Coefficient Inequalities For A Class Of Analytic Functions Associated With The Lemniscate Of Bernoulli

Trailokya Panigrahi and Janusz Sokół

ABSTRACT: In this paper, a new subclass of analytic functions $ML^*_λ$ associated with the right half of the lemniscate of Bernoulli is introduced. The sharp upper bound for the Fekete-Szegő functional $|a_3 - μa_2^2|$ for both real and complex $μ$ are considered. Further, the sharp upper bound to the second Hankel determinant $|H_2(1)|$ for the function f in the class $ML^*_λ$ using Toeplitz determinant is studied. Relevances of the main results are also briefly indicated.

Key Words: Starlike Function, Fekete-Szegő Inequality, Hankel Determinant, Lemniscate of Bernoulli.

Contents

1 Introduction and Motivation 83
2 Preliminaries 85
3 Main Results 86

1. Introduction and Motivation

Let A be the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1.1)$$

which are analytic in $U := \{z \in \mathbb{C} : |z| < 1\}$.

Let S be the subclass of A consisting of univalent functions in U. A function $f \in A$ is said to be starlike of order $α$, $(0 \leq α < 1)$, denoted by $S(α)$ if and only if

$$\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > α \quad (z \in U). \quad (1.2)$$

It may be noted that for $α = 0$, the class $S(α) = S^*$, the familiar subclass of starlike functions in U. Similarly, a function $f \in A$ is said to be in the class $\tilde{R}(α)$, $α > 0$, if it satisfies the inequality

$$|(f'(z))^2 - α| < α \quad (z \in U). \quad (1.3)$$

The class $\tilde{R}(1) = \tilde{R}$ was considered by Sahoo and Patel [28].
Let f and g be two analytic functions in U. We say f is subordinate to g, written $f(z) \prec g(z)$ $(z \in U)$, if and only if there exists an analytic function w in U such that $w(0) = 0$ and $|w(z)| < 1$ for $|z| < 1$ and $f(z) = g(w(z))$. In particular, if g is univalent in U, we have the following (see [19]):

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(U) \subset g(U).$$

In 1966, Pommerenke [26] defined the q th Hankel determinant of f for $q \geq 1$ and $n \geq 1$ as

$$H_q(n) = \begin{vmatrix}
 a_n & a_{n+1} & \cdots & a_{n+q-1} \\
 a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2}
\end{vmatrix}.$$

A good amount of literature is available about the importance of Hankel determinant. It is useful in the study of power series with integral coefficients (see [5]), meromorphic functions (see [32]) and also singularities (see [7]). Noonan and Thomas [22] studied about the second Hankel determinant of a really mean p-valent functions. Noor [23] determined the rate of growth of $H_q(n)$ as $n \to \infty$ for the functions in S with a bounded boundary. Ehrenborg [9] studied the Hankel determinant of exponential polynomials.

For $q = 2, n = 1, a_1 = 1$ and $q = 2, n = 2$, the Hankel determinant simplifies respectively to

$$H_2(1) = \begin{vmatrix}
 1 & a_2 \\
 a_2 & a_3
\end{vmatrix} = a_3 - a_2^2$$

and

$$H_2(2) = \begin{vmatrix}
 a_2 & a_3 \\
 a_3 & a_4
\end{vmatrix} = a_2a_4 - a_3^2.$$

It is well-known that for $f \in S$ and given by (1.1) (see [8]), the sharp inequality $|a_3 - a_2^2| \leq 1$ holds. This corresponds to the Hankel determinant with $q = 2$ and $n = 1$. Fekete-Szegő (see [10]) problem is to estimate $|a_3 - \mu a_2^2|$ with μ real and $f \in S$. For details, see [6,24,25]. Given family \mathcal{F} of the functions in A, the functional $|H_2(2)|$ is popularly known as the second Hankel determinant. Second Hankel determinant for various subclasses of analytic functions were obtained by different researchers including Janteng et al. [14], Mishra and Gochhayat [20] and Murugusundaramoorthy and Magesh [21]. For some more recent works see [1,3,4,11,12,13,15,31].

Sokól and Stankiewicz [29](also see [2,30]) introduced the class SL^* consisting of normalized analytic functions f in U satisfying the condition $\left|\frac{zf'(z)}{f(z)^2} - 1\right| < 1, \ (z \in U)$. We called such function as Sokól-Stankiewicz starlike function. Recently, Raza and Malik [27] determined the upper bound of third Hankel determinant $H_3(1)$ for the class SL^*. Further, Sahoo and Patel [28] obtained the upper
bound to the second Hankel determinant for the class \(\tilde{R} = \{ f \in A : |f'(z)|^2 - 1 | < 1, z \in \mathbb{U} \} \).

Motivated by the above mentioned works obtained by earlier researchers, we introduce the following subclass of analytic function as below:

Definition 1.1. A function \(f \in A \) is said to be in the class \(ML^*_\lambda \), \(0 \leq \lambda \leq 1 \), if it satisfies the condition

\[
\left| \frac{zf'(z)}{(1-\lambda)f(z)+\lambda z} \right|^2 - 1 < 1 \quad (z \in \mathbb{U}).
\]

(1.4)

Note that for \(\lambda = 0 \), the class \(ML^*_0 \) reduces to the class \(SL^* \), studied by Raza and Malik [27] and while for \(\lambda = 1 \), the class \(ML^*_1 \) reduces to \(\tilde{R} \) studied by Sahoo and Patel [28]. In term of subordination, relation (1.4) can be written as.

\[
\frac{zf'(z)}{(1-\lambda)f(z)+\lambda z} \prec q(z) = \sqrt{1+z} \quad (z \in \mathbb{U}),
\]

(1.5)

where \(q(0) = 1 \). To state the geometrical significance of the class \(ML^*_\lambda \), consider

\[
w = q(e^{i\theta}) = \sqrt{1+e^{i\theta}} \quad (0 \leq \theta \leq 2\pi).
\]

(1.6)

It follows from (1.6) that \(w^2 - 1 = e^{i\theta} \), which implies \(|w^2 - 1| = 1 \). Taking \(w = u+iv \) and simplifying we get

\[
(u^2 + v^2)^2 = 2(u^2 - v^2).
\]

Therefore, \(q(\mathbb{U}) \) is the region bounded by the right half of the lemniscate of Bernoulli given by \((u^2 + v^2)^2 - 2(u^2 - v^2) = 0 \).

In this paper, following the techniques devised by Libera and Zlotkiewicz [16, 17], we solve the Fekete-Szegő problem and also determine the upper bounds of the Hankel determinant \(|H_2(1)| \) for a subclass \(ML^*_\lambda \).

2. Preliminaries

Let \(P \) be the class of analytic functions \(p \) normalized by

\[
p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n,
\]

(2.1)

such that

\[\Re \{p(z)\} > 0 \quad (z \in \mathbb{U}).\]

Each of the following results will be required in our present investigation.

Lemma 2.1. [18] Let \(p \in P \) and of the form (2.1). Then

\[
|p_2 - \nu p_1^2| \leq \begin{cases} -4\nu + 2, & \nu < 0 \\ 2, & 0 \leq \nu \leq 1 \\ 4\nu - 2, & \nu > 1. \end{cases}
\]
When $\nu < 0$ or $\nu > 1$, the equality holds if and only if $p(z) = \frac{1+z}{1-z}$ or one of its rotations. If $0 < \nu < 1$, then the equality holds if and only if $p(z) = \frac{(\frac{1}{2} + \frac{\eta}{2})}{1 - \frac{\eta}{2}}$, $(0 \leq \eta \leq 1)$, or one of its rotations. If $\nu = 0$, the equality holds if and only if $p(z) = \frac{1+z}{1-z}$, or one of its rotations. If $\nu = 1$, the equality holds if and only if $p(z)$ is the reciprocal of one of the functions such that the equality holds in the case of $\nu = 0$. Although the above upper bound is sharp, when $0 < \nu < 1$, it can be improved as follows:

$$|p_2 - \nu p_1^2| + \nu |p_1|^2 \leq 2 \left(0 < \nu \leq \frac{1}{2}\right),$$

and

$$|p_2 - \nu p_1^2| + (1-\nu)|p_1|^2 \leq 2 \left(\frac{1}{2} < \nu \leq 1\right).$$

Lemma 2.2. [18] Let $p \in \mathcal{P}$ be of the form (2.1), then for any complex number ν,

$$|p_2 - \nu p_1^2| \leq 2 \max(1, |2\nu - 1|). \quad (2.2)$$

This result is sharp for the functions

$$p(z) = \frac{1+z^2}{1-z^2}, \quad p(z) = \frac{1+z}{1-z}.$$

Lemma 2.3. ([16], [17, p. 254]) Let the function $p \in \mathcal{P}$ be given by the power series (2.1). Then

$$2p_2 = p_1^2 + x(4-p_1^2) \quad (2.3)$$

and

$$4p_3 = p_1^3 + 2(4-p_1^2)p_1 x - (4-p_1^2)p_1 x^2 + 2(4-p_1^2)(1-|x|^2)z \quad (2.4)$$

for some complex numbers x, z satisfying $|x| \leq 1$ and $|z| \leq 1$.

3. Main Results

The first two theorems give the results related to Fekete-Szegő functional, which is a special case of the Hankel determinant.

Theorem 3.1. Let the function f given by (1.1) be in the class ML^*_λ. Then for real μ, we have

$$|a_3 - \mu a_2^2| \leq \begin{cases} \frac{1-3\lambda^2-2\lambda \mu-4\mu^2}{4(2+\lambda)(1+\lambda)^2}, & \mu < \delta_1, \\ \frac{1}{2(2+\lambda)}, & \delta_1 \leq \mu \leq \delta_2, \\ \frac{1-3\lambda^2-2\lambda \mu-4\mu^2}{8(2+\lambda)(1+\lambda)^2}, & \mu > \delta_2, \end{cases} \quad (3.1)$$

Furthermore, for $\delta_1 < \mu \leq \delta_1 + \beta$,

$$|a_3 - \mu a_2^2| + (\mu - \delta_1)|a_2|^2 \leq \frac{1}{2(2+\lambda)}, \quad (3.2)$$
and for $\delta_1 + \beta < \mu < \delta_1 + 2\beta$,

$$|a_3 - \mu a_2^2| + (\delta_1 + 2\beta - \mu)|a_2|^2 \leq \frac{1}{2(2 + \lambda)},$$ \hspace{1cm} (3.3)

where

$$\delta_1 = -\left[\frac{3 + 10\lambda + 7\lambda^2}{2(2 + \lambda)}\right],$$ \hspace{1cm} (3.4)

$$\delta_2 = \frac{5 + 6\lambda + \lambda^2}{2(2 + \lambda)}$$ \hspace{1cm} (3.5)

and

$$\beta = \frac{2(1 + \lambda)^2}{\lambda + 2}.$$ \hspace{1cm} (3.6)

These results are sharp.

Proof. Let $f \in ML^\lambda_*$. In view of Definition 1.1, there exists an analytic function $w(z)$ satisfying the condition of Schwarz lemma such that

$$\frac{zf'(z)}{(1 - \lambda)f(z) + \lambda z} = \sqrt{1 + w(z)} \quad (z \in \mathbb{U}).$$ \hspace{1cm} (3.7)

Define a function

$$p(z) = \frac{1 + w(z)}{1 - w(z)} = 1 + p_1 z + p_2 z^2 + \cdots \quad (z \in \mathbb{U}).$$ \hspace{1cm} (3.8)

Clearly $p \in \mathcal{P}$. From (3.8), we get

$$w(z) = \frac{p(z) - 1}{p(z) + 1} \quad (z \in \mathbb{U}).$$ \hspace{1cm} (3.9)

From (3.7) and (3.9), we have

$$\frac{zf'(z)}{(1 - \lambda)f(z) + \lambda z} = \sqrt{\frac{p(z) - 1}{p(z) + 1} + 1} = \sqrt{\frac{2p(z)}{1 + p(z)}}.$$ \hspace{1cm} (3.10)

Now, by substituting the series expansion of $p(z)$ from (3.8) in (3.10), it follows that

$$\sqrt{\frac{2p(z)}{1 + p(z)}} = 1 + \frac{1}{4}p_1 z + \left(\frac{p_2}{4} - \frac{5}{32}p_1^2\right)z^2 + \left(\frac{p_3}{4} - \frac{5}{16}p_1p_2 + \frac{13}{128}p_1^3\right)z^3 + \cdots.$$ \hspace{1cm} (3.11)

Using series expansions for $f(z)$ and $f'(z)$ from (1.1) give

$$\frac{zf'(z)}{(1 - \lambda)f(z) + \lambda z} = 1 + (1 + \lambda)a_2 z + \{(2 + \lambda)a_4 - (1 - \lambda^2)a_2^2\}z^2 + \{(3 + \lambda)a_4 - (1 - \lambda)(2\lambda + 3)a_2 a_3 + (1 + \lambda)(1 - \lambda^2)a_2^3\}z^3 + \cdots.$$ \hspace{1cm} (3.12)
Making use of (3.11) and (3.12) in (3.10) and equating the coefficients of z, z^2 and z^3 in the resulting equation, we deduce that

$$a_2 = \frac{p_1}{4(1 + \lambda)},$$ \hspace{1cm} (3.13)

$$a_3 = \frac{1}{4(2 + \lambda)} \left[p_2 - \frac{7\lambda + 3}{8(1 + \lambda)} p_1 \right],$$ \hspace{1cm} (3.14)

and

$$a_4 = \frac{1}{4(3 + \lambda)} \left[p_3 - \frac{7\lambda^2 + 16\lambda + 7}{4(1 + \lambda)(2 + \lambda)} p_1 p_2 + \frac{13 + 40\lambda + 25\lambda^2}{32(1 + \lambda)(2 + \lambda)} p_1^2 \right].$$ \hspace{1cm} (3.15)

For real μ, it follows from (3.13) and (3.14) that

$$|a_3 - \mu a_2^2| = \frac{1}{4(2 + \lambda)} |p_2 - \nu p_1^2|,$$ \hspace{1cm} (3.16)

where

$$\nu = \frac{3 + 10\lambda + 7\lambda^2 + 4\mu + 2\lambda \mu}{8(1 + \lambda)^2}.$$

In view of (3.16) and by an application of Lemma 2.1, we obtain the desired assertion.

The results are sharp for the functions $\psi_i(z)$, $i = 1, 2, 3, 4$ such that

$$\frac{z\psi'_1(z)}{(1 - \lambda)\psi_1(z) + \lambda z} = \sqrt{1 + z} \quad (\mu < \delta_1 \text{ or } \mu > \delta_2),$$

$$\frac{z\psi'_2(z)}{(1 - \lambda)\psi_2(z) + \lambda z} = \sqrt{1 + z^2} \quad (\delta_1 < \mu < \delta_2),$$

$$\frac{z\psi'_3(z)}{(1 - \lambda)\psi_3(z) + \lambda z} = \sqrt{1 + \phi(z)} \quad (\mu = \delta_1),$$

and

$$\frac{z\psi'_4(z)}{(1 - \lambda)\psi_4(z) + \lambda z} = \sqrt{1 - \phi(z)} \quad (\mu = \delta_2),$$

where

$$\phi(z) = \frac{z(z + \eta)}{1 + \eta z} \quad (0 \leq \eta \leq 1).$$

Thus, the proof of Theorem 3.1 is completed. \hspace{1cm} \square

Remark 3.2. Putting $\lambda = 1$ in Theorem 3.1, we get the result due to Sahoo and Patel (see [28, Corollary 2.2]).

Remark 3.3. Putting $\lambda = 0$ in Theorem 3.1, we get the Fekete-Szegö functional for the class SL^* due to Raza and Malik (see [27, Theorem 2.1]).
Theorem 3.4. Let the function f given by (1.1) be in the class ML^*_λ. Then, for a complex number μ, we have

$$|a_3 - \mu a_2^2| \leq \frac{1}{2(2 + \lambda)} \max \left\{ 1, \left| \frac{3\lambda^2 + 2\lambda + 2\mu + 4\mu - 1}{4(1 + \lambda)^2} \right| \right\}. \quad (3.17)$$

The estimate in (3.17) is sharp.

Proof. From (3.16), we have

$$|a_3 - \mu a_2^2| = \frac{1}{4(2 + \lambda)} |p_2 - \nu p_1^2|.$$

Therefore, by virtue of Lemma 2.2, we obtain the desired assertion. The result is sharp for the function

$$zf' \left(\frac{1}{(1 - \lambda)f \left(\frac{1}{z} \right) + \lambda z} \right) = \sqrt{1 + z},$$

or

$$zf' \left(\frac{1}{(1 - \lambda)f \left(\frac{1}{z} \right) + \lambda z} \right) = \sqrt{1 + z^2}.$$

\[\square\]

Remark 3.5. Putting $\lambda = 0$ and $\lambda = 1$ in Theorem 3.4, we get the result of Raza and Malik (see [27, Theorem 2.2]) and Sahoo and Patel (see [28, Thoerem 2.1]) respectively.

Taking $\lambda = 0$ and $\mu = 1$ in Theorem 3.4, we get the result for $|H_2(1)|$ as follows.

Corollary 3.6. [27] If the function f, given by (1.1) belongs to the class SL^*, then

$$|a_3 - a_2^2| \leq \frac{1}{4}.$$

Further, putting $\lambda = \mu = 1$ and $\lambda = 1, \mu = 0$ in Theorem 3.4, we have the following results due to Sahoo and Patel [28].

Corollary 3.7. [28, Corollary 2.1] If the function f, given by (1.1) belongs to the class \mathcal{R}, then

$$|a_3 - a_2^2| \leq \frac{1}{6} \text{ and } |a_3| \leq \frac{1}{6}. \quad (3.18)$$

The estimates are sharp.

Now, we determine the sharp upper bound to the second Hankel determinant $|H_2(1)|$ for the class ML^*_λ.

Theorem 3.8. Let $f \in A$ given by (1.1) be in the class ML^*_λ. Assume that its coefficients a_2, a_3 and a_4 are given by (3.13), (3.14) and (3.15), with $p_1 > 0$. Then

$$|a_2 a_4 - a_3^2| \leq \frac{1}{4(2 + \lambda)^2}. \quad (3.19)$$

The estimate in (3.19) is sharp.
Proof. From (3.13), (3.14) and (3.15), we have

\[
a_{2}a_{4} - a_{3}^2 = \frac{p_{1}}{16(1 + \lambda)(3 + \lambda)} \left(p_{3} - \frac{7\lambda^2 + 16\lambda + 7}{4(1 + \lambda)(2 + \lambda)}p_{1}p_{2} + \frac{13 + 40\lambda + 25\lambda^2}{32(1 + \lambda)(2 + \lambda)}p_{1}^3 \right) \\
- \left[\frac{1}{4(2 + \lambda)} \left(p_{2} - \frac{3 + 7\lambda}{8(1 + \lambda)}p_{1}^2 \right) \right]^2 \\
= \frac{1}{16} \left[\frac{p_{1}p_{3}}{(1 + \lambda)(3 + \lambda)} - \frac{p_{2}^2}{(2 + \lambda)^2} \right. \\
- \frac{5 - 6\lambda + \lambda^2}{4(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)}p_{2}^2 \\
+ \frac{25 + 51\lambda - 9\lambda^2 + \lambda^3}{64(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)}p_{1}^4 \right].
\] (3.20)

For convenience of notation, we write \(p_{1} = p \) (0 ≤ \(p \) ≤ 2). Putting the values of \(p_{2} \) and \(p_{3} \) from Lemma 2.3 in (3.20), we obtain

\[
|a_{2}a_{4} - a_{3}^2| = \frac{1}{16} \left| \frac{p_{1}(p^2 + 2(4 - p^2)p_{2}x - (4 - p^2)p_{2}x^2 + 2(4 - p^2)(1 - |x|^2)z)}{4(1 + \lambda)(3 + \lambda)} \\
- \frac{(5 + 6\lambda - \lambda^2)p^2(4 - p^2)(1 - |x|^2)z}{8(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} \\
- \frac{(4 - p^2)^2}{4(2 + \lambda)^2} \right. \\
+ \frac{25 + 51\lambda - 9\lambda^2 + \lambda^3}{64(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)}p_{1}^4 \right| \\
= \frac{1}{16} \left| \frac{\lambda^3 - \lambda^2 + 19\lambda + 1}{64(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)}p_{1}^4 \\
- \frac{1 + 2\lambda - \lambda^2}{8(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)}(4 - p^2)p_{2}x \\
- \frac{p^2 + 4\lambda^2 + 16\lambda + 12}{4(1 + \lambda)(2 + \lambda)^2(3 + \lambda)}(4 - p^2)x^2 \\
+ \frac{p(4 - p^2)(1 - |x|^2)z}{2(1 + \lambda)(3 + \lambda)} \right| ,
\] (3.21)

for some \(x \) (|\(x \)| ≤ 1) and for some \(z \) (|\(z \)| ≤ 1). An application of triangle inequality in (3.21) and replacing |\(x \)| by \(y \) in the resulting equation with assumption that
(p^2 + 4\lambda^2 + 16\lambda + 12 - 8p - 8\lambda p - 2\lambda^2 p) > 0, we get

\[|a_2 a_4 - a_3^2| \leq \frac{1}{16} \left[\frac{\lambda^3 - \lambda^2 + 19\lambda + 1}{64(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} p^4 \\
+ \frac{(1 + 2\lambda - \lambda^2)(4 - p^2)p^2 y}{8(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} \\
+ \frac{p^2 + 4\lambda^2 + 16\lambda + 12 - 8p - 8\lambda p - 2\lambda^2 p}{4(1 + \lambda)(2 + \lambda)^2(3 + \lambda)} (4 - p^2) y^2 \\
+ \frac{(4 - p^2)p}{2(1 + \lambda)(3 + \lambda)} \right] = F(p, y; \lambda) \quad (0 \leq p \leq 2, \ 0 \leq y \leq 1)(say). \quad (3.22)

Differentiating on both sides of (3.22) with respect to \(y \), we have

\[\frac{\partial F(p, y; \lambda)}{\partial y} = \frac{1}{16} \left[\frac{(1 + 2\lambda - \lambda^2)(4 - p^2)p^2}{8(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} \\
+ \frac{p^2 + 4\lambda^2 + 16\lambda + 12 - 8p - 8\lambda p - 2\lambda^2 p}{2(1 + \lambda)(2 + \lambda)^2(3 + \lambda)} (4 - p^2) y \right] \quad (3.23)

It is observed that \(\frac{\partial F(p, y; \lambda)}{\partial y} > 0 \) for \(0 < p < 2, \ 0 < y < 1 \). Thus \(F(p, y; \lambda) \) is an increasing function of \(y \) which implies \(F(p, y; \lambda) \) cannot have maximum in the interior of the closed rectangle \([0, 2] \times [0, 1] \). Therefore, for fixed \(p \in [0, 2] \),

\[\max_{0 \leq y \leq 1} F(p, y; \lambda) = F(p, 1, 1) = H(p; \lambda)(say), \quad (3.24) \]

where

\[H(p; \lambda) = \frac{1}{16} \left[\frac{\lambda^3 - \lambda^2 + 19\lambda + 1}{64(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} p^4 \\
+ \frac{(1 + 2\lambda - \lambda^2)(4 - p^2)p^2}{8(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} \\
+ \frac{p^2 + 4\lambda^2 + 16\lambda + 12 - 8p - 8\lambda p - 2\lambda^2 p}{(1 + \lambda)(2 + \lambda)^2(3 + \lambda)} (4 - p^2) \right]. \quad (3.25)

Therefore

\[H'(p; \lambda) = \frac{1}{16} \left[\frac{3(\lambda^3 - \lambda^2 + 19\lambda + 1)}{16(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} p^3 + \frac{p(1 + 2\lambda - \lambda^2)(2 - p^2)}{2(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} \\
- \frac{3p^2}{2(1 + \lambda)(3 + \lambda)} \right], \quad (3.26)

and

\[H''(p; \lambda) = \frac{1}{16} \left[\frac{3(\lambda^3 - \lambda^2 + 19\lambda + 1)}{16(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} p^2 + \frac{(1 + 2\lambda - \lambda^2)(2 - 3p^2)}{2(1 + \lambda)^2(2 + \lambda)^2(3 + \lambda)} \\
- \frac{3p^2}{(1 + \lambda)(3 + \lambda)} \right]. \quad (3.27)\]
By elementary calculus we have $H''(p; \lambda) < 0$ for $0 \leq p \leq 2$ and $H(p; \lambda)$ has real critical point at $p = 0$. This shows that the maximum of $H(p; \lambda)$ occurs at $p = 0$. Thus, the upper bound in (3.22) corresponds to $p = 0$ and $y = 1$ from which we get the required estimate (3.19).

The result is sharp for the functions

$$\frac{zf'(z)}{(1 - \lambda)f(z) + \lambda z} = \sqrt{1 + z},$$

or

$$\frac{zf''(z)}{(1 - \lambda)f(z) + \lambda z} = \sqrt{1 + z^2}.$$

The proof of Theorem 3.8 is thus completed.

Remark 3.9. Putting $\lambda = 0$ and $\lambda = 1$ in Theorem 3.8, we get the result of Raza and Malik (see [27]) and Sahoo and Patel (see [28]).

The sharp upper bound for the fourth coefficient of the function $f \in ML^*_\lambda$ is given by the following theorem.

Theorem 3.10. Let the function f given by (1.1) be in the class ML^*_L. Then

$$|a_4| \leq \frac{1}{2(3 + \lambda)} \quad (0 \leq \lambda \leq 1).$$

(3.26)

Proof. Proceeding similarly as in the proof of Theorem 3.8 and making use of Lemma 2.2 in (3.15) assuming that $(1 - 4\lambda - 3\lambda^2) > 0$, it follows that

$$|a_4| \leq \frac{1}{16(3 + \lambda)} \left[\frac{1 + 5\lambda^2}{8(1 + \lambda)(2 + \lambda)}p^3 + \frac{(1 - 4\lambda - 3\lambda^2)}{2(1 + \lambda)(2 + \lambda)}(4 - p^2)py
+ (4 - p^2)py^2 + 2(4 - p^2)(1 - y^2) \right]$$

$$= T(p, y; \lambda) \text{ (say)}.$$

(3.27)

Now we maximize the function $T(p, y; \lambda)$ on the closed rectangle $[0, 2] \times [0, 1]$. Suppose that the maximum of T occurs at the interior point of $[0, 2] \times [0, 1]$. Differentiating (3.27) with respect to y, we obtain

$$\frac{\partial T}{\partial y} = \frac{1}{16(3 + \lambda)} \left[\frac{(1 - 4\lambda - 3\lambda^2)}{2(1 + \lambda)(2 + \lambda)}p + 2(p - 2)y \right] (4 - p^2).$$

(3.28)

It is clear that $\frac{\partial T}{\partial y} < 0$ for $0 < p < 2$ and $0 < y < 1$. Thus, $T(p, y, \lambda)$ is an decreasing function of y, contradicting our assumption. Therefore,

$$\max_{0 \leq y \leq 1} T(p, y; \lambda) = T(p, 0, \lambda) = \frac{1}{16(3 + \lambda)} \left[\frac{1 + 5\lambda^2}{8(1 + \lambda)(2 + \lambda)}p^3 + 2(4 - p^2) \right]$$

$$= S(p) \text{ (say)}. \quad (3.29)$$
From (3.29), we have
\[
S'(p) = \frac{1}{16(3 + \lambda)} \left(\frac{3(1 + 5\lambda^2)p^2}{8(1 + \lambda)(2 + \lambda)} - 4p \right),
\]
and
\[
S''(p) = \frac{1}{16(3 + \lambda)} \left(\frac{3(1 + 5\lambda^2)p}{4(1 + \lambda)(2 + \lambda)} - 4 \right).
\]
For extreme values of $S(p)$, consider $S'(p) = 0$. From (3.30), we have
\[
\frac{3(1 + 5\lambda^2)p^2}{8(1 + \lambda)(2 + \lambda)} - 4p = 0
\]
\[
\Rightarrow p \left[\frac{3(1 + 5\lambda^2)p}{8(1 + \lambda)(2 + \lambda)} - 4 \right] = 0
\]
We now discuss the following cases.

Cases 1: If $p = 0$, then
\[
S''(p) = -\frac{1}{4(3 + \lambda)} < 0.
\]
By the second derivative test, $S(p)$ has maximum value at $p = 0$.

Cases 2: If $p \neq 0$, then (3.33) gives
\[
p = \frac{32(1 + \lambda)(2 + \lambda)}{3(1 + 5\lambda^2)}.
\]
Using the value of p given in (3.33) in (3.31), we get
\[
S''(p) = \frac{1}{4(3 + \lambda)} > 0 \quad (0 \leq \lambda \leq 1).
\]
Hence by second derivative test, $S(p)$ has minimum value at p, where p is given by (3.33).

From the above discussion, it is clear that $S(p)$ attains its maximum at $p = 0$. Thus, the upper bound in (3.27) corresponds to $p = 0$ and $y = 0$ from which we get the required estimate (3.26).

The estimate in (3.26) is sharp for the function $f \in A$ given by
\[
\frac{zf'(z)}{(1 - \lambda)f(z) + \lambda z} = \sqrt{1 + z^3} \quad (z \in \mathbb{U}).
\]
This complete the prove of Theorem 3.10.

Remark 3.11. Taking $\lambda = 0$ and $\lambda = 1$ in Theorem 3.10, we get the upper bounds for $|a_4|$ for the class of SL^* and R respectively studied by Raza and Malik [27] and Sahoo and Patel [28].

Acknowledgement: The authors would like to express their gratitude to the reviewers for careful reading of the manuscript and making valuable suggestions which leads to better presentation of the paper.
References

Trailokya Panigrahi,
Department of Mathematics,
School of Applied Sciences,
KIIT University, Bhubaneswar-751024
Odisha, India.
E-mail address: trailokyap6@gmail.com

and

Janusz Sokół,
University of Rzeszów,
Faculty of Mathematics and Natural Sciences,
ul. Prof. Piggins 1, 35-310 Rzeszów, Poland.
E-mail address: jsokol@ur.edu.pl