On semiderivations of $*$-prime rings

Öznur Gölbaşı and Onur Ağırtıcı

Abstract: Let R be a $*$-prime ring with involution $*$ and center $Z(R)$. An additive mapping $F : R \to R$ is called a semiderivation if there exists a function $g : R \to R$ such that (i) $F(xy) = F(x)g(y) + g(x)F(y) = F(x)y + g(x)F(y)$ and (ii) $F(g(x)) = g(F(x))$ hold for all $x, y \in R$. In the present paper, some well known results concerning derivations of prime rings are extended to semiderivations of $*$-prime rings.

Key Words: $*$-prime rings, derivations, semiderivations.

Contents

1 Introduction 179
2 Results 180

1. Introduction

Let R will be an associative ring with center Z. For any $x, y \in R$ the symbol $[x, y]$ represents commutator $xy - yx$. Recall that a ring R is prime if $xRy = 0$ implies $x = 0$ or $y = 0$. An additive mapping $*: R \to R$ is called an involution if $(xy)^* = y^*x^*$ and $(x^*)^* = x$ for all $x, y \in R$. A ring equipped with an involution is called a ring with involution or $*$-ring. A ring with an involution is said to be $*$-prime if $xRy = xRy^* = 0$ or $xRy = x^*Ry = 0$ implies that $x = 0$ or $y = 0$. Every prime ring with an involution is $*$-prime but the converse need not hold general. An example due to Oukhtite [7] justifies the above statement that is, R be a prime ring, $S = R \times R^o$ where R^o is the opposite ring of R. Define involution $*$ on S as $*(x, y) = (y, x)$. S is $*$-prime, but not prime. This example shows that every prime ring can be injected in a $*$-prime ring and from this point of view $*$-prime rings constitute a more general class of prime rings. In all that follows the symbol $S_a(R)$, first introduced by Oukhtite, will denote the set of symmetric and skew symmetric elements of R, i.e. $S_a(R) = \{x \in R \mid x^* = \pm x\}$.

An additive mapping $d : R \to R$ is called a derivation if $d(xy) = d(x)y + xd(y)$ holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a : R \to R$ given by $I_a(x) = [a, x]$ is a derivation which is said to be an inner derivation. The study of derivations in prime rings was initiated by E. C. Posner in [11]. Recently, Bresar defined the following notation in [1]: An additive mapping $F : R \to R$ is called a generalized derivation if there exists a derivation $d : R \to R$ such that

$$F(xy) = F(x)y + xd(y), \quad \text{for all} \ x, y \in R.$$
Basic examples are derivations and generalized inner derivations (i.e., maps of type $x \to ax + xb$ for some $a, b \in R$). Several authors consider the structure of a prime ring in the case that the derivation d is replaced by a generalized derivation. Generalized derivations have been primarily studied on operator algebras.

In [2] J. Bergen has introduced the notion of semiderivations of a ring R which extends the notion of derivations of a ring R. An additive mapping $F : R \to R$ is called a semiderivation if there exists a function $g : R \to R$ such that (i) $F(xy) = F(x)g(y) + xF(y) = F(x)y + g(x)F(y)$ and (ii) $F(g(x)) = g(F(x))$ hold for all $x, y \in R$. In case g is an identity map of R, then all semiderivations associated with g are merely ordinary derivations. On the other hand, if g is a homomorphism of R such that $g \neq 1$, then $f = g - 1$ is a semiderivation which is not a derivation. In case R is prime and $F \neq 0$, it has been shown by Chang [3] that g must necessarily be a ring endomorphism.

Let S be a nonempty subset of R. A mapping F from R to R is called centralizing on S if $[F(x), x] \in Z$ for all $x \in S$ and is called commuting on S if $[F(x), x] = 0$ for all $x \in S$. The study of such mappings was initiated by E. C. Posner in [11]. A famous result due to Herstein [5] states that if R is a prime ring of characteristic not 2 which admits a nonzero derivation d such that $[d(x), a] = 0$ for all $x \in R$, then $a \in Z$. Also, Herstein showed that if $d(R) \subset Z$, then R must be commutative. On the other hand, in [4], Daif and Bell proved that if a semiprime ring R has a derivation d satisfying the following condition, then I is a central ideal;

there exists a nonzero ideal I of R such that

either $d([x, y]) = [x, y]$ for all $x, y \in I$, or $d([x, y]) = -[x, y]$ for all $x, y \in I$.

Many authors have studied commutativity of prime and semiprime rings admitting derivations, generalized derivations and semiderivations which satisfy appropriate algebraic conditions on suitable subsets of the rings. Recently, some well-known results concerning prime rings have been proved for \ast--prime ring by Oukhtite et al. (see, [6-10], where further references can be found). In the present paper our objective is to generalize above results for semiderivations of a \ast--prime ring.

Throughout the paper, R will be a \ast--prime ring and F be a semiderivation of R associated with a surjective function g of R such that $\ast F = F \ast$. Also, we will make some extensive use of the basic commutator identities:

\[
[x, yz] = y[x, z] + [x, y]z \\
[xy, z] = [x, z]y + x[y, z].
\]

2. Results

Lemma 2.1. Let R be a \ast--prime ring and $a \in R$. If R admits a semiderivation F of R such that $aF(x) = 0$ (or $F(x)a = 0$) for all $x \in R$, then $a = 0$ or $F = 0$.

Proof: For all $x, y \in R$, we get $aF(xy) = 0$, and hence

\[
aF(x)g(y) + axF(y) = 0,
\]
On semiderivations of \ast--prime rings

and so
\[aRF(y) = 0, \] for all $y \in R$.
Replacing y by y^* in this equation and using $\ast F = F\ast$, we find that
\[aRF(y)^* = 0, \] for all $y \in R$.
Since R is a \ast--prime ring, we have $a = 0$ or $F = 0$. Similarly holds case $F(x)a = 0$.

The following theorem is be obtained using the same methods in [3, Theorem 1].

Theorem 2.2. Let R be a \ast--prime ring, F a nonzero semiderivation of R associated with a function g (not necessarily surjective). Then g is a homomorphism of R.

Proof: For any $x, y, z \in R$, we get
\[
F(z(x + y)) = F(z)g(x + y) + zF(x + y) = F(z)g(x + y) + zF(x) + zF(y).
\]
On the other hand,
\[
F(z(x + y)) = F(zx + zy) = F(z)g(x) + zF(x) + F(z)g(y) + zF(y).
\]
Comparing these two equations, we arrive at $F(z)(g(x + y) - g(x) - g(y)) = 0$, for all $x, y, z \in R$. Using Lemma 2.1 and $F \neq 0$, we obtain that $g(x + y) = g(x) + g(y)$, for all $x, y \in R$.

Now, let $x, y, z \in R$. Then
\[
F((xy)z) = g(xy)F(z) + F(xy)z
= g(xy)F(z) + g(x)F(y)z + F(xy)yz.
\]
On the other hand,
\[
F((xy)z) = F(x(yz)) = g(x)F(yz) + F(x)yz = g(x)g(y)F(z) + g(x)F(y)z + F(x)yz.
\]
Hence we get $(g(xy) - g(x)g(y))F(z) = 0$, for all $x, y, z \in R$. Again using Lemma 2.1 and $F \neq 0$, we have
\[g(xy) = g(x)g(y), \] for all $x, y \in R$.
\[\Box \]
Theorem 2.3. Let R be a $*$-prime ring, F a semiderivation of R such that $F(R) \subseteq Z$, then $F = 0$ or R is commutative.

Proof: By the hypothesis, we have
\[F(xy) \in Z, \text{ for all } x, y \in R. \]
That is
\[F(x)g(y) +xF(y) \in Z, \text{ for all } x, y \in R. \]
Commuting this term with x and using the hypothesis, we get
\[
0 = [F(x)g(y)+xF(y),x] = F(x)[g(y),x]
\]
Since $F(x) \in Z$ and g is surjective function of R, we arrive at
\[F(x)R[y,x] = 0, \text{ for all } x, y \in R. \]
Using $*F = F*$, for any $x \in S_{a_*}(R)$, we have
\[F(x^*)R[y,x] = 0, \text{ for all } x \in S_{a_*}(R), y \in R. \]
Since R is a $*$-prime ring, we arrive at
\[F(x) = 0 \text{ or } [y,x] = 0, \text{ for all } x \in S_{a_*}(R), y \in R. \]
Using the fact that $x + x^* \in S_{a_*}(R)$, $x - x^* \in S_{a_*}(R)$ for all $x \in R$, we easily deduce $F(x \pm x^*) = 0$ or $[y, x \pm x^*] = 0$. Hence we obtain R is union of its two additive subgroups such that
\[K = \{x \in R \mid F(x) = 0\} \]
and
\[L = \{x \in R \mid x \in Z\}. \]
Clearly each of K and L is additive subgroup of R. Moreover, R is the set-theoretic union of K and L. But a group can not be the set-theoretic union of two proper subgroups, hence $K = R$ or $L = R$. In the former case, we have $F = 0$ and the second case, R is commutative. \hfill \Box

Theorem 2.4. Let R be a 2-torsion free $*$-prime ring, F a semiderivation of R such that $F^2(x) = 0$, for all $x \in R$, then $F = 0$.

Proof: Assume that
\[F^2(x) = 0, \text{ for all } x \in R. \]
Replacing x by xy in this equation, we get
\[0 = F^2(xy) = F(F(x)g(y) + xF(y)) \]
\[= F^2(x)g^2(y) + F(x)F(g(y)) + F(x)g(F(y)) + xF^2(y) \]
and so
\[2F(x)F(g(y)) = 0, \text{ for all } x, y \in R. \]

Using R is a 2–torsion free and g is surjective function of R, we have
\[F(x)F(y) = 0, \text{ for all } x, y \in R. \]

By Lemma 2.1, we complete the proof. \square

Theorem 2.5. Let R be a 2–torsion free $\ast-$prime ring and $a \in R$. If R admits a semiderivation F such that $[F(x), a] = 0$, for all $x \in R$, then $F = 0$ or $a \in Z$.

Proof: Replacing x by xy and using the hypothesis, we have
\[0 = [a, F(xy)] = [a, F(x)y + g(x)F(y)] \]
\[= F(x)[a, y] + [a, g(x)]F(y) \] (2.1)
Writing g for $F(y)$ in this equation and again using the hypothesis, we obtain that
\[[a, g(x)]F^2(y) = 0, \text{ for all } x, y \in R. \]

Since g is surjective function of R, we have
\[[a, x]F^2(y) = 0, \text{ for all } x, y \in R. \]

Substituting xz for x in this equation, we get
\[[a, x]RF^2(y) = 0, \text{ for all } x, y \in R. \]

Since $\ast F = F \ast$, it reduces
\[[a, x]RF^2(y)^\ast = 0, \text{ for all } x, y \in R. \]

By the $\ast-$primeness of R, we find that
\[a \in Z \text{ or } F^2(y) = 0, \text{ for all } y \in R. \]

If $F^2(y) = 0$, for all $y \in R$, then $F = 0$ by Theorem 2.4. \square

Theorem 2.6. Let R be a 2–torsion free $\ast-$prime ring and F a semiderivation of R such that $[F(R), F(R)] = 0$, then $F = 0$ or R is commutative.

Proof: By Theorem 2.5, we have $F = 0$ or $F(R) \subseteq Z$. If $F(R) \subseteq Z$, then $F = 0$ or R is commutative by Theorem 2.3. \square
Theorem 2.7. Let R be a \ast−prime ring, F a semiderivation of R such that $[F(x), x] = 0$, for all $x \in R$, then $F = 0$ or R is commutative.

Proof: Linearizing the hypothesis, we have

$$[F(x), y] + [F(y), x] = 0,$$

for all $x, y \in R$. Replacing y by yx in this equation and using the hypothesis, we get

$$0 = [F(x), yx] + [F(yx), x] = [F(x), y]x + [F(y)x + g(y)F(x), x],$$

and so

$$[g(y), x]F(x) = 0,$$

for all $x, y \in R$.

Since g is surjective function of R, we have

$$[y, x]F(x) = 0,$$

for all $x, y \in R$.

Writing yz for y and using this equation, we obtain that

$$[y, x]RF(x) = 0,$$

for all $x, y \in R$.

Using the same arguments as we used in the last part of proof of the Theorem 2.3, we get the required result.

Theorem 2.8. Let R be a \ast−prime ring, F a nonzero semiderivation of R such that $F([x, y]) = 0$, for all $x, y \in R$, then R is commutative.

Proof: Replacing y by xy in the hypothesis, we get

$$0 = F([x, y]) = F(x)g([x, y]) + xF([x, y]) = F(x)g([x, y]).$$

We know that g is homomorphism of R by Theorem 1. Hence we have

$$F(x)[g(x), g(y)] = 0,$$

for all $x, y \in R$.

Since g is surjective function of R, we get

$$F(x)[g(x), y] = 0,$$

for all $x, y \in R$.

Writing yz for y and using this equation, we obtain that

$$F(x)R[g(x), z] = 0,$$

for all $x, z \in R$.

Using $\ast F = F\ast$, for any $x \in S_a(R)$, we have

$$F(x)^\ast R[g(x), z] = 0,$$

for all $x \in S_a(R), z \in R$.

\[\square\]
Since R is a $*$-prime ring, we arrive at
\[F(x) = 0 \text{ or } [g(x), y] = 0, \text{ for all } x \in S_a(R), y \in R. \]

Using the fact that $x + x^* \in S_a(R), x - x^* \in S_a(R)$ for all $x \in R$, we easily deduce
\[F(x \pm x^*) = 0 \text{ or } [g(x \pm x^*), y] = 0, \]
Hence we obtain that R is union of its two additive subgroups such that
\[K = \{ x \in R \mid F(x) = 0 \} \]
and
\[L = \{ x \in R \mid [g(x), y] = 0, \text{ for all } y \in R \}. \]
Clearly each of K and L is additive subgroup of R. Moreover, R is the set-theoretic union of K and L. But a group can not be the set-theoretic union of two proper subgroups, hence $K = R$ or $L = R$. In the former case, we have $F = 0$, a contradiction. So, we must have $L = R$. Hence R is commutative.

Theorem 2.9. Let R be a $*$-prime ring, F a nonzero semiderivation of R such that $F([x, y]) = \pm [x, y]$, for all $x, y \in R$, then R is commutative.

Proof: Replacing y by xy in the hypothesis, we get
\[F(x[x, y]) = \pm x[x, y] \]
\[F(x)g([x, y]) + xF([x, y]) = \pm x[x, y], \]
and so
\[F(x)g([x, y]) = 0. \]
Using the same arguments as we used in the last part of proof of the Theorem 2.8, we get the required result. □

References

Öznur Gölbaşı and Onur Ağır tıcı
Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140, Sivas - TURKEY
E-mail address: ogolbasi@cumphuriyet.edu.tr