Upper Bound of Second Hankel determinant for generalized Sakaguchi type spiral-like functions

L. Jena and T. Panigrahi

ABSTRACT: In this paper, the authors introduce a generalized Sakaguchi type spiral-like function class $S(\lambda, \beta, s, t)$ and obtain sharp upper bound to the second Hankel determinant $|H_2(1)|$ for the function f in the above class. Relevances of the main result are also briefly indicated.

Key Words: Analytic functions, Starlike functions, Sakaguchi type functions, λ-spiral-like functions, Second Hankel determinant, Toeplitz determinants

Contents

1 Introduction and Motivation 263
2 Preliminaries 265
3 Main Result 265

1. Introduction and Motivation

Let

$$U := \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$$

be the unit disk in the complex z-plane. Let \mathcal{A} be the class of functions f of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in U and satisfy the following normalization condition:

$$f(0) = f'(0) - 1 = 0.$$

Further, by S we shall denote the class of all functions f in \mathcal{A} which are univalent in U.

A function $f \in \mathcal{A}$ is said to be λ-spiral starlike function of order β, denoted by $SP(\lambda, \beta)$ if and only if the following inequality holds true:

$$\Re \left[e^{i\lambda} \frac{zf'(z)}{f(z)} \right] > \beta \quad (0 \leq \beta < 1, \quad |\lambda| \leq \frac{\pi}{2}; \quad z \in U).$$

For $\beta = 0$, the class $SP(\lambda, 0)$ reduces to $S_p(\lambda)$ which has been studied by Spacek [22]. Observed that for $\lambda = 0$, $S_p(0) = S^*$, the familiar class of starlike functions

2000 Mathematics Subject Classification: Primary: 30C45; 30C50
Submitted September 08, 2015. Published March 27, 2016

263

Typeset by \LaTeX style.
© Soc. Paran. de Mat.
in \mathbb{U}. Recently, Frasin [9] introduced and studied a generalized Sakaguchi type function class $S(\alpha, s, t)$ as follows. A function $f(z) \in A$ is said to be in the class $S(\alpha, s, t)$ if it satisfies
\[
\Re \left[\frac{(s - t)zf'(z)}{f(sz) - f(tz)} \right] > \alpha
\]
for some $\alpha (0 \leq \alpha < 1)$, $s, t \in \mathbb{C}$, $s \neq t$ and for all $z \in \mathbb{U}$.

Motivated by work of Frasin [9], we introduce here a new subclass of A as follows:

Definition 1.1. A function $f(z) \in A$ is said to be in the generalized Sakaguchi type spiral-like class $S(\lambda, \beta, s, t)$ if it satisfies
\[
\Re \left[e^{i\lambda} \frac{(s - t)zf'(sz)}{f(sz) - f(tz)} \right] > \beta \cos \lambda \quad (z \in \mathbb{U}),
\]
for some $\beta (0 \leq \beta < 1)$, s and t are real parameters, $s > t$ and λ is real with $|\lambda| < \frac{\pi}{2}$.

It may be noted that for $s = 1$, $\lambda = 0$, the class $S(0, \beta, 1, t) = S(\beta, t)$ has been studied by Owa et al. [23, 24], Goyal and Goswami [10] and Cho et al. [4]; while for $s = 1$, $\lambda = 0$, $\beta = 0$, $t = -1$, the class $S(0, 0, 1, -1) = S(0, -1)$ has introduced and studied by Sakaguchi [21]. Further, for $\lambda = t = 0$, $s = 1$, the above class reduces to the well-known subclass of A consisting of univalent starlike functions (see [6]).

The qth Hankel determinant for $q \geq 1$ and $n \geq 1$ is stated by Noonan and Thomas [19] as
\[
H_q(n) = \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2} \end{vmatrix}.
\]

A good amount of literature is available about the importance of Hankel determinant. It is useful in the study of power series with integral coefficients (see [3]), meromorphic functions (see [25]) and also singularities (see [5]). Noor (see [20]) determined the rate of growth of $H_q(n)$ as $n \to \infty$ for the functions in S with a bounded boundary while Ehrenborg (see [7]) studied the Hankel determinant of exponential polynomials.

For $q = 2, n = 1, a_1 = 1$ and $q = 2, n = 2$, the Hankel determinant simplifies respectively to
\[
H_2(1) = \begin{vmatrix} 1 & a_2 \\ a_2 & a_3 \end{vmatrix} = a_3 - a_2^2
\]
and
\[
H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = a_2a_4 - a_3^2.
\]
It is well-known [6] that for \(f \in S \) and given by (1.1), the sharp inequality \(|a_3 - a_2^3| \) holds. Fekete-Szegö (see [8]) then further generalized the estimate \(|a_3 - \mu a_2^2| \) with \(\mu \) real and \(f \in S \). For a given family \(\mathcal{F} \) of the functions in \(\mathcal{A} \), the sharp upper bound for the nonlinear functional \(|a_2a_4 - a_3^2| = |H_2(1)| \) is popularly known as the second Hankel determinant. Second Hankel determinant for various subclasses of analytic functions were obtained by various authors. For details, (see [1,2,11,12,13,14,15,18]).

Following the techniques devised by Libera and Zlotkiewicz (see [16,17]), in the present paper, the authors determine a sharp upper bound of the second Hankel determinant \(|H_2(1)| \) for the function \(f \) belonging to the class \(S(\lambda, \beta, s, t) \).

2. Preliminaries

Let \(\mathcal{P} \) denote the class of functions normalized by
\[
p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n,
\]
which are regular in \(U \) and satisfying \(\Re\{p(z)\} > 0 \) for every \(z \in U \). Here \(p(z) \) is called caratheodory function (see [6]).

To investigate the main result, we need the following lemmas.

Lemma 2.1. (see [6]) If \(p \in \mathcal{P} \), then \(|c_n| \leq 2 \), for each \(n \geq 1 \) and the inequality is sharp for the function \(1 + z \).

Lemma 2.2. ([16], also see [17, p. 254]) Let the function \(p \in \mathcal{P} \) be given by the power series (2.1). Then
\[
2c_2 = c_1^3 + x(4 - c_1^2),
\]
and
\[
4c_3 = c_1^3 + 2(4 - c_1^2)c_1x - (4 - c_1^2)c_1x^2 + 2(4 - c_1^2)(1 - |x|^2)y
\]
for some complex numbers \(x, y \) satisfying \(|x| \leq 1 \) and \(|y| \leq 1 \).

3. Main Result

Theorem 3.1. Let the function \(f \) given by (1.1) be in the class \(S(\lambda, \beta, s, t) \). Then
\[
|a_2a_4 - a_3^2| \leq \frac{4(1 - \beta)^2 \cos^2 \lambda}{(2s^2 - st - t^2)^2}.
\]
The estimate in (3.1) is sharp.

Proof: Let the function \(f(z) \) given by (1.1) be in the class \(S(\lambda, \beta, s, t) \). Then from the Definition 1.1, there exists an analytic function \(p \in \mathcal{P} \) in the unit disk \(U \) with \(p(0) = 1 \) and \(\Re(p(z)) > 0 \) such that
\[
e^{i\lambda(s-t)}z f'(sz) = (1 - \beta)p(z) + \beta |\cos \lambda + isin \lambda|
\]
\[
\implies e^{i\lambda(s-t)}z f'(sz) - e^{i\lambda}(f(sz) - f(tz))
\]
\[
= (f(sz) - f(tz))((1 - \beta)p(z) + \beta - 1)|\cos \lambda|.
\]
Replacing \(f(tz) \), \(f(sz) \), \(f'(sz) \) and \(p(z) \) by their equivalent series in (3.2), after simplification, we obtain

\[
e^{i\lambda}[a_2(s-t)z + a_3(2s^2-st-t^2)z^2 + a_4(3s^3-s^2t-st^2-t^3)z^3 + \cdots] = [c_1z + \{a_2(s+t)c_1 + c_2\}z^2 + \{a_3(s^2+st+t^2)c_1 + a_2(s+t)c_2 + c_3\}z^3 + \cdots](1-\beta)\cos \lambda.
\]

(3.3)

Equating the coefficients of \(z \), \(z^2 \) and \(z^3 \) in (3.3), we get

\[
a_2 = \frac{e^{-i\lambda}(1-\beta)\cos \lambda}{s-t} c_1,
\]

\[
a_3 = \frac{e^{-i\lambda}(1-\beta)\cos \lambda}{2s^2-st-t^2} \left[e^{-i\lambda}(1-\beta)(s+t)\cos \lambda c_1^2 + (s-t)c_2 \right],
\]

\[
a_4 = \frac{e^{-i\lambda}(1-\beta)\cos \lambda}{5s^3-3st^2-2st} \left[(3s^3-2t^3+2st^2-2st)(s-t)\cos \lambda c_1^2 + 2e^{-i\lambda}(1-\beta)\cos \lambda c_1^2 c_2 + c_1 c_3 + e^{-i\lambda}(1-\beta)^2\cos \lambda c_2^2 \right] \left[(s-t)^2(2s^2-st-t^2)^2 \right],
\]

(3.4)

Substituting the values of \(a_2 \), \(a_3 \) and \(a_4 \) from (3.4) in the second Hankel functional \(|a_2a_4-a_3^2| \) for the function \(f \in S(\lambda, \beta, s, t) \), we obtain

\[
|a_2a_4-a_3^2| = \left| \frac{e^{-2i\lambda}(1-\beta)^2\cos \lambda}{(s-t)(3s^3-st^2-st^2-t^3)} \right|
\]

\[
+ \frac{3s^3-2t^3+s^2t-2st^2}{(s-t)(2s^2-st-t^2)} e^{-i\lambda}(1-\beta)\cos \lambda c_1^2 c_2
\]

\[
+ e^{-2i\lambda}(1-\beta)^2\cos \lambda \left(s^3 + 2s^2t + 2st^2 + t^3 \right) c_4
\]

\[
+ c_1 c_3 - \frac{e^{-2i\lambda}(1-\beta)^2\cos \lambda}{(s-t)^2(2s^2-st-t^2)^2} \left[(s-t)^2 c_2^2 \right]
\]

\[
+ e^{-2i\lambda}(1-\beta)^2\cos \lambda \left(s^3 + 2s^2t + 2st^2 + t^3 \right) c_4
\]

\[
+ c_1 c_3 - \frac{e^{-2i\lambda}(1-\beta)^2\cos \lambda}{(s-t)^2(2s^2-st-t^2)^2} \left[(s-t)^2 c_2^2 \right]
\]

(3.5)

Making use of the result \(|xa+yb| \leq |x||a| + |y||b| \), where \(x, y, a \) and \(b \) are real numbers and \(|e^{-in\lambda}| = 1 \), where \(n \) is a real number, after simplification, we obtain

\[
|a_2a_4-a_3^2| \leq \frac{(1-\beta)^2\cos \lambda}{(s-t)^2(3s^3-st^2-st^2-t^3)(2s^2-st-t^2)^2} \left| d_1 c_1 c_3 + d_2 \cos \lambda c_1^2 c_2 + d_3 c_2^2 + d_4 \cos \lambda c_1^2 \right|,
\]

(3.6)
where

\[d_1 = (s - t)(2s^2 - st - t^2)^2, \]
\[d_2 = (s^4t - 3s^2t^3 + 2st^4)(1 - \beta), \]
\[d_3 = -(s - t)^2(3s^3 - st^2 - s^2t - t^3), \]
\[d_4 = -(s^5 + 2s^4t - s^3t^2 - 2s^2t^3)(1 - \beta)^2. \] (3.7)

Substituting the values of \(c_2 \) and \(c_3 \) from Lemma 2.2 in the right hand side of (3.6), we have

\[
|d_1c_1c_3 + d_2c_2 + d_3c_2 + d_4c_4| = \left| \frac{d_1c_1}{4} [c_1^3 + 2c_1(4 - c_1^2)x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |z|^2)z + \frac{d_2c_2}{2}c_1^2 + x(4 - c_1^2)] + \frac{d_3}{4} (c_1^2 + x(4 - c_1^2))^2 + d_4c_4 \right|. \] (3.8)

Making use of well-known fact that \(|z| < 1\) in (3.8), upon simplification gives

\[
4|d_1c_1c_3 + d_2c_2 + d_3c_2 + d_4c_4| = \left| (d_1 + 2d_2c_2 + d_3 + 4d_4c_4) c_1^4 + 2d_2c_1(4 - c_1^2) + 2(d_1 + d_2c_2 + d_3)c_1^2(4 - c_1^2)|x| - ((d_1 + d_3)c_1^2 + 2d_1c_1 - 4d_3)(4 - c_1^2)|x|^2 \right|. \] (3.9)

Using the values of \(d_1, d_2, d_3 \) and \(d_4 \) given in (3.7), after simplification, we obtain

\[d_1 + 2d_2c_2 + d_3 + 4d_4c_4 \lambda = (s - t)(s^4 - 3s^2t^2 + 2st^3) + 2(1 - \beta) \]
\[(s^4t - 3s^2t^3 + 2st^4) \cos \lambda - 4(s^5 + 2s^4t - s^3t^2 - 2s^2t^3)(1 - \beta)^2 \cos^2 \lambda, \] (3.10)

\[2(d_1 + d_2c_2 + d_3) = 2[(s - t)(s^4 - 3s^2t^2 + 2st^3) + (s^4t - 3s^2t^3 + 2st^4)(1 - \beta)c_2 \lambda], \] (3.11)

and

\[(d_1 + d_3)c_1^2 + 2d_1c_1 - 4d_3 = [(s - t)(2s^2 - st - t^2)^2 - (s - t)^2(3s^3 - st^2 - s^2t - t^3)]c_1^2 + 2(s - t)(2s^2 - st - t^2)^2c_1 + 4(s - t)^2(3s^3 - st^2 - s^2t - t^3). \] (3.12)
Consider

\[
\left[(s-t)(2s^2 - st - t^2)^2 - (s-t)^2(3s^3 - st^2 - s^2t - t^3)\right]c_1^2
+ 2(s-t)(2s^2 - st - t^2)^2c_1 + 4(s-t)^2(3s^3 - st^2 - s^2t - t^3)
= (s-t)(s^4 - 3s^2t^2 + 2st^3)
\]

\[
\left[c_1^2 + \frac{2(2s^2 - st - t^2)^2}{s^4 - 3s^2t^2 + 2st^3} + 4\frac{(s-t)(3s^3 - st^2 - s^2t - t^3)}{s^4 - 3s^2t^2 + 2st^3}\right]
= (s-t)(s^4 - 3s^2t^2 + 2st^3)
\]

\[
= \left\{c_1 + \frac{(2s^2 - st - t^2)^2}{s^4 - 3s^2t^2 + 2st^3}\right\}^2
\]

\[
= \left\{\sqrt{4s^8 + 28s^6t^2 - 16s^4t + 29s^4t^4 - 32s^4t^3 + 10s^2t^6 - 20s^3t^5 - 4st^7 + t^8}\right\}
\]

\[
= (s-t)(s^4 - 3s^2t^2 + 2st^3)
\]

\[
\left[c_1 + \left\{\frac{2s^2 - st - t^2}{s^4 - 3s^2t^2 + 2st^3}\right\} + \sqrt{4s^8 + 28s^6t^2 - 16s^4t + 29s^4t^4 - 32s^4t^3 + 10s^2t^6 - 20s^3t^5 - 4st^7 + t^8}\right] \times
\left[c_1 + \left\{\frac{2s^2 - st - t^2}{s^4 - 3s^2t^2 + 2st^3}\right\} - \sqrt{4s^8 + 28s^6t^2 - 16s^4t + 29s^4t^4 - 32s^4t^3 + 10s^2t^6 - 20s^3t^5 - 4st^7 + t^8}\right]
\]

Since \(c_1 \in [0, 2]\), using the result \((c_1 + a)(c_2 + b) \geq (c_1 - a)(c_1 - b)\), where \(a, b \geq 0\) in the right-hand side of (3.13), upon simplification, we obtain

\[
\left[(s-t)(2s^2 - st - t^2)^2 - (s-t)^2(3s^3 - st^2 - s^2t - t^3)\right]c_1^2
+ 2(s-t)(2s^2 - st - t^2)^2c_1 + 4(s-t)^2(3s^3 - st^2 - s^2t - t^3)
\geq \left[(s-t)(2s^2 - st - t^2)^2 - (s-t)^2(3s^3 - st^2 - s^2t - t^3)\right]c_1^2
- 2(s-t)(2s^2 - st - t^2)^2c_1 + 4(s-t)^2(3s^3 - st^2 - s^2t - t^3)
\]

From (3.12) and (3.14), it follows that
−[(d_1 + d_3)c_1^2 + 2d_1c_1 - 4d_3] \leq -\left\{ (s-t)(2s^2 - st - t^2)^2 - (s-t)^2(3s^3 - st^2 - s^2t - t^3) \right\} c_1^2 \\
-2(s-t)(2s^2 - st - t^2)^2c_1 + 4(s-t)^2(3s^3 - st^2 - s^2t - t^3)\right]\right).

(3.15)

Substituting the values from the relation (3.10), (3.11) and (3.15) in the right hand side of (3.9), we get

\[4|d_1c_1 + d_2c_2 + d_3c^2 + d_4c^2λc_1 | \leq |(s-t)(s^4 - 3s^2t^2 + 2st^3) + 2(1-β)\]
\[(s^3 - 3st^2 + 2st^3)\cos λ - 4(s^3 + 2s^2 t - s^2t^2 - 2s^2t^3)(1-β)^2\cos λ c_1^2]
\[+2(s-t)(2s^2 - st - t^2)^2c_1 (4c_1 - c_1^2) + 2(s-t)(2s^2 - st - t^2)^2c_1^2(1-β)c_1^2 \]
\[+2(s-t)(3s^2t + 2st^3)(1-β)c_1^2 \cos λ - 2(s-t)^2(3s^3 - st^2 - st^2 - t^3) | c_1^2 -
\]
\[2(s-t)(2s^2 - st - t^2)^2c_1 + 4(s-t)^2(3s^3 - st^2 - s^2t - t^3) | (4c_1 - c_1^2) | x |^2 \]

(3.16)

Choosing \(c_1 = c \in [0, 2] \), applying triangle inequality and replacing \(|x| \) by \(μ \) on the right hand sides of (3.16), we obtain

\[4|d_1c_1 + d_2c_2 + d_3c^2 + d_4c^2λc_1 | \leq |4\cos^2 λ(1-β)^2(s^5 + 2s^4 t - s^3 t^2 - 2s^2 t^3)
\[-(s-t)(s^4 - 3s^2t^2 + 2st^3) - 2(1-β)(s^3 - 3st^2 + 2st^3)\cos λ c_1^2]
\[+2(s-t)(2s^2 - st - t^2)^2c_1^2(4c_1 - c_1^2) + 2(s-t)(2s^2 - st - t^2)^2c_1^2(1-β)c_1^2 \]
\[+2(s-t)(3s^2t + 2st^3)(1-β)c_1^2 \cos λ - 2(s-t)^2(3s^3 - st^2 - st^2 - t^3) | c_1^2 -
\]
\[2(s-t)(2s^2 - st - t^2)^2c_1 + 4(s-t)^2(3s^3 - st^2 - s^2t - t^3) | (4c_1 - c_1^2) μ^2 \]
\[= H(c, μ) \] (say) \(0 \leq μ = |x| \leq 1, \ 0 \leq c \leq 2 \),

(3.17)

where

\[H(c, μ) = 4\cos^2 λ(1-β)^2(s^5 + 2s^4 t - s^3 t^2 - 2s^2 t^3)
\[-(s-t)(s^4 - 3s^2t^2 + 2st^3) - 2(1-β)(s^3 - 3st^2 + 2st^3)\cos λ c_1^2]
\[+2(s-t)(2s^2 - st - t^2)^2c_1^2(4c_1 - c_1^2) + 2(s-t)(2s^2 - st - t^2)^2c_1^2(1-β)c_1^2 \]
\[+2(s-t)(3s^2t + 2st^3)(1-β)c_1^2 \cos λ - 2(s-t)^2(3s^3 - st^2 - st^2 - t^3) | c_1^2 -
\]
\[2(s-t)(2s^2 - st - t^2)^2c_1 + 4(s-t)^2(3s^3 - st^2 - s^2t - t^3) | (4c_1 - c_1^2) μ^2 \].

(3.18)

Now we maximize the function \(H(c, μ) \) on the closed region \([0, 2] \times [0, 1]\). Differen-
Upon simplification, it follows from (3.18) partially with respect to \(\mu \), we get

\[
\frac{\partial H}{\partial \mu} = [2(s - t)(2s^2 - st - t^2)^2 + 2(s^4t - 3s^2t^3 + 2st^4)(1 - \beta)\cos \lambda
- 2(s - t)^2(3s^3 - st^2 - s^2t - t^3)]c^2(4 - c^2) + 2[[(s - t)(2s^2 - st - t^2)^2
- (s - t)^2(3s^3 - st^2 - s^2t - t^3)]c^2 - 2(s - t)(2s^2 - st - t^3)2c
+ 4(s - t)^2(3s^3 - st^2 - s^2t - t^3)](4 - c^2)\mu \tag{3.19}
\]

For \(0 < \mu < 1 \), for fixed \(c \), \(0 < c < 2 \), we observe from (3.19) that \(\frac{\partial H}{\partial \mu} > 0 \). Therefore, \(H(c, \mu) \) is an increasing function of \(\mu \) and hence cannot have a maximum value at any point in the interior of the closed square \([0, 2] \times [0, 1] \). Moreover, for a fixed \(c \in [0, 2] \), we have

\[
\max_{0 \leq \mu \leq 1} H(c, \mu) = H(c, 1) = T(c) \tag{3.20}
\]

Upon simplification, it follows from (3.18) and (3.20) that

\[
T(c) = 4[4\cos^2 \lambda(1 - \beta)^2(s^5 + 2s^4t - s^3t^2 - 2st^3)] - (s - t)(s^4 - 3s^2t^2 + 2st^3)
2(1 - \beta)(s^4t - 3s^2t^2 + 2st^4)\cos \lambda)c^4 + 2(s^4t - 3s^2t^2 + 2st^4)(1 - \beta)\cos \lambda + 3(s - t)
(s^4 - 3s^2t^2 + 2st^3))c^2(4 - c^2) + 4(s - t)^2(3s^3 - st^2 - s^2t - t^3)(4 - c^2).
\]

Therefore,

\[
T'(c) = 4[4\cos^2 \lambda(1 - \beta)^2(s^5 + 2s^4t - s^3t^2 - 2st^3)] - (s - t)(s^4 - 3s^2t^2 + 2st^3)
2(1 - \beta)(s^4t - 3s^2t^2 + 2st^4)\cos \lambda)c^3 + 2(s^4t - 3s^2t^2 + 2st^4)(1 - \beta)\cos \lambda + 3(s - t)
(s^4 - 3s^2t^2 + 2st^3))(8c - 4c^3) - 8(s - t)^2(3s^3 - st^2 - s^2t - t^3)c.
\]

and

\[
T''(c) = 12[4\cos^2 \lambda(1 - \beta)^2(s^5 + 2s^4t - s^3t^2 - 2st^3)] - (s - t)(s^4 - 3s^2t^2 + 2st^3)
2(1 - \beta)(s^4t - 3s^2t^2 + 2st^4)\cos \lambda)c^2 + 2(s^4t - 3s^2t^2 + 2st^4)(1 - \beta)\cos \lambda + 3(s - t)
(s^4 - 3s^2t^2 + 2st^3))(8 - 12c^2) - 8(s - t)^2(3s^3 - st^2 - s^2t - t^3).
\]

For extreme values of \(T(c) \), consider \(T'(c) = 0 \). From (3.22) we have \(c = 0 \). Putting the values of \(c = 0 \) in (3.23) and simplify, we get

\[
T''(c) = -8(s - t)[(9s^2t^2 - 6st^3 - 4s^4t + t^4) - 2(s^3t - 2st^3 + s^2t^2)(1 - \beta)\cos \lambda]
\leq 0 \quad (0 \leq \beta < 1, |\lambda| < \frac{\pi}{2}). \tag{3.24}
\]
By second derivative test, $T(c)$ has maximum values at $c = 0$ and for a fixed value of λ ($|\lambda| < \frac{\pi}{2}$), we obtain

$$
\max_{0 \leq c \leq 2} T(c) = T(0) = 16(s - t)^2(3s^3 - st^2 - s^2t - t^3).
$$

(3.25)

Consider the maximum value of $T(c)$ only at $c = 0$, simplifying the relation (3.17) and (3.25), we obtain

$$
|d_1c_1c_3 + d_2\cos\lambda c_1^2c_2 + d_3c_2^2 + d_4\cos^2\lambda c_1^4| \leq 4(s - t)^2(3s^3 - st^2 - s^2t - t^3).
$$

(3.26)

From (3.6) and (3.26), after simplifying, we get

$$
|a_2a_4 - a_3^2| \leq \frac{4(1 - \beta)^2\cos^2\lambda}{(2s^2 - st - t^2)^2}.
$$

(3.27)

By choosing $c_1 = c = 0$ and selecting $x = -1$ in (2.2) and (2.3), we find that $c_2 = -2$ and $c_3 = 0$. Under such case it follows from (3.4) that $a_2 = 0$, $a_3 = -\frac{2\sin(1 - \beta)\cos\lambda}{2s^2 - st - t^2}$ and $a_4 = 0$. Substituting these values in the functional $|a_2a_4 - a_3^2|$, we observed that the equality is attained which shows our result is sharp. This completes the proof of Theorem 3.1.

Concluding Remark: In this paper, we have determined the sharp upper bound for the functional $|a_2a_4 - a_3^2|$ for the functions $f \in \mathcal{A}$ belonging to the class $S(\lambda, \beta, s, t)$. We conclude this paper by remarking that the above theorem include several previously established results for particular values of the parameters λ, β, s, t. For example, taking $s = 1$, $t = 0$ and $\beta = 0$ in Theorem 3.1 we get the result due to Krishna and Reddy (see [15]). Further, by letting $s = 1$, $t = 0$, $\beta = 0$ and $\lambda = 0$ in Theorem 3.1, we obtain the result $|a_2a_4 - a_3^2| \leq 1$. This result is sharp and coincides with that of Janteng et al. (see [13]). Now we are working on to find the sharp upper bound for the above function class using third Hankel determinant.

References

L. Jena and T. Panigrahi

Department of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar-751024, Odisha, India

E-mail address: lily.jena@gmail.com
E-mail address: trailokyap6@gmail.com