geq \epsilon\}|
\]

\[
= \frac{1}{\lambda_n \mu_m^d} \left| \left\{(i,j) \in I_n \times I_m : n - \lfloor \sqrt{n} \rfloor + 1 \leq i \leq n \text{ and } m - \lfloor \sqrt{m} \rfloor + 1 \leq j \leq m \right\} \right| \leq \frac{\sqrt{\lambda_n \mu_m^d}}{\lambda_n \mu_m^d}.
\]
It follows, for $\tilde{\beta} \in (\frac{1}{2}, 1]$ (i.e. for $\frac{1}{2} < c \leq 1$ and $\frac{1}{2} < d \leq 1$), we have
\[
\lim_{n,m \to \infty} \frac{1}{\lambda_n \mu_m^d} \left| \{(i, j) \in I_n \times I_m : |x_{ij} - 0| \geq \varepsilon \} \right| \leq \lim_{n,m \to \infty} \frac{|\sqrt{\lambda_n \mu_m^d}|}{\lambda_n \mu_m^d} = 0.
\]
This shows that $x = (x_{ij}) \in S_{(\lambda, \mu)}(x)$, but one can easily verify that $x \notin S_{(\lambda, \mu)}(x)$ for $\tilde{\alpha} \in (0, \frac{1}{2}]$ (i.e. for $0 < a \leq \frac{1}{2}$ and $0 < b \leq \frac{1}{2}$).

Corollary 2.7. Let $\tilde{\alpha}, \tilde{\beta} \in (0, 1]$.

(i) If $\tilde{\beta} \equiv 1$, then $S_{(\lambda, \mu)}(x) \subseteq S_{(\lambda, \mu)} = S(\lambda, \mu)$ and the inclusion is strict.

(ii) $S_{(\lambda, \mu)}(x) = S_{(\lambda, \mu)}(x) \iff \tilde{\alpha} \equiv \tilde{\beta}$.

(iii) $S_{(\lambda, \mu)}(x) = S_{(\lambda, \mu)}(x) \iff \tilde{\alpha} \equiv 1$.

Theorem 2.8. Let $\lambda = (\lambda_n), \mu = (\mu_m)$ be two sequences as defined above and $\tilde{\alpha} \in (0, 1]$, then

(i) $S_{(\lambda, \mu)}(x) \subseteq S_2(x)$ for all λ, μ and $\tilde{\alpha} \in (0, 1]$.

(ii) $S_2(x) \subseteq S_{(\lambda, \mu)}(x)$, if and only if, $\liminf_{n \to \infty} \frac{\lambda_n}{m} > 0$ and $\liminf_{m \to \infty} \frac{\mu_m}{m} > 0$.

Proof: (i) By the nature of the sequences (λ_n), (μ_m) and from the expression $\frac{\lambda_n \mu_m}{n m} \leq 1$, the result follows.

(ii) Let, $\liminf_{n \to \infty} \frac{\lambda_n}{m} > 0$, $\liminf_{m \to \infty} \frac{\mu_m}{m} > 0$ and $x = (x_{ij}) \in S_2(x)$. For given $\varepsilon > 0$, we have,
\[
\{(i, j), i \leq n and j \leq m : |x_{ij} - L| \geq \varepsilon \} \supset \{(i, j) \in I_n \times I_m : |x_{ij} - L| \geq \varepsilon \},
\]

it follows that,
\[
\frac{1}{nm} \left| \{(i, j), i \leq n and j \leq m : |x_{ij} - L| \geq \varepsilon \} \right| \geq \frac{1}{nm} \left| \{(i, j) \in I_n \times I_m : |x_{ij} - L| \geq \varepsilon \} \right| = \left(\frac{\lambda_n}{n} \right) \left(\frac{\mu_m^d}{m} \right) \frac{1}{\lambda_n \mu_m^d} \left| \{(i, j) \in I_n \times I_m : |x_{ij} - L| \geq \varepsilon \} \right|.
\]

Taking limit as $n, m \to \infty$ we have, $S_2(x) \subseteq S_{(\lambda, \mu)}(x)$.

Conversely, suppose that either $\liminf_{n \to \infty} \frac{\lambda_n}{m}$ or $\liminf_{m \to \infty} \frac{\mu_m}{m}$ or both are zero. Then we can choose two subsequences (n_p) and (m_q) such that $\lambda_n^{\frac{1}{p}} < \frac{1}{p}$ and $\frac{\mu_m}{q} < \frac{1}{q}$. Define double sequence $x = (x_{ij})$ as follows:
\[
x_{ij} = \begin{cases} 1 & \text{if } i \in I_{n_p} \text{ and } j \in I_{m_q} \quad (p, q = 1, 2, 3, \ldots) \\ 0 & \text{otherwise,} \end{cases}
\]

Then clearly $x \in S_2(x)$, but $x \notin S_{(\lambda, \mu)}(x)$. From Corollary 2.7, since $S_{(\lambda, \mu)}(x) \subseteq S_{(\lambda, \mu)}(x)$, we have $x \notin S_{(\lambda, \mu)}(x)$. Hence, $\liminf_{n \to \infty} \frac{\lambda_n}{m} > 0$ and $\liminf_{m \to \infty} \frac{\mu_m}{m} > 0$.

Theorem 2.9. Let $\alpha, \beta \in (0, 1]$ such that $\alpha \leq \beta$ and p be a positive real number. Then $[w^2_p]_\alpha(x) \subseteq [w^2_p]_\beta(x)$ and the inclusion is strict for some α and β such that $\alpha < \beta$.

Proof: Let $x = (x_{ij}) \in [w^2_p]_\alpha(x)$, then for $\alpha \in (0, 1]$ and a positive real number p

$$\lim_{n,m \to \infty} \frac{1}{x_{n,m}^p} \sum_{(i,j) \in I_n \times I_m} |x_{ij} - L|^p = 0.$$

Also for given α and β such that $\alpha \leq \beta$, one can write

$$\lim_{n,m \to \infty} \frac{1}{x_{n,m}^p} \sum_{(i,j) \in I_n \times I_m} |x_{ij} - L|^p \leq \lim_{n,m \to \infty} \frac{1}{x_{n,m}^p} \sum_{(i,j) \in I_n \times I_m} |x_{ij} - L|^p = 0$$

which implies $x = (x_{ij}) \in [w^2_p]_\beta(x)$. Hence, $[w^2_p]_\alpha(x) \subseteq [w^2_p]_\beta(x)$. The following example will show that the inclusion is strict. Define the sequence $x = (x_{ij})$ by

$$x_{ij} = \begin{cases} 1, & \text{if } n - \sqrt{\lambda} + 1 \leq i \leq n \text{ and } m - \sqrt{\mu} + 1 \leq j \leq m \\ 0, & \text{otherwise} \end{cases}$$

Then for $\beta \in (\frac{1}{2}, 1]$ (that is for $\frac{1}{2} < c \leq 1$ and $\frac{1}{2} < d \leq 1$),

$$\frac{1}{x_{n,m}^p} \sum_{(i,j) \in I_n \times I_m} |x_{ij} - 0|^p \leq \frac{\sqrt{\lambda_n} \sqrt{\mu_n}}{\sqrt{\lambda_n^p} \mu_n^p} = \frac{1}{\sqrt{\lambda_n} \sqrt{\mu_n}}.$$

Since $\frac{1}{\sqrt{\lambda_n} \sqrt{\mu_n}} \rightarrow 0$ as $n, m \to \infty$, therefore $x = (x_{ij}) \in [w^2_p]_\beta(x)$, but for $\alpha \in (0, \frac{1}{2})$ (that is for $0 < a \leq \frac{1}{2}$ and $0 < b \leq \frac{1}{2}$)

$$\frac{\sqrt{\lambda_n} - 1}{\sqrt{\mu_n}} \leq \frac{1}{x_{n,m}^p} \sum_{(i,j) \in I_n \times I_m} |x_{ij} - 0|^p$$

and $\frac{\sqrt{\lambda_n} - 1}{\sqrt{\mu_n}} \rightarrow \infty$ as $n, m \to \infty$, which implies $x = (x_{ij}) \notin [w^2_p]_\alpha(x)$.

Hence the inclusion is strict. \qed

Corollary 2.10. Let $\alpha, \beta \in (0, 1]$ such that $\alpha \leq \beta$ and p be a positive real number.

Then

(i) $[w^2_p]_\alpha(x) = [w^2_p]_\beta(x) \iff \alpha \equiv \beta$.

(ii) $[w^2_p]_\alpha(x) \subseteq w^2_p$ for each $\alpha \in (0, 1]$ and $0 < p < \infty$.

Theorem 2.11. Let $\alpha, \beta \in (0, 1]$ such that $\alpha \leq \beta$ and p be a positive real number.

If a sequence $x = (x_{ij})$ is strongly (V, α, β)-summable to L of order α, then it is (α, β)-statistically convergent to L of order β, i.e., $[w^2_p]_\alpha(x) \subset S_{(\alpha, \beta)}(x)$.
Proof: For any sequence \(x = (x_{ij}) \) and \(\epsilon > 0 \)

\[
\sum_{(i,j) \in I_n \times I_m} |x_{ij} - L|^p \geq \sum_{(i,j) \in I_n \times I_m, \ |x_{ij} - L| \geq \epsilon} |x_{ij} - L|^p + \sum_{(i,j) \in I_n \times I_m, \ |x_{ij} - L| < \epsilon} |x_{ij} - L|^p
\]

which implies

\[
\frac{1}{\lambda_n \mu_m} \sum_{(i,j) \in I_n \times I_m} |x_{ij} - L|^p \geq \frac{1}{\lambda_n \mu_m} \left| \left\{ (i,j) \in I_n \times I_m : |x_{ij} - L| \geq \epsilon \right\} \right| \cdot \epsilon^p
\]

\[
\geq \frac{1}{\lambda_n \mu_m} \epsilon^{\tilde{\alpha}} \left| \left\{ (i,j) \in I_n \times I_m : |x_{ij} - L| \geq \epsilon \right\} \right| \cdot \epsilon^p.
\]

It follows that if \(x = (x_{ij}) \) is strong \((V, \lambda, \mu)\)-summable to \(L \) of order \(\tilde{\alpha} \), then it is \((\lambda, \mu)\)-statistically convergent to \(L \) of order \(\tilde{\beta} \).

For particular choice of \(\tilde{\alpha} \equiv \tilde{\beta} \) in above Theorem we have the following result.

Corollary 2.12. Let \(\tilde{\alpha}, \tilde{\beta} \in (0, 1] \) such that \(\tilde{\alpha} \preceq \tilde{\beta} \);

(i) If \(\tilde{\alpha} \equiv \tilde{\beta} \) then \(\text{[w}_2^\alpha \tilde{\alpha}(x) \subset S^{\tilde{\alpha}}(\lambda, \mu)(x) \).

(ii) For \(\tilde{\beta} \equiv 1 \), \(\text{[w}_2^{\tilde{\alpha}} \tilde{\alpha}(x) \subset S(\lambda, \mu)(x) \).

Acknowledgments

With deep humility and respect, great sense of gratitude is expressed to the referees of the paper for their valuable suggestions.

References

6. H. Fast, Sur la Convergence Statistique, Colloquium Mathematicum, 2 (1951), 241-244.

10. V. Kumar and M. Mursaleen, On (λ, μ)-statistical convergence of double sequences on intuitionistic fuzzy normed spaces, Filomat, 25(2) (2011), 109-120.

20. T. Šalát: On statistically convergent sequences of real numbers, Mathematica Slovaca, 30 (2) (1980), 139-150.

Meenakshi
Department of Mathematics,
Maharishi Markandeshwar University,
Mullana Ambala, Haryana, India.
E-mail address: chauleenakshi7@gmail.com

and

Vijay Kumar
Department of Mathematics,
Haryana College of Technology and Management,
Kaithal, Haryana, India.
E-mail address: vjy_kaushik@yahoo.com

and

M. S. Saroa
Department of Mathematics,
Maharishi Markandeshwar University,
Mullana Ambala, Haryana, India.
E-mail address: mssaroa@yahoo.com