Note on \(p_1\)-Lindelöf Spaces Which are not Contra Second Countable Spaces in Bitopology

Santanu Acharjee, Kyriakos Papadopoulos and Binod Chandra Tripathy

ABSTRACT: In this article we show that a contra second countable bitopological space is a \(p_1\)-Lindelöf space, but the converse part is not necessarily true in general. We provide suitable example with the help of concepts of nest and interlocking from other areas related to bitopology. The relation between pairwise regular spaces and \(p_1\)-normal spaces has been investigated. Finally, we propose some open problems which may enrich various concepts related to Lindelöfness in a bitopological space and other areas of mathematical ideas.

Key Words: \(p_1\)-Lindelöfness, Contra second countable space, Nest, Interlocking.

Contents

1 Introduction 165
2 Preliminary definitions 166
3 Main results 168
4 Open problems 169

1. Introduction

Kelly [12] introduced bitopological spaces via quasi-pseudo metric and investigated their various properties. Bitopological space has drawn the attention of many topologists ([2], [5], [6], [7], [11], [13], [14], [15], [16], [17]), engineers, researchers in medical sciences [21], economists ([3], [18]), computer scientists [32] and many others including fuzzy set topologists ([27],[28],[29]), rough set topologists [31].

It can be found that countability, Lindelöfness are fundamental concepts in general topology and suitable relations along with applications can be found almost in every area of science and social science, but they are different for the case of bitopological space, since bitopological space has more than two types of Lindelöf spaces viz. pairwise Lindelöf space, \(p\)-Lindelöf space, \(p_1\)-Lindelöf space etc.

Literature reviews on bitopological space suggest possible scopes of establishing relations between various types of Lindelöfness viz. \(p_1\)-Lindelöf space, \(p\)-Lindelöf space etc.
space and pairwise Lindelöf space under suitable conditions.

In this paper, we give answer to the following question which was raised from literature reviews related to bitopological space.

“What type of countable space in a bitopological space is a p_1-Lindelöf space?”

A cover \mathcal{U} of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$-open cover [11] if $\mathcal{U} \subseteq \tau_1 \cup \tau_2$. If in addition \mathcal{U} contains at least one nonempty member of τ_1 and at least one nonempty member of τ_2, then it is called pairwise open cover [8]. Pairwise compactness was defined by Fletcher et al. [8]. Notions of p-compact space, p_1-compact space, p-Lindelöf space and p_1-Lindelöf space can be found in Kilicman and Salleh [13], Birsan [2]. According to Reilly [20], (X, τ_1, τ_2) is pairwise Lindelöf space if each pairwise open cover has a countable subcover. Cooke and Reilly [5] investigated the relation between semi-compactness and pairwise compactness in bitopological spaces.

Kilickman and Salleh ([4], [13], [14], [15], [16], [17], [22]) also studied various properties of pairwise Lindelöfness. Cocompactness, cotopology, (i,j)-Baire space etc. were defined and their properties were investigated by Dvalishvili [6].

From the prospective of applications, one may find uses of various concepts of bitopological spaces in science and social science. In 2010, Salama [21] worked on lower and upper approximations of rough sets by using a class of generalized closed sets of bitopological space to detect rheumatic fever. Recently, Acharjee and Tripathy [1] used the concept of bitopological space to reveal poverty patterns and equilibria between strategies of consumers and governments. For some other applications, one may refer to the extensive works of Bosi and Mehta [3].

In this article, we consider p_1-Lindelöf space due to Birsan [2] and we consider notions of Good and Papadopoulos [10] to give Example 3.1. One may find recent application of the results of LOTS in Minkowski Space of relativity [33]. A systematic study on various types of Lindelöf spaces with respect to generalized continuous functions of a bitopological space can be found in [22].

One may refer to [25], [26] for some results in the direction of this paper.

2. Preliminary definitions

Definition 2.1. ([13], Definition 6) A bitopological space (X, τ_1, τ_2) is said to be p-Lindelöf, if the topological spaces (X, τ_1) and (X, τ_2) are both Lindelöf.
Definition 2.2. ([13], Definition 7) In a bitopological space (X, τ_1, τ_2), τ_1 is said to be Lindelöf with respect to τ_2 if every τ_1-open cover of X can be reduced to a countable τ_2-open cover.

(X, τ_1, τ_2) is a p_1-Lindelöf space if τ_1 is Lindelöf with respect to τ_2 and τ_2 is Lindelöf with respect to τ_1.

Lemma 2.3. ([13], Theorem 6) If (X, τ_1, τ_2) is a second countable space, then (X, τ_1, τ_2) is p_1-Lindelöf.

The following notions will be used in the Example 3.1.

Definition 2.4. ([10], Definition 1) Let X be a set. We say that a collection of subsets S of X:

1. T_0-separates X, if and only if for all $x, y \in X$, such that $x \neq y$, there exists $S \in \mathcal{S}$ such that $x \in S$, $y \notin S$ or $y \in S$, $x \notin S$.

2. T_1-separates X, if and only if for all $x, y \in X$, such that $x \neq y$, there exist $S, T \in \mathcal{S}$, such that $x \in S$, $y \notin S$ and $y \in T$, $x \notin T$.

One can easily see that a space is T_0 (resp. T_1) if and only if its topology is generated by a T_0- (resp. T_1-) separating subbase, but the statement of Definition 2.3 is not valid for the T_2 separation axiom, if one defines a T_2-separating subbase in an analogous way.

Definition 2.5. ([10], Definition 2) Let X be a set and let $\mathcal{L} \subseteq \mathcal{P}(X)$. The order \prec_L on X is defined by declaring $x \prec_L y$, if and only if there exists some $L \in \mathcal{L}$, such that $x \in L$ and $y \notin L$.

Theorem 2.6. ([10], Theorem 8) Let X be a set and let \mathcal{L} be a T_0-separating nest on X. The following are equivalent:

(i) \mathcal{L} is interlocking;

(ii) for each $L \in \mathcal{L}$, if L has a \prec_L-maximal element, then $X - L$ has a \prec_L-minimal element;

(iii) for all $L \in \mathcal{L}$, either L has no \prec_L-maximal element or $X - L$ has a \prec_L-minimal element.
Theorem 2.7. ([10], Theorem 10) Let \((X, \tau)\) be a topological space. Then:

(i) if \(L\) and \(R\) are two nests of open sets whose union is \(T_1\)-separating, then every \(<_L\)-order open set is open in \(X\).

(ii) \(X\) is a GO space if and only if there are two nests, \(L\) and \(R\), of open sets whose union is \(T_1\)-separating and forms a subbase for \(\tau\).

(iii) \(X\) is a LOTS if and only if there are two interlocking nests \(L\) and \(R\), of open sets whose union is \(T_1\)-separating and forms a subbase for \(\tau\).

3. Main results

In this section we shall show that a contra second countable space is a \(p_1\)-Lindelöf space but the converse is not necessarily true.

Definition 3.1. Let \((X, \tau_1, \tau_2)\) be a bitopological space, then:

(i) \((X, \tau_1, \tau_2)\) is said to be an \((i, j)\)-second countable bitopological space, if \((X, \tau_i)\) is second countable with respect to \(\tau_j\) where \(i, j \in \{1, 2\}\).

(ii) \((X, \tau_1, \tau_2)\) is said to be a contra second countable bitopological space, if it is both \((1, 2)\)-second countable and \((2, 1)\)-second countable bitopological space.

Theorem 3.2. Let \((X, \tau_1, \tau_2)\) be a contra second countable bitopological space, then it is \(p_1\)-Lindelöf.

Proof: Let \(\{\beta_1^n\}\) and \(\{\beta_2^n\}\) be countable \(\tau_1\)-base and countable \(\tau_2\)-base respectively in \((X, \tau_1, \tau_2)\), where \(m, n\) are positive integers.

Let \(\mathcal{U} = \{U_\alpha : \alpha \in \Delta\}\) be any \(\tau_1\)-open cover of \(X\). Then for every \(x \in X\), there exists \(U_x \in \mathcal{U}\) such that \(x \in U_x\). Since \((X, \tau_1, \tau_2)\) is a contra second countable bitopological space, it is both \((1, 2)\)-second countable and \((2, 1)\)-second countable. So, for each \(x \in U_x\) and \(U_x \in \mathcal{U}\), there exists \(\beta_x \in \{\beta_1^n\}\) such that \(x \in \beta_x \subseteq U_x\). Hence \(X = \cup\{\beta_x : x \in X, x \in \beta_x \subseteq U_x\}\).

Since \(\{\beta_x : x \in X, x \in \beta_x \subseteq U_x\} \subseteq \{\beta_1^n\}\), we have \(\{\beta_x : x \in X, x \in \beta_x \subseteq U_x\} = \{\beta_2^n : n \in N, x \in \beta_2^n\}\).

Thus, \(X = \cup\{\beta_2^n : n \in N, x \in \beta_2^n\} = \cup\{U_n : n \in N, x \in \beta_2^n \subseteq U_n\}\) and so \(\{U_n : n \in N, x \in \beta_2^n \subseteq U_n\}\) is a countable \(\tau_2\)-open subcover of \(\mathcal{U}\). Similarly, one can prove the other part. \(\Box\)
Corollary 3.3. Every pairwise closed subset of a contra second countable bitopological space is \(p_1 \)-Lindelöf.

Proof: The proof follows from Theorem 3.2 and Lemma 4 of [13]. □

Corollary 3.4. Every pairwise regular and contra second countable bitopological space is \(p_1 \)-normal.

Proof: The proof follows from Theorem 3.2 and Theorem 8 of [13]. □

The following example shows that a \(p_1 \)-Lindelöf space is not a contra second countable space. In this example, we use some order set theoretical notions, which are due to Good and Papadopoulos [10].

Example 3.1. We consider a bitopological space \((X, \tau_1, \tau_2)\), such that \(\tau_1 \) makes \(X \) a LOTS. Thus, there exists a subbase for \(\tau_1 \) which consists of the union of two nests \(L \) and \(R \) such that both \(L \) and \(R \) are interlocking and \(L \cup R \) obviously \(T_1 \)-separates \(X \). Having stated this, we consider all elements of \(L \) that have a maximal element. Then, according to the property of interlocking, the complement \(L^c \) of \(L \) will have a minimal element. We isolate all these \(L^c \)'s that have a minimal element to form a nest. We do the same for the corresponding \(R^c \)'s for the nest \(R \). The union of the two nests consisting of \(L^c \)'s and \(R^c \)'s forms a subbase for the topology \(\tau_2 \), which violates the definition of contra second countability of \((X, \tau_1, \tau_2)\). It shows that a \(p_1 \)-Lindelöf space is not a contra second countable space.

4. Open problems

Now, we propose some open problems. One may find from literature survey of bitopological space, that following questions need to be answered. The questions may be simple in nature but they may help to unify concepts of pairwise Lindelöfness, \(p \)-Lindelöfness and \(p_1 \)-Lindelöfness. They are as follows:

Q.1. When \(p_1 \)-Lindelöf space \(\Rightarrow \) \(p \)-Lindelöf space and vice-versa?
Q.2. When \(p_1 \)-Lindelöf space \(\iff \) \(p \)-Lindelöf space?
Q.3. When \(p_1 \)-normal space \(\Rightarrow \) \(p \)-normal space?
Q.4. What is the unified relation between \(p_1 \)-Lindelöf space, \(p \)-Lindelöf space and pairwise Lindelöf space?

References

1. S. Acharjee and B.C. Tripathy, Strategies in mixed budget: a bitopological approach (accepted).

Santanu Acharjee,
Economics and Computational Rationality Group,
Department of Mathematics,
Debraj Roy College,
Golaghat-785621, Assam, India.
E-mail address: sacharjee326@gmail.com, santanuacharjee@rediffmail.com

and

Kyriakos Papadopoulos,
Department of Mathematics,
Kuwait University,
Khalfiya Campus, Safat 13060, Kuwait.
E-mail address: kyriakos.papadopoulos1981@gmail.com

and

Binod Chandra Tripathy,
Department of Mathematics,
Tripura University,
Agartala-799022, Tripura, India.
E-mail address: tripathybc@rediffmail.com