Fixed Point Theorem in Fuzzy Metric Space

Santanu Acharjee

ABSTRACT: In this paper we prove a fixed point theorem on a fuzzy set defining a new class of fuzzy metric space as *structure fuzzy metric space*

Key Words: Fixed point, fuzzy metric, continuous t-norm.

Contents

1 Introduction 273
2 Preliminary definitions 274
3 Main result 274

1. Introduction

In this paper we will study a fixed point theorem from view point of a new class of fuzzy metric defined on a fuzzy set. This concept came to exist when the author was investigating properties in a generalized closed set of bitopological space using topological ideal. Often topological ideal is simply stated as ideal.

A non-empty collection I of subsets of a set X is said to be an ideal if it follows following two conditions

1. If $A \in I$ and $B \subseteq A$ then $B \in I$.
2. If $A \in I$, $B \in I$, then $A \cup B \in I$.

Fixed point theorems in any areas are most useful. Mathematical economists, physicists, computer scientists etc are using fixed point theorems in their respective research areas. Now a days fuzzy fixed point theorems are also playing crucial role in mathematical economics, social choices, auction theory.

2000 Mathematics Subject Classification: 54H25, 47H10
application of convex topological fixed point theory can be found in the 1994’s Nobel laureate John Fr. Nash’s classic seminal paper of equilibrium point of "Non-cooperative games" [14]. His proof is based on Kakutani’s fixed point theorem [15], which is the generalization of Brouwer’s fixed point theorem.

2. Preliminary definitions

In this section we discuss some existing definitions.

Definition 2.1. ([6]) A binary operation $*: [0, 1] \times [0, 1] \to [0, 1]$ is a continuous t-norm if $*$ satisfies the following conditions

(a) $*$ is commutative and associative;

(b) $*$ is continuous;

(c) $a * 1 = a \forall a \in [0, 1]$;

(d) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ and $a, b, c, d \in [0, 1]$.

Definition 2.2. ([12]) Let X be a non-empty set, $*$ be a continuous t-norm and $M: X^2 \times [0, \infty) \to [0, 1]$ be a fuzzy set. Consider the following conditions for all $x, y, z \in X$ and $t, s \in [0, \infty)$:

(M1) $M(x, y, 0) = 0$

(M2) $M(x, x, t) = 1$

(M3) $M(x, y, t) = 1 \Rightarrow x = y$

(M4) $M(x, y, t) = M(y, x, t)$

(M5) $M(x, y, t + s) \geq M(x, z, t) * M(z, y, s)$

(M6) $M(x, y, .) : [0, \infty) \to [0, 1]$ is left continuous

Then $(X, M, *)$ is said to be a fuzzy metric space.

3. Main result

This section contains some new definitions, terminologies and they are used to prove one theorem in fuzzy fixed point theory.
Definition 3.1. (X, M, \ast) is said to be a structure fuzzy metric space (SFMS) if it satisfies conditions $(M1), (M3), (M4), (M5)$ and $(M6)$ of Definition 2.2.

Example 3.2. If $X = R$, define $a \ast b = ab$ and $M(x, y, t) = \frac{1}{2} \frac{1}{t} |x - y| + |x| + |y| t$ then (X, M, \ast) is a SFMS.

Definition 3.3. A sequence $< x_n >$ in a SFMS is said to be structure convergent if there exists $x \in X$ such that $\lim_{n \to \infty} M(x_n, x, t) = 1 \forall t > 0$. Then x is said to be structure limit of $< x_n >$ and denoted by $\lim_{n \to \infty} x_n = x$.

Definition 3.4. A sequence $< x_n >$ in a SFMS (X, M, \ast) is said to be structure Cauchy sequence if for each $t > 0$ and $r \in N$ such that $\lim_{n \to \infty} M(x_n + r, x_n, t) = 1$.

(X, M, \ast) is said to be structure complete if every structure Cauchy sequence in it is structure convergent.

Definition 3.5. Let (X, M, \ast) be a SFMS, f and h are self maps on X. Then f and h are said to be normalized at x if and only if $M(fhx, hfx, t) = 1 \forall t \in [0, \infty)$.

The functions f and h are said to be normalized on X if f and h are normalized at all points x of X.

Definition 3.6. The functions f and h are said to be common domain normalized (CDN) if they are normalized at the coincidence point of f and h.

Remark 3.7. A SFMS has a unique limit point.

Proof: Proof is easy, so omitted.

Now we discuss the main theorem of this section.

Theorem 3.8. Let (X, M, \ast) be a SFMS and let $f, h : X \to X$ be two mappings with the following conditions,

(a) $f(X) \subset h(X)$

(b) Either $f(X)$ or $h(X)$ is structure complete

(c) $M(fx, fy, kt) \geq M(hx, hy, t)$ for all $x, y \in X$ and $0 < k < 1, t \in [0, \infty)$

(d) $\lim_{t \to \infty} M(x, y, t) = 1$

Then f and h have a coincidence point; moreover if f and h are CDN then f and h have a unique fixed point.
Proof:
By condition (a), for some \(x_0 \in X \); we have \(x_1 \in X \) such that \(fx_0 = hx_1 = y_1 \) (say). Thus by using mathematical induction, we have \(fx_n = hx_{n+1} = y_{n+1} \) where \(n \in N \) and \(y_0 = hx_0 \).

For \(0 < k < 1 \) and \(t \in [0, \infty) \) we have \(M(y_1, y_2, kt) = M(fx_0, fx_1, kt) \geq M(hx_0, hx_1, t) = M(y_0, y_1, t) \)

\[
M(y_1, y_2, kt) = M(fx_1, fx_2, kt) \geq M(hx_1, hx_2, t) = M(y_1, y_2, t) \geq M(y_0, y_1, \frac{t}{k}).
\]

Thus \(M(y_2, y_3, t) \geq M(y_0, y_1, \frac{t}{k^2}) \).

Proceeding by mathematical induction we have \(M(y_n, y_{n+1}, t) \geq M(y_0, y_1, \frac{t}{k^n}) \)

Thus for \(r \in N, t \in [0, \infty) \) we have \(M(y_n, y_{n+r}, t) \geq M(y_0, y_{n+1}, \frac{t}{k^r}) \)

\[
M(y_{n+1}, y_{n+r+1}, \frac{t}{k^r}) \geq M(y_{n+2}, y_{n+r+2}, \frac{t}{k^r}) \geq \ldots \geq M(y_n, y_1, \frac{t}{k^n}) \geq M(y_0, y_1, \frac{t}{k^n}) = \lim_{n \to \infty} M(y_n, y_{n+r}, t) = 1.
\]

Thus \(y_n \) is a structure Cauchy sequence. Let \(h(X) \) is structure complete; then there exists \(u \in h(X) \) such that \(\lim_{n \to \infty} y_{n+1} = \lim_{n \to \infty} hx_{n+1} = u = \lim_{n \to \infty} fx_n \). Let \(hp = u \) for some \(p \in X \)

Thus \(M(fp, hp, kt) = \lim_{n \to \infty} M(fp, fx_n, kt) \geq \lim_{n \to \infty} M(hp, hx_n, t) \geq \lim_{n \to \infty} M(u, hx_n, t) = 1 \). So, \(fp = hp \) and it proves that \(f \) and \(h \) have a coincidence point.

Now let \(f \) and \(h \) are normalized at some coincidence point \(\theta \). Thus from definition, we have \(M(fh\theta, hf\theta, t) = 1 \forall t \geq 0 \). This condition \((M3) \) implies \(fh\theta = hf\theta \).

Let \(f\theta = h\theta = v \) then \(M(fv, v, kt) = M(fv, f\theta, kt) \geq M(hv, h\theta, t) = M(hfv, f\theta, t) \geq M(hv, h\theta, \frac{t}{k^n}) \geq \ldots \geq M(hv, h\theta, \frac{1}{k^n}) \). If \(n \to \infty \) then we must have \(fv = v \). In similar manner we can show that \(hv = v \). Thus \(v \) is common fixed point of \(f \) and \(h \). Proceeding in the same way we may work for \(h(X) \).

Uniqueness of fixed point: Let \(\lambda \) be another common fixed point of \(f \) and \(h \); then

\[
M(v, \lambda, kt) = M(fv, f\lambda, kt) \geq M(hv, h\lambda, t) = M(v, \lambda, t) = M(fv, f\lambda, t) \geq M(hv, h\lambda, \frac{t}{k^n}) = M(v, \lambda, \frac{t}{k^n}) \geq \ldots \geq M(v, \lambda, \frac{1}{k^n}).\]

Thus if \(n \to \infty \) then \(v = \lambda \). Hence the proof.

References

7. A. George and P. Veeramani, On some results in fuzzy metric space, Fuzzy sets and systems, 64(1997), 395-399.

11. S. Banach, Theories les operation linearies, Manograie Mathematyezne, Warsaw, Poland, 1932.

Santanu Acharjee
Mathematical Sciences Division
Institute of Advanced Study in Science and Technology
Paschim Boragaon, Garchuk, Guwahati-781035, Assam, India
E-mail address: santanuacharjee@rediffmail.com