On a Generalization of Prime Submodules of a Module over a Commutative Ring

Hosein Fazaeli Moghimi and Batool Zarei Jalal Abadi

ABSTRACT: Let R be a commutative ring with identity, and $n \geq 1$ an integer. A proper submodule N of an R-module M is called an n-prime submodule if whenever $a_1 \cdots a_{n+1} m \in N$ for some non-units $a_1, \ldots, a_{n+1} \in R$ and $m \in M$, then $m \in N$ or there are n of the a_i’s whose product is in $(N : M)$. In this paper, we study n-prime submodules as a generalization of prime submodules. Among other results, it is shown that if M is a finitely generated faithful multiplication module over a Dedekind domain R, then every n-prime submodule of M has the form $m_1 \cdots m_t M$ for some maximal ideals m_1, \ldots, m_t of R with $1 \leq t \leq n$.

Key Words: n-prime submodule, n-absorbing ideal, AP n-module.

Contents

1 Introduction 153
2 On n-prime submodules 154
3 Extensions of n-prime submodules 158
4 AP n-modules 163

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Also we take R as a commutative ring with identity, $U(R)$ as the set of unit elements of R, M as an R-module, and $n \geq 1$ is a positive integer. A proper ideal I of a ring R is an n-absorbing ideal of R if whenever $a_1 \cdots a_{n+1} \in I$ for $a_1, \ldots, a_{n+1} \in R$, then there are n of the a_i’s whose product is in I. It is evident that a 1-absorbing ideal is just a prime ideal. This concept was firstly introduced for $n = 2$ by A. Badawi [3], and then it has been studied for any positive integer n by D. F. Anderson and A. Badawi [1]. The authors generalized this notion to (m, n)-absorbing ideals with $m > n$ [11]. In fact, these ideals absorb an n-subproduct of every m-product of elements which lies in I. In this case, $(n + 1, n)$-absorbing ideals are just n-absorbing ideals. Moreover, there are several generalizations of n-absorbing ideals of a ring to submodules of a module (see, for example, [8,10]). In this paper, we study the notion of an n-prime submodule of a module as a generalization of a prime submodule.

2010 Mathematics Subject Classification: 13A15, 13C13, 13C99, 13E05.
Submitted October 20, 2016. Published March 11, 2017

Typeset by \LaTeX style.
© Soc. Paran. de Mat.
Let M be an R-module. A proper submodule N of M is called a prime submodule if for $r \in R$, $m \in M$, $rm \in N$ implies that $r \in (N : M)$ or $m \in N$. Prime submodules have been introduced by J. Dauns in [4], and then this class of submodules has been extensively studied by several authors (see, for example, [5,7]).

Definition 1.1. Let R be a ring, $U(R)$ the set of units of R, M an R-module and n a positive integer. A proper submodule N of M is called an n-prime submodule of M if whenever $a_1 \cdots a_{n+1}m \in N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \in M$, then $m \in N$ or there are n of the a_i's whose product is in $(N : M)$, where $(N : M) = \{ r \in R \mid rM \subseteq N \}$. An ideal I of R is called an n-prime ideal of R if it is an n-prime submodule of the R-module R.

By this definition, a 1-prime submodule is just a prime submodule. Moreover, every n-prime ideal is an n-absorbing ideal, but the converse is not true in general (Example 2.6). It is shown that if R is a non-local PID or a polynomial ring $S[X]$ over a domain S, then every n-prime ideal of R is just a prime ideal of R (Theorems 2.8 and 2.12). However, an example of an n-prime ideal of a ring is given which is not a prime ideal (Example 2.6).

It is shown that every n-prime submodule is primary. Also, if R is a Bézout ring and M is a faithful multiplication R-module, then every n-prime submodule contains the nth power of its radical (Theorem 2.4). Moreover it is proved that if M is a multiplication R-module, then N is an n-prime submodule of M if and only if $(N : M)$ is an n-prime ideal of R (Corollary 4.6). It is shown that if $N \times N'$ is an n-prime submodule of $M \times M'$, then N and N' are respectively an n-prime submodule of M and M'. The converse is true if $(N : M) = (N' : M')$ (Theorem 3.10). Using this fact, an example of an n-prime submodule of a module is given which is not prime submodule (Example 3.11).

Finally, we introduce and study AP n-modules. Indeed, an AP n-module M has the property that for each n-absorbing ideal I of R, IM is an n-prime submodule of M. If R is an AP n-module over itself, then we call it an AP n-ring. For example, every Artin local ring is an AP n-ring for some positive integer n (Theorem 4.8). Moreover, Noetherian valuation domains are AP n-rings for all positive integer n (Theorem 4.9). It is shown that every finitely generated faithful multiplication module over an AP n-ring is an AP n-module (Corollary 4.7).

2. On n-prime submodules

We start with several elementary results.

Theorem 2.1. Let R be a ring, M a non-zero R-module and n be a positive integer.

1. A proper submodule N of M is an n-prime submodule of M if and only if whenever $a_1 \cdots a_{n+1}m \in N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \in M$ with $t > n$, then $m \in N$ or there are n of the a_i's whose product is in $(N : M)$.

2. If N is an n-prime submodule of M, then N is a t-prime submodule of M for all $t \geq n$.
ON A GENERALIZATION OF PRIME SUBMODULES

2.2 There is no such prime exists, we define \(\text{rad} M \). Then the following hold:

Proof: The proof is routine, and thus it is omitted. \(\Box \)

Let \(N \) be a proper submodule of an \(R \)-module \(M \). If \(N \) is an \(n \)-prime submodule of \(M \) for some positive integer \(n \), then define \(\nu(N) = \min \{ n \mid N \text{ is an \(n \)-prime submodule of } M \} \); otherwise, set \(\nu(N) = \infty \). It is convenient to define \(\nu(M) = 0 \). Thus for any submodule \(N \) of \(M \), we have \(\nu(N) \in \mathbb{N} \cup \{ 0, \infty \} \) with \(\nu(N) = 1 \) if and only if \(N \) is a prime submodule of \(M \) and \(\nu(N) = 0 \) if and only if \(N = M \). So \(\nu(N) \) measures, in some sense, how far \(N \) is from being a prime submodule of \(M \). Clearly \(\omega(I) \leq \nu(I) \), where \(\omega(I) = \min \{ n \mid I \text{ is an } n \text{-absorbing ideal of } R \} \).

Lemma 2.2. Let \(R \) be a ring, \(M \) a non-zero \(R \)-module and \(n \) a positive integer. Then the following hold:

1. A proper submodule \(N \) of \(M \) is an \(n \)-prime submodule if and only if whenever \(a_1 \cdots a_{n+1}K \subseteq N \) for \(a_1, \ldots, a_{n+1} \in R \setminus U(R) \) and submodule \(K \) of \(M \), then \(K \subseteq N \) or there are \(n \) of the \(a_i \)'s whose product is in \((N : M) \).

2. If a proper submodule \(N \) of \(M \) is an \(n \)-prime submodule of \(M \), then \((N : M) \) is an \(n \)-prime ideal of \(R \) and so it is an \(n \)-absorbing ideal of \(R \). Moreover \(\omega(N : M) \leq \nu(N) \).

Proof: (1) Let \(N \) be an \(n \)-prime submodule of \(M \) and \(a_1 \cdots a_{n+1}K \subseteq N \) for \(a_1, \ldots, a_{n+1} \in R \setminus U(R) \) and for a submodule \(K \) of \(M \). Let \(K \not\subseteq N \) and \(m \in K \setminus N \). Since \(a_1 \cdots a_{n+1}m \in N \) and \(N \) is an \(n \)-prime submodule of \(M \), there are \(n \) of the \(a_i \)'s whose product is in \((N : M) \). Conversely, if the given condition is true for a submodule \(N \) of \(M \), and \(a_1 \cdots a_{n+1} \in N \) for \(a_1, \ldots, a_{n+1} \in R \setminus U(R) \) and \(m \in M \), then it suffices to take \(K = Rm \).

(2) Let \(a_1 \cdots a_{n+1}r \in (N : M) \) for \(a_1, \ldots, a_{n+1} \in R \setminus U(R) \), \(r \in R \) and no proper subproduct of the \(a_i \)'s is in \((N : M) \). Then \(a_1 \cdots a_{n+1}rM \subseteq N \). Thus, by (1), \(rM \subseteq N \). The “In particular” statement is clear. \(\Box \)

The converse of the Lemma 2.2(2) is not necessarily true, as the following example shows.

Example 2.3. (1) Let \(R = \mathbb{Z} \), \(M = \mathbb{Z} \oplus \mathbb{Z} \) and \(N = 4\mathbb{Z} \oplus 4\mathbb{Z} \). Then, by [1, Theorem 2.1(d)], \((N : M) = 4\mathbb{Z} \) is a 2-absorbing ideal of \(R \), but \(N \) is not an \(n \)-prime submodule of \(M \) for any positive integer \(n \). In fact, if \(a_1 = 2 \) and \(a_2, \ldots, a_{n+1} \) are odd prime numbers, then \(a_1 \cdots a_{n+1}(2, 0) \in N \), but no proper subproduct of the \(a_i \)'s is in \((N : M) \) and \((2, 0) \notin N \).

(2) Let \(R = \mathbb{Z} \), \(M = \mathbb{Z}(p^\infty) \oplus \mathbb{Z}_p \) and \(N = 0 \oplus \mathbb{Z}_p \) for some prime integer \(p \). Then \((N : M) = 0 \) is 1-prime, but by [7, Example 3.7] \(N \) is not a 1-prime submodule of \(M \).

Let \(N \) be a submodule of an \(R \)-module \(M \). By radical of \(N \), denoted \(\text{rad} N \), we mean that the intersection of all prime submodules of \(M \) containing \(N \). If there is no such prime exists, we define \(\text{rad} N = M \). For an ideal \(I \) of \(R \), we denote the radical of \(I \) by \(\sqrt{I} \).
An R-module M is called a multiplication module, if for each submodule N of M there exists an ideal I of R such that $N = IM$. In this case, we can take $I = (N : M)$. If $N_1 = I_1M$ and $N_2 = I_2M$ are two submodules of an R-module M for some ideals I_1 and I_2 of R, then N_1N_2 is used to denote I_1I_2M.

Theorem 2.4. Let R be a ring, M an R-module and N a submodule of M. If N is an n-prime submodule of M for some positive integer n, then:

1. N is a primary submodule of M, and so $(N : M)$ is a primary ideal of R and $\sqrt{N : M}$ is a prime ideal of R.
2. If $(N : M)$ is a prime ideal of R, then N is a prime submodule of M.
3. If M is finitely generated faithful multiplication, then rad N is a prime submodule of M.
4. If R is a Bézout ring and M is multiplication, then $(\text{rad} N)^n \subseteq N$. In particular, this holds if R is a valuation domain.

Proof: (1) Let $am \in N$ for $a \in R$ and $m \in M \setminus N$. Clearly $a \in R \setminus U(R)$. Then $a^{n+1}m \in N$ implies that $a \in \sqrt{N : M}$.

(2) Since $(N : M)$ is a prime ideal of R, $\sqrt{N : M} = (N : M)$. Let $am \in N$ for $a \in R$ and $m \in M \setminus N$. By (1) N is primary and then $a \in \sqrt{N : M} = (N : M)$. Thus N is a prime submodule of M.

(3) Since N is proper and M is multiplication, by [5, Theorem 2.12], rad $N = \sqrt{N : MM}$. By (1), $\sqrt{N : M}$ is prime. Now since M is finitely generated faithful, by [5, Theorem 3.1 and Lemma 2.10], rad $N \neq M$ is a prime submodule of M.

(4) By (1) and Lemma 2.2(2), $\sqrt{N : M}$ is a prime ideal of R and $(N : M)$ is an n-absorbing ideal of R. Since R is Bézout, by [1, Lemma 5.4], $(\sqrt{N : M})^n \subseteq (N : M)$. Thus by using [5, Theorem 2.12], $(\text{rad} N)^n = (\sqrt{N : M})^n M \subseteq (N : M)M = N$. □

Theorem 2.5. Let (R, m) be a local ring, M an R-module and N a submodule of M such that $m^n \subseteq (N : M)$ for some positive integer n. Then N is an n-prime submodule of M.

Proof: Let $a_1 \cdots a_n+1m \in N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \in M \setminus N$. Since $R \setminus U(R) = m$ and $m^n \subseteq (N : M)$, every n-subproduct of the a_i’s is in $(N : M)$. □

Example 2.6. Let $R = \mathbb{Z}_p^\omega$ and $m = \bar{p}R$, where $p \in \mathbb{Z}$ is a positive integer. Then (R, m) is local. Every proper ideal of R has the form $I_n = \bar{p}^nR$ for $n < t$. Thus by Theorem 2.5, I_n is an n-prime ideal of R.

Corollary 2.7. Let R be a Noetherian ring, M an R-module and N a p-primary submodule of M for some prime ideal p of R. Then N_p is an n-prime submodule of M_p for some positive integer n.
Proof: Let N be a p-primary submodule of M. Then $(N : M)$ is a p-primary ideal of R. Thus by [9, Theorem 5.37], $(N : M)_p$ is a pR_p-primary ideal of R_p.

Since (R_p, pR_p) is Noetherian local ring, $p^nR_p \subseteq (N : M)_p \subseteq (N_p : M_p)$ for some positive integer n. Now by Theorem 2.5, N_p is an n-prime submodule of M_p. □

Theorem 2.8. Let R be a PID and $n > 1$ an integer.

1. If (R, \mathfrak{m}) is local, then every ideal of R is n-prime for some positive integer n.

2. If R is not local, then every n-prime ideal of R is prime.

Proof: (1) Let I be an ideal of R. Since every non-zero prime ideal of R is maximal and (R, \mathfrak{m}) is local, I is \mathfrak{m}-primary. Now since R is Noetherian, $\mathfrak{m}^n \subseteq I$ for some positive integer n. Then by Theorem 2.5, I is an n-prime ideal of R.

(2) Let R be a non-local PID. Then R has at least two distinct prime elements. Now if I is an n-prime ideal of R, then I is primary by Theorem 2.4(1). Thus $I = p^tR$ for some prime element p of R and positive integer $t \leq n$. Let $t \neq 1$ and $a_1 = \cdots = a_{t-1} = r = p$ and $a_t = \cdots = a_{n+1} = q$ which $q \neq p$ is a prime element of R. Then $a_1 \cdots a_{n+1}r \in I$. However, $r \notin I$ and no proper n-subproduct is in I, a contradiction. Therefore $t = 1$ and hence I is prime. □

Remark 2.9. It is clear that every n-prime ideal of R is an n-absorbing ideal of R. However, the converse need not be true in general. For example, if $R = \mathbb{Z}$ and $I = 4\mathbb{Z}$, then I is a 2-absorbing ideal of R which is not a 2-prime ideal of R by Theorem 2.8.

Theorem 2.10. Let R be a ring such that every proper ideal of R is an n-prime ideal for some positive integer n. Then R is a local ring.

Proof: Let m_1 and m_2 be two maximal ideals of R. Then $I = m_1 \cap m_2$ is an n-prime ideal for some positive integer n. By Theorem 2.4(1), I is a primary ideal of R. Then $m_1 = m_2$. □

Corollary 2.11. Let R be a ring and n a positive integer such that every proper ideal of R is an n-prime ideal of R. Then R is local and $\dim R = 0$.

Proof: By Theorem 2.10, R is local. Since every n-prime ideal is an n-absorbing ideal, by [1, Theorem 5.9], $\dim R = 0$. □

Theorem 2.12. Let $R = S[X]$ be a polynomial ring with coefficients in a domain S. Then every n-prime ideal of R is prime.

Proof: Let I be a non-prime ideal of $R = S[X]$. Then there are $f, g \in R \setminus I$ such that $fg \in I$. Since S is domain, S has not non-zero nilpotent element. Then by [9, Exercise 1.36], $fg+1$ is non-unit. On the other hand, $f(fg+1)^n = fg(fg+1)^n \in I$. However, $g \notin I$ and $(fg+1)^n \notin I$ and $f(fg+1)^{n-1} \notin I$. Then I is not an n-prime ideal of R. □
Theorem 2.13. Let R be a Dedekind domain and M be a finitely generated faithful multiplication R-module. If N is an n-prime submodule of M, then $N = N_1 \cdots N_t$ for some maximal submodules N_1, \ldots, N_t of M with $1 \leq t \leq n$.

Proof: Suppose that N is an n-prime submodule of M. Then by Lemma 2.2(2), $(N : M)$ is an n-absorbing ideal of R. Now by [1, Theorem 5.1], $(N : M) = m_1 \cdots m_t$ for some maximal ideals m_1, \ldots, m_t of R with $1 \leq t \leq n$. Thus $N = (N : M)M = m_1 \cdots m_t M = m_1 M \cdots m_t M$ and $m_1 M, \ldots, m_t M$ are maximal submodules of M by [5, Theorem 2.5 and Theorem 3.1].

3. Extensions of n-prime submodules

In this section, we investigate the stability of n-prime submodules in various module-theoretic constructions.

Let N be a proper submodule of an R-module M. For $x \in M$, $N_x = (N : x) = \{r \in R \mid rx \in N\}$ is an ideal of R and clearly $(N : M) \subseteq (N : x)$.

Proposition 3.1. Let R be a ring and M an R-module. If N is an n-prime submodule of M, then N_x is an n-prime ideal of R and so is n-absorbing ideal of R for all $x \in M \setminus N$. Moreover $\omega(N_x) \leq \nu(N)$ for all $x \in M$.

Proof: Let N be an n-prime submodule of M and $a_1 \cdots a_{n+1} r \in N_x$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $r \in R \setminus N_x$. Then $a_1 \cdots a_{n+1} rx \in N$ and $rx \notin N$. Since N is an n-prime submodule of M, there are n of the a_i’s whose product is in $(N : M) \subseteq (N : x) = N_x$. This implies that N_x is an n-prime ideal and so is an n-absorbing ideal of R.

The “moreover” statement is clear if $x \in M \setminus N$ by above argument. If $x \in N$, then $N_x = R$ and hence $\omega(N_x) = 0 \leq \nu(N)$.

For each $r \in R$ and every submodule N of M, we consider $N_r = (N : M r) = \{x \in M \mid rx \in N\}$.

Proposition 3.2. Let R be a ring. If N is an n-prime submodule of an R-module M, then N_r is an n-prime submodule of M for any $r \in \sqrt{N} : M \setminus (N : M)$.

Proof: Let $a_1 \cdots a_{n+1} m \in N_r$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$, $m \in M$. Then $a_1 \cdots a_{n+1} rm \in N$. Since N is an n-prime submodule of M, $rm \in N$ or there are n of the a_i’s whose product is in $(N : M)$. Thus $m \in N_r$ or there are n of the a_i’s whose product is in $(N_r : M)$, since $(N : M) \subseteq (N_r : M)$.

Proposition 3.3. Let R be a ring and M an R-module. If N_i is an n_i-prime submodule of M such that $(N_i : M) = (N_j : M)$ for all $1 \leq i, j \leq t$, then $\cap_{i=1}^t N_i$ is an n-prime submodule of M for $n = \max\{n_i \mid 1 \leq i \leq t\}$.

Proof: Let $t = 2$ and $n = \max\{n_1, n_2\}$. Suppose that $a_1 \cdots a_{n+1} m \in N_1 \cap N_2$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$, $m \in M$. Then $a_1 \cdots a_{n+1} m \in N_1$ and $a_1 \cdots a_{n+1} m \in N_2$.

158

H. F. Moghimi and B. Z. J. Abadi
Since N_1 and N_2 are respectively n_1-prime and n_2-prime, either $m \in N_1 \cap N_2$ or there are n_1 of the a_i’s whose product is in $(N_1 : M)$ or there are n_2 of the a_i’s whose product is in $(N_2 : M)$. If $m \in N_1 \cap N_2$, then we are done. In other words, there are n of the a_i’s whose product is in $(N_1 \cap N_2 : M) = (N_1 : M) = (N_2 : M)$ for $n = \max\{n_1, n_2\}$. This implies that $N_1 \cap N_2$ is an n-prime submodule of M. The proof for $t > 2$ is follows similarly by induction on t.

The following example shows that Proposition 3.3 is not true in general.

Example 3.4. Let $R = \mathbb{Z}$, $M = \mathbb{Z} \oplus \mathbb{Z}$, $N_1 = \mathbb{Z} \oplus \mathbb{Z}$ and $N_2 = \mathbb{Z} \oplus \mathbb{Z}$. Then N_1 and N_2 are 1-prime submodules, but $N = N_1 \cap N_2 = 6\mathbb{Z} \oplus \mathbb{Z}$ is not an n-prime submodule for all positive integer n. Since $(N : M) = 6\mathbb{Z}$ is not n-prime, by Theorem 2.8 and then by Lemma 2.2(2), N is not an n-prime submodule of M.

Theorem 3.5. Let R be a ring, M an R-module and N an n-prime submodule of M. Then for any submodule K of M either $K \subseteq N$ or $N \cap K$ is an n-prime submodule of K.

Proof: Let K be a submodule of M such that $K \nsubseteq N$. Then $N \cap K \subset K$. Now if $a_1 \cdots a_{n+1} k \in N \cap K$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $k \in K$, then $a_1 \cdots a_{n+1} k \in N$. Since N is an n-prime submodule of M, $k \in N$ or there are n of the a_i’s whose product is in $(N : M)$. Thus $k \in N \cap K$ or there are n of the a_i’s whose product is in $(N \cap K : K)$, since $(N : M) \subseteq (N \cap K : K)$. \square

Theorem 3.6. Let R be a ring and $f : M \rightarrow M'$ be a homomorphism of R-modules. Then the following hold:

1. If N' is an n-prime submodule of M' such that $f(M) \nsubseteq N'$, then $f^{-1}(N')$ is an n-prime submodule of M.

2. If f is surjective and N is an n-prime submodule of M such that $\ker f \subseteq N$, then $f(N)$ is an n-prime submodule of M'.

Proof:

(1) Let N' be an n-prime submodule of M' and $a_1 \cdots a_{n+1} m \in f^{-1}(N')$ for non-unit elements $a_1, \ldots, a_{n+1} \in R$ and $m \in M$. Then $a_1 \cdots a_{n+1} f(m) = f(a_1 \cdots a_{n+1} m) \in N'$. Since N' is an n-prime submodule of M, $f(m) \in N'$ or there are n of the a_i’s whose product is in $(N' : M')$. Hence $m \in f^{-1}(N')$ or there are n of the a_i’s whose product is in $(f^{-1}(N') : M)$, since $(N' : M') \subseteq (f^{-1}(N') : M)$.

(2) Let N be an n-prime submodule of M and $a_1 \cdots a_{n+1} m' \in f(N)$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m' \in M'$. Since f is surjective, $m' = f(m)$ for some $m \in M$. Then

$$a_1 \cdots a_{n+1} m' = a_1 \cdots a_{n+1} f(m) = f(a_1 \cdots a_{n+1} m) = f(n)$$

for some $n \in N$. Thus $a_1 \cdots a_{n+1} m - n = \ker f \subseteq N$. Therefore $a_1 \cdots a_{n+1} m \in N$. Since N is an n-prime submodule of M, either $m \in N$ or there are n of the a_i’s whose product is in $(N : M)$. Hence $m' \in f(N)$ or there are n of the a_i’s whose product is in $(f(N) : M')$ (Note that, $(N : M) \subseteq (f(N) : M')$, since f is surjective). \square
Corollary 3.7. Let R be a ring, M an R-module and N, K proper submodules of M such that $N \subseteq K$. Then K is an n-prime submodule of M if and only if K/N is an n-prime submodule of M/N.

Proof: Consider the natural projection $\pi : M \to M/N$ defined by $\pi(m) = m + N$ and use Theorem 3.6. □

Let R be a ring and M an R-module. Let N be a submodule of M. A submodule K of M maximal with respect to the property that $K \cap N = 0$ is called a complement of N in M. A submodule K of M will be called complement in M if there exists a submodule N of M such that K is a complement of N in M. A submodule N of M will be called essential if $N \cap K \neq 0$ for every non-zero submodule K of M. Also a submodule N of M will be called essential in a submodule L of M containing N, if N is essential as a submodule of L. It is not difficult to prove that if K is a complement in M, then K is not essential in any submodule L of M containing K.

Theorem 3.8. Let R be a ring, M an R-module and N an n-prime submodule of M. If K is a submodule of M containing N such that K/N is a complement in M/N, then K is an n-prime submodule of M.

Proof: Let $a_1 \cdots a_{n+1} m \in K$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \notin K$. Then $L = K + Rm$ is a submodule of M which contains K properly and $a_1 a_2 \cdots a_{n+1} L \subseteq K$. K/N is not essential in L/N, since K/N is a complement in M/N. Thus there exists a submodule L' of L such that $N \subseteq L'$ and $K \cap L' = N$. Let $m' \in L' \setminus N$. Then $a_1 a_2 \cdots a_{n+1} m' \in a_1 a_2 \cdots a_{n+1} L' \subseteq (a_1 a_2 \cdots a_{n+1} L) \cap L' \subseteq K \cap L' = N$. Since N is an n-prime submodule of M, there are n of the a_i’s whose product is in $(N : M) \subseteq (K : M)$. Hence K is an n-prime submodule of M. □

Let M be an R-module. By zero divisors of M, denoted $Z_R(M)$, we mean that the set of elements $r \in R$ such that $rm = 0$ for some non-zero element $m \in M$.

Theorem 3.9. Let R be a ring, M an R-module and N a submodule of M. Let S be a multiplicatively closed subset of R such that $S \cap Z_R(M/N) = \emptyset$. If N is an n-prime submodule of M, then $S^{-1}N$ is an n-prime submodule of $S^{-1}M$.

Proof: Let N be an n-prime submodule of M. Since $S \cap Z_R(M/N) = \emptyset$, it is easily seen that $S^{-1}N \neq S^{-1}M$. Suppose that $\frac{a_1}{s_1} \cdots \frac{a_{n+1}}{s_{n+1}} m \in S^{-1}N$ for $\frac{a_1}{s_1}, \ldots, \frac{a_{n+1}}{s_{n+1}} \in S^{-1}R \setminus U(S^{-1}R)$ and $\frac{m}{t} \in S^{-1}M$. Then $\frac{a_1}{s_1} \cdots \frac{a_{n+1}}{s_{n+1}} m \frac{t}{s} = \frac{m}{t}$ for some $n \in N$ and $t \in S$. Thus $a_1 \cdots a_{n+1} tm = s_1 \cdots s_{n+1} su \in N$ for some $u \in S$. Clearly a_i’s are non-unit in R. Thus, since N is an n-prime submodule of M, there are n of the a_i’s whose product is in $(N : M)$ or there are $n - 1$ of the a_i’s whose product with tu is in $(N : M)$ or $m \in N$. If $m \in N$, then $\frac{m}{t} \in S^{-1}N$. If there are n of the a_i’s whose product is in $(N : M)$, then there are n of the a_i’s whose product is in $S^{-1}(N : M) \subseteq (S^{-1}N : S^{-1}M)$. If there are $n - 1$ of the a_i’s
whose product with tu is in $(N : M)$, for example $a_1 \cdots a_{n-1}(tu) \in (N : M)$, then $a_1 \cdots a_n(tu) \in (N : M)$. Thus
\[
\frac{a_1 \cdots a_{n-1} a_n}{s_1 \cdots s_n} = \frac{a_1 \cdots a_{n-1} a_n(tu)}{s_1 \cdots s_n(tu)} = \frac{a_1 \cdots a_n(tu)}{s_1 \cdots s_n(tu)} \in S^{-1}(N : M) \subseteq (S^{-1}N : S^{-1}M).
\]
This implies that $S^{-1}N$ is an n-prime submodule of $S^{-1}M$. \hfill \Box

Theorem 3.10. Let R be a ring, M, M' R-modules, N a submodule of M, N' a submodule of M' and I, I' two ideals of R. Then the following hold:

1. If $N \times N'$ is an n-prime submodule of $M \times M'$, then N and N' are respectively an n-prime submodule of M and M'. The converse is true if $(N : M) = (N' : M')$.

2. N (resp. N') is an n-prime submodule of M (resp. M') if and only if $N \times M'$ (resp. $M \times N'$) is an n-prime submodule of $M \times M'$.

3. If $I \times I'$ is an n-prime submodule of the R-module $R \times R$, then I and I' are n-prime ideals of R. The converse is true if $I = I'$.

4. If $I \times I'$ is an n-prime ideal of $R \times R$, then I and I' are n-prime ideals of R. The converse is true if $I = I'$.

5. I (resp. I') is an n-prime ideal of R (resp. R') if and only if $I \times R'$ (resp. $R \times I'$) is an n-prime submodule of the R-module $R \times R'$.

6. I (resp. I') is an n-prime ideal of R (resp. R') if and only if $I \times R'$ (resp. $R \times I'$) is an n-prime ideal of $R \times R'$.

Proof:

1. Let $N \times N'$ be an n-prime submodule of $M \times M'$ and let $a_1 \cdots a_{n+1}m \in N$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $m \in M$. Then $a_1 \cdots a_{n+1}(m, 0) \in N \times N'$. Thus $(m, 0) \in N \times N'$ or there are n of the a_i’s whose product is in $(N \times N' : M \times M') = (N : M) \cap (N' : M')$. Hence N is an n-prime submodule of M. By a similar argument, N' is an n-prime submodule of M'. Conversely let $a_1 \cdots a_{n+1}(m, m') \in N \times N'$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $(m, m') \in M \times M' \setminus N \times N'$. Then $m \notin N$ or $m' \notin N'$. Let $m \notin N$. Then $a_1 \cdots a_{n+1}m \in N$, implies that there are n of the a_i’s whose product is in $(N : M) = (N \times N' : M \times M')$.

2. Let N be an n-prime submodule of M and $a_1 \cdots a_{n+1}(m, m') \in N \times M'$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $(m, m') \in M \times M'$. Then $a_1 \cdots a_{n+1}m \in N$. Since N is an n-prime submodule of M, either $m \in N$ or there are n of the a_i’s whose product is in $(N : M) = (N \times M' : M \times M')$. This implies that $N \times M'$ is an n-prime submodule of $M \times M'$. The converse is similar to (1). By a similar argument, N' is an n-prime submodule of M' if and only if $M \times N'$ is an n-prime submodule of $M \times M'$.

(3) By (1).
(4) The proof is similar to the proof of (1).
(5) By (2).
(6) The proof is similar to the proof of (2).

Example 3.11. Let \(R = \mathbb{Z}_{p^n}, M = R \oplus R, N_n = I_n \oplus I_n, L_n = R \oplus I_n \) and \(K_n = I_n \oplus R(n < t) \). Then by Example 2.6 and Theorem 3.10(3), \(N_n, L_n \) and \(K_n \) are prime submodules of \(M \).

Let \(R \) be a ring and \(M \) an \(R \)-module. Then \(R(+)M = R \times M \) is a ring with identity \((1, 0)\) under addition defined by \((r, m) + (s, n) = (r + s, m + n)\) and multiplication defined by \((r, m)(s, n) = (rs, rn + sm)\). We view \(R \) as a subring of \(R(+)M \) via \(r \mapsto (r, 0) \).

Theorem 3.12. Let \(R \) be a ring, \(M \) an \(R \)-module, \(I \) an \(n_1 \)-absorbing ideal of \(R \) and \(N \) an \(n_2 \)-prime submodule of \(M \) with \(IM \subseteq N \). Then \(I(+)N \) is an \(n \)-absorbing ideal of \(R(+)M \) for \(n = n_1 + n_2 \). Conversely if \(I(+)N \) is an \(n \)-absorbing ideal of \(R(+)M \), then \(I \) is an \(n \)-absorbing ideal of \(R \).

Proof: Let \(n = n_1 + n_2 \). Assume that \((a_1, m_1) \cdots (a_{n_1+1}, m_{n_1+1}) \in I(+)N\) for \((a_1, m_1), \ldots, (a_{n_1+1}, m_{n_1+1}) \in R(+)M\). Without loss of generality suppose that these elements are not in \(U(R(+)M) \). Then \(a_1 \cdots a_{n_1+1} \in I \) and

\[
\sum_{i=1}^{n_1+1} a_1 \cdots a_{i-1}a_{i+1} \cdots a_{n_1+1}m_i \in N
\]

(3.1)

Since \(I \) is an \(n_1 \)-absorbing ideal of \(R \), there are \(n_1 \) of the \(a_i \)'s whose product is in \(I \). For example, let \(a_1 \cdots a_{n_1} \in I \). The terms of (3.1) that contain \(a_1 \cdots a_{n_1} \), are in \(IM \subseteq N \). Thus \(\sum_{i=1}^{n_1} a_1 \cdots a_{i-1}a_{i+1} \cdots a_{n_1+1}m_i \subseteq N \), where \(a_0 \) is assumed that to be 1. But

\[
\sum_{i=1}^{n_1} a_1 \cdots a_{i-1}a_{i+1} \cdots a_{n_1+1}m_i = a_{n_1+1} \cdots a_{n_1+1}m_1 + \sum_{i=1}^{n_1} a_1 \cdots a_{i-1}a_{i+1} \cdots a_{n_1+1}m_i \in N
\]

Since \(U(R(+)M) = U(R(+)M) \) by [2, Theorem 3.7], \(a_i \)'s (\(1 \leq i \leq n_1 + 1 \)) are non-unit. Now, since \(N \) is an \(n_2 \)-prime submodule of \(M \), \(\sum_{i=1}^{n_1+1} a_1 \cdots a_{i-1}a_{i+1}m_i \in N \) or there are \(n_2 \) of the \(a_i \)'s (\(n_1 + 1 \leq i \leq n_1 + 1 \)) whose product is in \((N : M) \). If \(\sum_{i=1}^{n_1+1} a_1 \cdots a_{i-1}a_{i+1}m_i \in N \), then \((a_1, m_1) \cdots (a_{n_1+1}, m_{n_1+1}) \in I(+)N \), and if there are \(n_2 \) of the \(a_i \)'s (\(n_1 + 1 \leq i \leq n_1 + 1 \)) whose product is in \((N : M) \), for example \(a_{n_1+1} \cdots a_n \in (N : M) \), then

\[
(a_1, m_1) \cdots (a_{n_1+1}, m_{n_1+1})(a_{n_1+1}, m_{n_1+1}) \cdots (a_n, m_n) \in I(+)N\
\]

Hence \(I(+)N \) is an \(n = n_1 + n_2 \)-absorbing ideal of \(R(+)M \).

Now let \(I(+)N \) be an \(n \)-absorbing ideal of \(R(+)M \), and let \(a_1 \cdots a_{n_1+1} \in I \) for \(a_1, \ldots, a_{n_1+1} \in R \). Then \((a_1, 0) \cdots (a_{n_1+1}, m_{n_1+1}) \in I(+)N \). Thus there are \(n \) of \((a_i, 0)\)'s whose product is in \(I(+)N \). Hence there are \(n \) of the \(a_i \)'s whose product is in \(I \) and so \(I \) is an \(n \)-absorbing ideal of \(R \).

\(\square \)
4. AP n-modules

Let R be a ring, M an R-module and I a proper ideal of R. Let $M_n(I)$ denote a submodule of M generated by the following set:
$$\{m \mid a_1 \cdots a_{n+1} m \in IM \text{ for some } a_1, \ldots, a_{n+1} \in R \setminus U(R) \text{ such that } a_1 \cdots a_{n+1} \not\in I\}.$$

Lemma 4.1. Let R be a ring, M an R-module and I an n-absorbing ideal of R. If $M_n(I) \subseteq IM \neq M$, then IM is an n-prime submodule of M.

Proof: Let $a_1 \cdots a_{n+1} m \in IM$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ such that no proper subproduct of the a_i’s is in $(IM : M)$. Since $I \subseteq (IM : M)$ and I is an n-absorbing ideal of R, $a_1 \cdots a_{n+1} \not\in I$. Thus $m \in M_n(I) \subseteq IM \neq M$, and hence IM is an n-prime submodule of M. \qed

The following example shows that Lemma 4.1 fails if the condition that $M_n(I) \subseteq IM$ is removed.

Example 4.2. Let $R = \mathbb{Z}$ and $M = \mathbb{Z} \oplus \mathbb{Z}$. Then $I = 4\mathbb{Z}$ is a 2-absorbing ideal of R, but $IM = 4\mathbb{Z} \oplus 4\mathbb{Z}$ is not a 2-prime submodule of M. It is easily seen that $2\mathbb{Z} \oplus 2\mathbb{Z} \subseteq M_2(I)$, and thus $M_2(I) \not\subseteq IM$.

Definition 4.3. Let R be a ring, M an R-module and n a positive integer. We say that M is an AP n-module if $M_n(I) \subseteq IM \neq M$ for any n-absorbing ideal I of R. Also, R is called an AP n-ring if R is an AP n-module as R-module.

Remark 4.4. We say that M is an AP n-module because for any n-absorbing ideal I of R, IM is an n-Prime submodule of M by Lemma 4.1.

Lemma 4.5. Let R be a ring and n a positive integer. Then R is an AP n-ring if and only if every n-absorbing ideal of R is an n-prime ideal of R.

Proof: Let R be an AP n-ring, I an n-absorbing ideal of R and let $a_1 \cdots a_{n+1} r \in I$ for $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ and $r \in R$ such that no proper subproduct of the a_i’s is in I. Since I is n-absorbing, $a_1 \cdots a_{n+1} \not\in I$. Thus $r \in M_n(I) \subseteq I$. Hence I is n-prime. Conversely suppose that every n-absorbing ideal of R is an n-prime ideal of R. Let I be an n-absorbing ideal of R and $r \in R$ be a generator of $M_n(I)$. Then $a_1 \cdots a_{n+1} r \in IR = I$ for some $a_1, \ldots, a_{n+1} \in R \setminus U(R)$ such that $a_1 \cdots a_{n+1} \not\in I$. Thus no proper subproduct of the a_i’s is in I and hence $r \in I$, since I is an n-prime ideal of R. Therefore R is an AP n-ring. \qed

Corollary 4.6. Let M be a multiplication R-module, N a proper submodule of M and n a positive integer. Consider the following statements:

1. N is an n-prime submodule of M.
2. $(N : M)$ is an n-prime ideal of R.
Then (1) ⇔ (2) ⇒ (3). Moreover, if \(M \) is a finitely generated faithful module, then (3) ⇒ (2).

Proof: (1) ⇒ (2) By Lemma 2.2(2).

(2) ⇒ (1) Let \(I = (N : M) \). We show that \((M_n(I) : M) \subseteq I\) and use Lemma 4.1. Let \(r \in (M_n(I) : M) \) and \(m \in M \setminus M_n(I) \). Then \(rm \in M_n(I) \). Thus \(rm = s_1m_1 + \cdots + s_tm_t \) for some \(s_i \in R \) and \(m_i \in M_n(I) \) (\(1 \leq i \leq t \)) by definition of \(M_n(I) \). Since \(m_i \in M_n(I) \), there are \(a_{i_1}, \ldots, a_{i_{n+1}} \in R \setminus U(R) \) such that \(a_{i_1} \cdots a_{i_{n+1}}m_i \in IM \) and \(a_{i_1} \cdots a_{i_{n+1}} \notin I \). Then \(\prod_{i=1}^t \prod_{j=1}^{n+1} a_{i_j} rm \in IM \). Since \(m \notin M_n(I) \),

\[
\prod_{i=1}^t \prod_{j=1}^{n+1} a_{i_j} r \in I.
\]

Thus we have \(\prod_{i=2}^t \prod_{j=1}^{n+1} a_{i_j} r \in I \), since \(I \) is an \(n \)-prime and no proper subproduct of \(a_{i_j} \)'s (\(1 \leq j \leq n+1 \)) is in \(I \). Repeating this process follows that \(r \in I \). Hence \((M_n(I) : M) \subseteq I \). Since \(M \) is multiplication, \(M_n(I) \subseteq IM = N \).

(2) ⇒ (3) Clear.

(3) ⇒ (2) By [5, Theorem 3.1], \((N : M) = I\). \(\square \)

Corollary 4.7. Let \(R \) be a ring and \(M \) a finitely generated faithful multiplication \(R \)-module. Then \(R \) is an AP \(n \)-ring if and only if \(M \) is an AP \(n \)-module.

Proof: Let \(R \) be an AP \(n \)-ring and \(I \) an \(n \)-absorbing ideal of \(R \). Then \(I \) is an \(n \)-prime ideal of \(R \), by Lemma 4.5. Since \(M \) is a multiplication module, by the proof of Corollary 4.6(2) ⇒ (1)), \(M_n(I) \subseteq IM \). Now since \(M \) is a finitely generated faithful multiplication module, by [5, Theorem 3.1], \(IM \neq M \). Hence \(M \) is an AP \(n \)-module. Conversely suppose that \(M \) is an AP \(n \)-module and \(I \) is an \(n \)-absorbing ideal of \(R \). Then by Lemma 4.1, \(IM \) is an \(n \)-prime submodule of \(M \). Since \(M \) is a finitely generated faithful multiplication module, by Lemma 2.2(2) and [5, Theorem 3.1], \((IM : M) = I \) is an \(n \)-prime ideal of \(R \). Hence by Lemma 4.5, \(R \) is an AP \(n \)-ring. \(\square \)

Theorem 4.8. Let \((R,m) \) be an Artinian local ring and \(n \) a positive integer such that \(m^n = m^{n+1} = \cdots \). Then every ideal of \(R \) is an \(n \)-prime ideal. In particular, \(R \) is an AP \(n \)-ring.

Proof: Note that \(R \) is Noetherian and \(\text{dim} R = 0 \), by [9, Corollary 8.45]. Let \(I \) be an ideal of \(R \). Then \(I \) is \(m \)-primary. Thus \(m^n \subseteq m^t \subseteq I \) for some positive integer \(t \leq n \). Hence by Theorem 2.5, \(I \) is an \(n \)-prime ideal of \(R \). The “in particular” statement is clear. \(\square \)

Theorem 4.9. Let \(R \) be a Noetherian valuation domain and \(n \) a positive integer. Then \(R \) is an AP \(n \)-ring.
Proof: Note that (R, m) is a local PID and then $\dim R = 1$. Let I be an n-absorbing ideal of R. By [9, Theorem 15.42], $I = m^t$ for some positive integer t. Let $m = Rp$ for some prime element $p \in R$ and $t > n$. Then $p^n = rp^t$ for some $r \in R$, since I is an n-absorbing ideal of R. Thus $rp^{t-n} = 1$ and hence p is unit, which is a contradiction. Therefore $t \leq n$. Then by Theorem 2.5, I is a t-prime ideal and so it is an n-prime ideal of R. Hence by Lemma 4.5, R is an AP n-ring.

Corollary 4.10. Let R be a DVR and n a positive integer. Then R is an AP n-ring.

Example 4.11. Let $R = \mathbb{Z}[\sqrt{-5}]$, $M = 2R + (\sqrt{-5} - 1)R$ and n a positive integer. Since R is a Dedekind domain, M is a finitely generated faithful multiplication R-module. Then by Corollary 4.10, R_p is an AP n-ring for all non-zero prime ideal P of R. Since M_P is a finitely generated faithful multiplication R_P-module, by Corollary 4.7, M_P is an AP n-module.

Theorem 4.12. Let R be a zero-dimensional Bézout ring and n a positive integer. Then for each prime ideal P of R, R_P is an AP n-ring.

Proof: Without loss of generality, we may assume that R is a local ring. Let I be an n-absorbing ideal of R. Since (R, m) is local and $\dim R = 0$, $\sqrt{I} = m$. By [1, Lemma 5.4], $m^n \subseteq I$. Thus by Theorem 2.5, I is an n-prime ideal of R.

Proposition 4.13. Let R be a ring, M an R-module and N_i an n_i-prime submodule of M for all $1 \leq i \leq t$. Then $\bigcap_{i=1}^{t} N_i : M$ is an n-absorbing ideal of R for $n = n_1 + \cdots + n_t$. Moreover if M is a multiplication AP n-module, then $\bigcap_{i=1}^{t} N_i$ is an n-prime submodule of M.

Proof: By Theorem 4.6, $(N_i : M)$ is an n_i-absorbing ideal of R. Hence by [1, Theorem 2.1(c)], $(\bigcap_{i=1}^{t} N_i : M) = \bigcap_{i=1}^{t} (N_i : M)$ is an n-absorbing ideal of R for $n = n_1 + \cdots + n_t$.

For “moreover” part, since M is multiplication, $\bigcap_{i=1}^{t} N_i = (\bigcap_{i=1}^{t} N_i : M)M$. Therefore $\bigcap_{i=1}^{t} N_i$ is an n-prime submodule of M, by Lemma 4.1.

Let R be a ring and M an R-module. If I is an n_1-absorbing ideal of a ring R and N is an n_2-prime submodule of an R-module M, then IN is not necessarily an n-prime submodule of M for some positive integer n, as the following example shows.

Example 4.14. Let $R = \mathbb{Z}$ and $M = \mathbb{Z} \oplus \mathbb{Z}$. Then $I = 4\mathbb{Z}$ is a 2-absorbing ideal of R and $N = 3\mathbb{Z} \oplus \mathbb{Z}$ is a 1-prime (prime) submodule of M but $IN = 12\mathbb{Z} \oplus 4\mathbb{Z}$ is not an n-prime submodule of M for any positive integer n. Since $(IN : M) = 12\mathbb{Z}$ is not an n-prime ideal of R, by Theorem 2.8.
Theorem 4.15. Let R be a ring, M a finitely generated faithful multiplication R-module, I an n_1-absorbing ideal of R and N an n_2-prime submodule of M. If R is an AP n-ring for $n = n_1 + n_2$ and two ideals I and $(N : M)$ are comaximal, then IN is an n-prime submodule of M.

Proof: Since M is a multiplication R-module, $(IN : M) = IN = I(N : M)M$. By [5, Theorem 3.1], hypotheses and [1, Theorem 2.1(e)], $(IN : M) = I \cap (N : M)$ is an n-absorbing ideal of R if $n = n_1 + n_2$. Hence, IN is an n-prime submodule of M, by Corollary 4.7 and Lemma 4.1.

Lemma 4.16. Let M be a finitely generated faithful multiplication R-module. Then the ideals I_1, \ldots, I_t are pairwise comaximal ideals of R if and only if $N_1 = I_1M, \ldots, N_t = I_tM$ are pairwise comaximal submodules of M. In this case, $N_1 \cap \cdots \cap N_t = N_1 \cap \cdots \cap N_t$.

Proof: The necessity is clear. To prove the sufficiency, we observe that $(I_1 + I_2)M = I_1M + I_2M = N_1 + N_2 = M$. Since M is finitely generated faithful multiplication, by [5, Theorem 3.1], $I_1 + I_2 = R$. In this case, by [5, Corollary 1.7], $N_1N_2 = I_1I_2M = (I_1 \cap I_2)M = I_1M \cap I_2M = N_1 \cap N_2$. Now the assertion follows by induction on t.

Theorem 4.17. Let R be a ring and M a finitely generated faithful multiplication R-module. If R is an AP n-ring and P_1, \ldots, P_n are prime submodules of M that are pairwise comaximal, then $N = P_1 \cdots P_n$ is an n-prime submodule of M.

Proof: By [5, Corollary 2.11], $P_i = p_iM$ for some prime ideal p_i of R and by Lemma 4.16, p_i’s are pairwise comaximal. Then $N = P_1 \cdots P_n = p_1 \cdots p_nM$. By [1, Theorem 2.6], $p_1 \cdots p_n$ is an n-absorbing ideal of R. Therefore N is an n-prime submodule of M, by Corollary 4.7 and Lemma 4.1.

Lemma 4.18. Let R be a ring, M a multiplication R-module and N a maximal submodule of M. If M is an AP n-module, then N^n is an n-prime submodule of M. Moreover, $\nu(N^n) \leq n$, and $\nu(N^n) = n$ if $N^{n+1} \subseteq N^n$.

Proof: By [5, Theorem 2.5], $N = mM$ for some maximal ideal m of R. Then m^n is an n-absorbing ideal of R, by [1, Lemma 2.8]. Hence, $N^n = m^nM$ is an n-prime submodule of M, by Lemma 4.1. The first part of the “moreover” statement is clear. Now if $N^{n+1} \subseteq N^n$, then $m^{n+1} \subseteq m^n$. Thus by [1, Lemma 2.8], $\omega(m^n) = n$. On the other hand, $(N^n : M) = m^n$ and by Lemma 2.2(2), $\omega(N^n : M) \leq \nu(N^n)$. Hence $\nu(N^n) = n$.

Theorem 4.19. Let R be a ring, M a multiplication R-module and N_1, \ldots, N_n are maximal submodules of M. If M is an AP n-module, then $N = N_1 \cdots N_n$ is an n-prime submodule of M. Moreover, $\nu(N) \leq n$.
Proof: By [5, Theorem 2.5], $N_i = m_i M$ for some maximal ideal m_i of R. Then $N = m_1 M \cdots m_n M = m_1 \cdots m_n M$ and $m_1 \cdots m_n$ is an n-absorbing ideal of R by [1, Theorem 2.9]. Since M is an AP n-module, N is an n-prime submodule of M, by Lemma 4.1. The “moreover” statement is clear. □

We call a submodule N is a minimal n-prime submodule of M if N is minimal among all n-prime submodules of M with respect to inclusion.

Proposition 4.20. Let R be a ring, M a finitely generated faithful multiplication R-module and n a positive integer. If M is an AP n-module, then the set of minimal n-prime submodules of M is equal to

$$\{IM \mid I \text{ is a minimal } n\text{-absorbing ideal of } R\}.$$

Proof: Let I be a minimal n-absorbing ideal of R. Since M is an AP n-module, IM is an n-prime submodule of M. Assume that N is an n-prime submodule of M such that $N \subseteq IM$. Then by [5, Theorem 3.1],

$$(N : M) \subseteq (IM : M) = I.$$

Since I is a minimal n-absorbing ideal of R and $(N : M)$ is an n-absorbing ideal of R by Lemma 2.2(2), $(N : M) = I$. Hence $N = (N : M)M = IM$ and thus IM is a minimal n-prime submodule of M. Now, assume that N is a minimal n-prime submodule of M. Then $(N : M)$ is an n-absorbing ideal of R and $N = (N : M)M$. Assume that I is an n-absorbing ideal of R such that $I \subseteq (N : M)$. Then $IM \subseteq N$ and IM is an n-prime submodule of M. Thus minimality of N implies that $IM = N$. Therefore $I = (IM : M) = (N : M)$. Hence $(N : M)$ is a minimal n-absorbing ideal of R. □

At the end of this paper should be noted that every n-absorbing ideal of a ring R contains a minimal n-absorbing ideal [6, Corollary 2.2]. Now if M is a finitely generated faithful multiplication AP n-module, then by Proposition 4.20 every n-prime submodule N of M contains a minimal n-prime submodule of M.

Acknowledgments

The authors would like to thank the referee for helpful comments.

References

*Hosein Fazaeli Moghimi (Corresponding Author),
Department of Mathematics,
University of Birjand,
Iran.
E-mail address: hfazaeli@birjand.ac.ir*

and

*Batool Zarei Jalal Abadi,
Department of Mathematics,
University of Birjand,
Iran.
E-mail address: zareijalalabadi@birjand.ac.ir*