µ-Compactness with Respect to a Hereditary Class

C. Carpintero, E. Rosas, M. Salas-Brown and J. Sanabria

Abstract: We define and study the notion of compactness in generalized topological spaces with respect to a hereditary class: µH-compact spaces.

Key Words: Generalized topology, µ-compact space, hereditary classes.

Contents

1 Introduction 231

2 Preliminaries 231

3 µ-compactness with respect to an ideal 232

1. Introduction

The compactness is one of the most important concepts used, not only in general topology, but also in other areas of mathematics. Over recent years several authors have been working in formulate weak notions of open sets, in terms of these open sets those authors have extended and generalized the concept of compactness. In this article, we use the notions of generalized topology and hereditary class introduced by Csázár in [3] and [4], respectively, in order to define and characterize the µH-compact spaces, also some properties µH-compact spaces are obtained. The strategy of using generalized topologies and hereditary classes to extend classical topological concepts have been used by many authors such as [4], [7], [15], [17], among others.

Although the proofs presented in this articles are slight modifications of the standard proofs concern to the respective statements on usual compactness, the results presented in this article are of great interest since the definition of µH-compact spaces unifies and generalizes many of the notions of compactness obtained by many authors such as [1], [2], [6], [9], [10], [11], [12], [13], [14]. Also, our results generalizes and characterize several properties studied by the authors above cited. Moreover, the examples given in this note are not trivial and are different from the usual given by other authors.

2. Preliminaries

Let X be a nonempty set and 2X be the power set of X. Then µ ⊂ 2X is called a generalized topology (briefly GT) on X [3] if ∅ ∈ µ and Gi ∈ µ for i ∈ I ≠ ∅ implies ∪i∈IGi ∈ µ. We call the pair (X, µ) a generalized topological space (briefly
GTS) on X. The elements of μ are called μ-open sets and the complements are called μ-closed sets. The generalized closure of a subset A of X, denoted by $c_\mu(A)$, is the intersection of all μ-closed sets containing A. And the generalized interior of A, denoted by $i_\mu(A)$, is the union of all μ-open sets contained in A. Let (X, μ_1) and (X, μ_2) be two GTS’s, then a function $f : (X, \mu_1) \to (X, \mu_2)$ is said to be (μ_1, μ_2)-continuous if $f^{-1}(U) \in \mu_1$.

Let $A \subset X$. A collection \mathcal{F} of subsets of X, is said to be a μ-covering of A if \mathcal{F} is a covering of A by μ-open sets [9]. A subset A of X is said to be μ-compact if for every μ-covering $\{U_\lambda : \lambda \in \Lambda\}$ of A there exists a finite subcollection $\{U_\lambda : \lambda \in \Lambda_0\}$ that also covers A. X is said to be μ-compact if X is μ-compact as a subset [9].

A hereditary class \mathcal{H} on a nonempty set X [4] is a collection of subsets of X that satisfies the following property: If $A \in \mathcal{H}$ and $B \subset A$ then $B \in \mathcal{H}$. If the hereditary class \mathcal{H} satisfies the additional condition: If $A, B \in \mathcal{H}$ implies $A \cup B \in \mathcal{H}$, then \mathcal{H} is called an ideal on X [8]. Let (X, μ) be a GTS and \mathcal{H} a hereditary class on X. For a subset A of X is defined the generalized local function of A with respect to μ and μ [4], as follows: $A^* = \{x \in X : U \cap A \notin \mathcal{H} \text{ for all } U \in \mu_x\}$, where $\mu_x = \{U : x \in U \text{ and } U \in \mu\}$. And for A a subset of X, is defined: $c_\mu^*(A) = A \cup A^*$. The collection $\mu^* = \{A \subset X : X \setminus A = c_\mu^*(X \setminus A)\}$ is a GT on X. The elements of μ^* are called μ^*-open and the complement of a μ^*-open set is called μ^*-closed set. It is clear that a subset A is μ^*-closed if and only if $A^* \subset A$.

Theorem 2.1. [4] Let (X, μ) be a GTS and \mathcal{H} be a hereditary class on X and A a subset of X, then $A^* \subset c_\mu(A)$.

Theorem 2.2. [4] Let (X, μ) be a GTS and \mathcal{H} be a hereditary class on X and A be a subset of X. If A is μ^*-open then for all $x \in A$ there exists $U \in \mu_x$ and $E \in \mathcal{H}$ such that $x \in U \setminus E \subset A$.

3. μ-compactness with respect to an ideal

In this section we introduce and study the notion of compactness with respect to a GTS and a hereditary class in order to obtain many well known generalized forms of compactness in the literature.

Definition 3.1. Let (X, μ) be a GTS and \mathcal{H} a hereditary class on X. A subset A of X is said to be $\mu\mathcal{H}$-compact if for every μ-covering $\{U_\lambda : \lambda \in \Lambda\}$ of A there exists a finite subcollection $\{U_\lambda : \lambda \in \Lambda_0\}$ such that $A \setminus \bigcup\{U_\lambda : \lambda \in \Lambda_0\} \in \mathcal{H}$. X is said to be a $\mu\mathcal{H}$-compact space if X is $\mu\mathcal{H}$-compact as a subset.

All μ-compact set is a $\mu\mathcal{H}$-compact set. Observe that for particular cases of generalized topologies and hereditary classes, we recover well known classical concepts of compactness as is shown:

1. If μ is a topology and \mathcal{H} is an ideal then the $\mu\mathcal{H}$-compact sets are the \mathcal{H}-compact sets [14].

2. If μ is the collection of semiopen sets and \mathcal{H} is the empty collection then the $\mu\mathcal{H}$-compact sets are the semi compact sets [6].
3. If μ is the collection of the semi open sets and \mathcal{H} is an ideal then the $\mu\mathcal{H}$-compact sets are the $S\mathcal{H}$-compacts sets [1].

4. If μ is the collection of the preopen sets and \mathcal{H} is the empty collection then the $\mu\mathcal{H}$-compact sets are the strongly-compact sets [10].

5. If μ is the collection of the α-open sets and \mathcal{H} is an ideal then the $\mu\mathcal{H}$-compact sets are the $\alpha\mathcal{H}$-compact sets [12].

6. If μ is a topology and \mathcal{H} is the empty collection then the $\mu\mathcal{H}$-compact sets are the compact sets.

7. If μ is a GT and \mathcal{H} is the empty collection then the $\mu\mathcal{H}$-compact sets are the μ-compact sets [9]. In this particular case we recover also the concept of γ-compact set introduced in [2].

Theorem 3.2. Let (X, μ) be a GTS and \mathcal{H} be an ideal on X, then the union of two $\mu\mathcal{H}$-compact sets is a $\mu\mathcal{H}$-compact set.

Proof: Let A, B be two $\mu\mathcal{H}$-compact sets of X and let $\{U_\lambda : \lambda \in \Lambda\}$ be any μ-covering of $A \cup B$. Then there exist two finite subsets $\Lambda_0, \Lambda_1 \subset \Lambda$ such that: $A \cup \bigcup \{U_\lambda : \lambda \in \Lambda_0\} \in \mathcal{H}$ and $B \setminus \bigcup \{U_\lambda : \lambda \in \Lambda_1\} \in \mathcal{H}$. Observe that

$$A \cup B \setminus \bigcup \{U_\lambda : \lambda \in \Lambda_0 \cup \Lambda_1\} \subset A \setminus \bigcup \{U_\lambda : \lambda \in \Lambda_0\} \cup B \setminus \bigcup \{U_\lambda : \lambda \in \Lambda_1\}.$$

Since $\Lambda_0 \cup \Lambda_1$ is a finite subset of Λ and \mathcal{H} is an ideal on X, follows that $A \cup B \setminus \bigcup \{U_\lambda : \lambda \in \Lambda_0 \cup \Lambda_1\} \in \mathcal{H}$. In consequence $A \cup B$ is a $\mu\mathcal{H}$-compact set of X. □

The following example shows that if the class \mathcal{H} is not an ideal then the union of two $\mu\mathcal{H}$-compact subsets is not necessary $\mu\mathcal{H}$-compact.

Example 3.3. Let \mathbb{R} be the set of real numbers, μ the usual topology and the hereditary class $\mathcal{H} = \{A \subset \mathbb{R} : A \subset (0, 1) \text{ or } A \subset (1, 2)\}$. Observe that $A = (0, 1)$ and $B = (1, 2)$ are $\mu\mathcal{H}$-compact sets. But $A \cup B$ does not is $\mu\mathcal{H}$-compact. Suppose that $A \cup B$ is $\mu\mathcal{H}$-compact, then the collection $\{(1/n, 2 - 1/n) : n \in \mathbb{Z}_+\}$ is a μ-covering of $A \cup B$, follows that there exist a finite set n_1, \ldots, n_k such that $(A \cup B) \setminus \bigcup_{k=1}^k (1/n_k, 2 - 1/n_k) \in \mathcal{H}$. If we take $N = \max\{n_1, \ldots, n_2\}$, follows that $(A \cup B) \setminus (1/N, 2 - 1/N) \in \mathcal{H}$, but this is a contradiction, because $(A \cup B) \setminus (1/N, 2 - 1/N) = (0, 1/N) \cup [2 - 1/N, 2) \notin \mathcal{H}$.

Theorem 3.4. Let (X, μ) be a GTS and \mathcal{H} be a hereditary class on X. If A is a μ-closed subset of X and X is $\mu\mathcal{H}$-compact then A is a $\mu\mathcal{H}$-compact set.

Proof: Let $\{U_\lambda : \lambda \in \Lambda\}$ be a μ-covering of A, then the collection $\mathcal{F} = \{U_\lambda : \lambda \in \Lambda\} \cup (X \setminus A)$ is a μ-covering of X. By hypothesis there exist a finite subcollection \mathcal{F} of \mathcal{F}, such that $X \setminus \bigcup \{V_\lambda : V_\lambda \in \mathcal{F}\} \in \mathcal{H}$. Now, we analyze the following two cases:
1. \(\mathcal{F} = \{ U_\lambda : \lambda \in \Lambda_0 \} \cup (X \setminus A) \),

2. \(\mathcal{F} = \{ U_\lambda : \lambda \in \Lambda_0 \} \), where \(\Lambda_0 \) is a finite subset of \(\Lambda \)

Case 1. Then \(X \setminus \left(\bigcup \{ U_\lambda : \lambda \in \Lambda_0 \} \cup (X \setminus A) \right) \in \mathcal{H} \), observe that:

\[
X \setminus \left(\bigcup \{ U_\lambda : \lambda \in \Lambda_0 \} \cup (X \setminus A) \right) = A \setminus \left(\bigcup \{ U_\lambda : \lambda \in \Lambda_0 \} \right)
\]

and therefore, \(A \setminus \bigcup \{ U_\lambda : \lambda \in \Lambda_0 \} \in \mathcal{H} \).

Case 2. Then \(X \setminus \left(\bigcup \{ U_\lambda : \lambda \in \Lambda_0 \} \right) \in \mathcal{H} \) and therefore, \(A \setminus \left(\bigcup \{ U_\lambda : \lambda \in \Lambda_0 \} \right) \in \mathcal{H} \). In both cases, we obtain that \(A \) is a \(\mu\mathcal{H} \)-compact set.

\[\square\]

Theorem 3.5. Let \((X, \mu) \) be a GTS and \(\mathcal{H} \) be a hereditary class on \(X \). If \(X \) is \(\mu^*\mathcal{H} \)-compact then \(X \) is \(\mu\mathcal{H} \)-compact. The converse is true if the class \(\mathcal{H} \) is an ideal.

Proof:

The first part of the theorem follows from the fact that all \(\mu \)-closed set is \(\mu^* \)-closed set by Theorem 2.1.

Now suppose that \(\mathcal{H} \) is an ideal and \(X \) is \(\mu\mathcal{H} \)-compact. Given \(A = \{ U_\lambda : \lambda \in \Lambda \} \) a \(\mu^* \)-covering of \(X \), then for each \(x \in X \), \(x \in U_{\lambda_x} \) for some \(\lambda_x \in \Lambda \). By Theorem 2.2, there exist \(V_{\lambda_x} \in \mu_x \) and \(E_{\lambda_x} \in \mathcal{H} \) such that \(x \in V_{\lambda_x} \setminus E_{\lambda_x} \subset U_{\lambda_x} \).

Observe that the collection \(\{ V_{\lambda_x} : \lambda_x \in \Lambda \} \) is a \(\mu \)-covering of \(X \), follows that there exists a finite subset \(\Lambda_0 \subset \Lambda \) such that: \(E = X \setminus \bigcup \{ E_{\lambda_x} : \lambda_x \in \Lambda_0 \} \in \mathcal{H} \).

Since \(\mathcal{H} \) is an ideal, \(\bigcup \{ E_{\lambda_x} : \lambda_x \in \Lambda_0 \} \in \mathcal{H} \) and also \(E \cup \{ \bigcup \{ E_{\lambda_x} : \lambda_x \in \Lambda_0 \} \} \in \mathcal{H} \). Observe that \(X \setminus \left(\bigcup \{ U_{\lambda_x} : \lambda_x \in \Lambda_0 \} \right) \subset E \cup \{ \bigcup \{ E_{\lambda_x} : \lambda_x \in \Lambda_0 \} \} \). In consequence, \(X \setminus \bigcup \{ U_{\lambda_x} : \lambda_x \in \Lambda_0 \} \in \mathcal{H} \).

The following example shows that the converse of the above theorem may not be true if the condition \(\mathcal{H} \) is an ideal is removed.

Example 3.6. Let \(\mathbb{R} \) be the set of real numbers, the GT defined as \(\mu = \{ A \subset \mathbb{R} : A \) is infinite \} \cup \{ \emptyset \}. The hereditary class on \(\mathbb{R} \), \(\mathcal{H} = \{ A \subset \mathbb{R} : A \in \mu \} \). Observe that \(\mathcal{H} \) does not is an ideal. \(\mathbb{R} \) is \(\mu\mathcal{H} \)-compact. To proof this, take \(\{ U_\lambda : \lambda \in \Lambda \} \) any \(\mu \)-covering of \(\mathbb{R} \). Any finite subcollection \(\{ U_\lambda : \lambda \in \Lambda_0 \} \) of \(\{ U_\lambda : \lambda \in \Lambda \} \), where \(\Lambda_0 \subset \Lambda \), we obtain that, \(\mathbb{R} \setminus \bigcup \{ U_\lambda : \lambda \in \Lambda_0 \} \subset \mathbb{R} \setminus U_\lambda \in \mathcal{H} \). In consequence, \(\mathbb{R} \) is \(\mu\mathcal{H} \)-compact. Observe that for each \(x \in \mathbb{R} \), \(\{ x \} \) is \(\mu^* \)-open. Follows that \(\{ \{ x \} : x \in \mathbb{R} \} \) is a \(\mu^* \)-covering of \(\mathbb{R} \). Suppose now that there exist \(x_1, x_2, \ldots, x_n \in \mathbb{R} \) such that \(\mathbb{R} \setminus \bigcup_{i=1}^{n} \{ x_i \} \in \mathcal{H} \) and this is not possible. Therefore, \(\mathbb{R} \) is not \(\mu^*\mathcal{H} \)-compact.

Theorem 3.7. Let \((X, \mu) \) be a GTS and \(\mathcal{H} \) be a hereditary class on \(X \), \(X \) is \(\mu\mathcal{H} \)-compact if and only if for any collection \(\{ F_\lambda : \lambda \in \Lambda \} \) of \(\mu \)-closed sets of \(X \) such that \(\bigcap \{ F_\lambda : \lambda \in \Lambda \} = \emptyset \) there exists a finite subset \(\Lambda_0 \subset \Lambda \) such that \(\bigcap \{ F_\lambda : \lambda \in \Lambda_0 \} \in \mathcal{H} \).
Proof: Let \{F_\lambda : \lambda \in \Lambda\} be any collection of \(\mu\)-closed sets of \(X\) such that \(\bigcap\{F_\lambda : \lambda \in \Lambda\} = \emptyset\), then \(\{X \setminus F_\lambda : \lambda \in \Lambda\}\) is a \(\mu\)-covering of \(X\). By hypothesis, there exists a finite subset \(\Lambda_0 \subset \Lambda\) such that \(X \setminus \bigcup\{X \setminus F_\lambda : \lambda \in \Lambda_0\} \in \mathcal{H}\). Hence \(\bigcap\{F_\lambda : \lambda \in \Lambda_0\} \in \mathcal{H}\).

Conversely, let \(\{U_\lambda : \lambda \in \Lambda\}\) be any \(\mu\)-covering of \(X\). Then \(\{X \setminus U_\lambda : \lambda \in \Lambda\}\) is a collection of \(\mu\)-closed sets such that \(\bigcap\{X \setminus U_\lambda : \lambda \in \Lambda\} = \emptyset\). By hypothesis, there exists a finite subset \(\Lambda_0 \subset \Lambda\) such that \(\bigcap\{X \setminus U_\lambda : \lambda \in \Lambda_0\} \in \mathcal{H}\). Consequently, we obtain that, \(X \setminus \bigcup\{U_\lambda : \lambda \in \Lambda_0\} \in \mathcal{H}\) and therefore, \(X\) is \(\mu\)-\(\mathcal{H}\)-compact.

Lemma 3.8. Let \(f : (X, \mu) \to (Y, \mu')\) be a function. If \(\mathcal{H}\) is a hereditary class on \(X\), then \(f(\mathcal{H}) = \{f(E) : E \in \mathcal{H}\}\) is a hereditary class on \(Y\).

Proof: Let \(E_1 \in \mathcal{H}\) and \(V \subset f(E_1)\). The set \(E_2 = \{x_y \in E_1 : f(x_y) \in V\}\) is a subset of \(E_1\), therefore, \(E_2 \in \mathcal{H}\). Since \(f(E_2) = V\), follows that \(V \in f(\mathcal{H})\).

Theorem 3.9. Let \(f : (X, \mu) \to (Y, \mu')\) be a \((\mu, \mu')\)-continuous and surjective function and \(\mathcal{H}\) be a hereditary class on \(X\). If \(X\) is \(\mu\)-\(\mathcal{H}\)-compact then \(Y\) is \(\mu'f(\mathcal{H})\)-compact.

Proof: Let \(\{U_\lambda : \lambda \in \Lambda\}\) a \(\mu'\)-covering of \(Y\), then \(\{f^{-1}(U_\lambda) : \lambda \in \Lambda\}\) is a \(\mu\)-covering of \(X\). Hence there exists a finite subset \(\Lambda_0 \subset \Lambda\) such that \(X \setminus \bigcup\{f^{-1}(U_\lambda) : \lambda \in \Lambda_0\} \in \mathcal{H}\). Since \(f\) is a surjective function, \(Y \setminus \bigcup\{U_\lambda : \lambda \in \Lambda_0\} \subset f(X \setminus \bigcup\{f^{-1}(U_\lambda) : \lambda \in \Lambda_0\}) \in f(\mathcal{H})\). In consequence, \(Y\) is \(\mu'f(\mathcal{H})\)-compact.

References

C. Carpintero
Departamento de Matemáticas
Universidad de Oriente
Núcleo De Sucre Cumaná, VENEZUELA.
E-mail address: carpintero.carlos@gmail.com

and

E. Rosas
Departamento de Matemáticas
Universidad de Oriente
Núcleo De Sucre Cumaná, VENEZUELA.
E-mail address: ennisrafael@gmail.com

and

M. Salas-Brown
Departamento de Matemáticas
Universidad De Oriente
Núcleo De Sucre Cumaná, VENEZUELA.
E-mail address: salasbrown@gmail.com

and

J. Sanabria
Departamento de Matemáticas
Universidad De Oriente
Núcleo De Sucre Cumaná, VENEZUELA.
E-mail address: jesanabri@gmail.com