On the index complex of a maximal subgroup and the group-theoretic properties of a finite group

Wang Xiaojing and Jiang Lining

ABSTRACT: Let G be a finite group, $S^p(G)$, $\Phi'(G)$ and $\Phi_1(G)$ be generalizations of the Frattini subgroup of G. Based on these characteristic subgroups and using Deskins index complex, this paper gets some necessary and sufficient conditions for G to be a p-solvable, π-solvable, solvable, super-solvable and nilpotent group.

Key Words: index complex; solvable groups; super-solvable groups; nilpotent groups.

Contents

1 Introduction 65
2 Preliminaries 66
3 Main Results 67

1. Introduction

The relationship between the properties of maximal subgroups of a finite group and its structure has been studied extensively. The concept of index complex (see [1]) associated with a maximal subgroup plays an important role in the study of group theory.

Suppose that G is a finite group, and M is a maximal subgroup of G. A subgroup C of G is said to be a completion for M in G if C is not contained in M while every proper subgroup of C which is normal in G is contained in M. The set of all completions of M, denote it by $I(M)$, is called the index complex of M in G. Clearly $I(M)$ contains a normal subgroup, and is a nonempty partially ordered set by set inclusion relation. If $C \in I(M)$ and C is the maximal element of $I(M)$, C is said to be a maximal completion for M. If moreover $C \triangleleft G$, C then is said to be a normal completion for M. Clearly every normal completion of M
is a maximal completion of M. Furthermore, by $k(C)$ we denote the product of all normal subgroups of G which are also proper subgroups of C, $k(C)$ is a proper normal subgroup of C.

In [2], Deskins studied the group-theoretic properties of the completions and its influences on the solvability of a finite group. He also raised a conjecture concerning super-solvability of a finite group in the same paper. Deskins’s conjecture and other investigations were continued by many successive works [3-5]. This paper will study the structure of a finite group G. Using the concept of index complex and applying Frattini-Like subgroups such as $S_p(G)$, $\Phi'(G)$ and $\Phi_1(G)$, the paper improves main results of [3-5] and obtains some necessary and sufficient conditions for the G to be a p-solvable, π-solvable, solvable, super-solvable and nilpotent group.

Throughout this paper, G denotes a finite group. The terminologies and notations agree with standard usage as in [6]. The notation $M \prec G$ means M is a maximal subgroup of G, and $N \triangleleft G$ means that N is a normal subgroup of G. If p is a prime, then p' denotes the complementary sets of primes and $\left| G : M \right|_p$ the p-part of $\left| G : M \right|$.

2. Preliminaries

For convenience, we give some notations and definitions firstly. Suppose that p is a prime, put

\begin{align*}
F_c &= \{M : M \prec G \text{ and } \left| G : M \right| \text{ is composite}\}; \\
F_p &= \{M : M \prec G \text{ and } M \geq N_G(P) \text{ for a } P \in \text{Syl}_p(G)\}; \\
F_{pc} &= F_p \cap F_c; \\
F_G &= \bigcup_{p \in \pi(G)} F_p \\
F'_G &= F_G \cap F_{pc}.
\end{align*}

Using subgroups above, one can define Frattini-Like subgroups of G as follows.

Definition 2.1

\begin{align*}
S^p(G) &= \bigcap_{M \in F_{pc}} \{M : M \prec G \} \text{ if } F_{pc} \text{ is nonempty, otherwise } S^p(G) = G; \\
\Phi_1(G) &= \bigcap_{M \in F_G} \{M : M \prec G \} \text{ if } F_G \text{ is nonempty, otherwise } \Phi_1(G) = G; \\
\Phi'(G) &= \bigcap_{M \in F'_G} \{M : M \prec G \} \text{ if } F'_G \text{ is nonempty, otherwise } \Phi'(G) = G.
\end{align*}

We begin with a preliminary result which will be used frequently in connection with induction arguments in the next section.

Lemma 2.1 Let M be a maximal subgroup of a group G and N a normal subgroup of G. If $C \in I(M)$ and $N \leq k(C)$, then $C/N \in I(M/N)$ and $k(C/N) = k(C)/N$.

Proof. Since $C \in I(M)$, $C \not\leq M$. Also $C/N \not\leq M/N$. And if $A/N < C/N$, $A/N \not\prec G/N$, then $A < C$ and $A \not\triangleleft G$. Since $A \leq M$, $A/N \leq M/N$, and $C/N \in
Also $C \not\subseteq M$ means $k(C) \neq C$. Then $k(C/N) \subseteq C/N$ and moreover $k(C)/N \leq M/N$. So $k(C)/N < k(C)/N$.

On the other hand, let $k(C/N) = H/N$, then $H < G$ and $H/N < C/N$. Thus, $H < C$ and $k(C/N) = H/N \leq k(C)/N$. Therefore, $k(C/N) = k(C)/N$. □

Lemma 2.2 Let C and D be normal completions of a maximal subgroup M of G. Then $C/k(C) \cong D/k(D)$.

The order of $C/k(C)$, where C is a normal completion of M, is called the normal index of M in G, denoted by $\eta(G : M)$.

Lemma 2.3 $\Phi_1(G)$ is a nilpotent group; $\Phi'(G)$ is a Sylow tower group.

Lemma 2.4 If G is a group with a maximal core-free subgroup, the following are equivalent:

1. There exists a nontrivial solvable normal subgroup of G.
2. There exists a unique minimal normal subgroup N of G and the index of all maximal subgroups of G in F_G with core-free are powers of a unique prime.

Proof. Using Ref. [7], it suffices to prove that (2) implies (1). Indeed for every $L \in F_G$ with core-free, let p be the unique prime divisor of $|G : L|$. Since $N \not\subseteq L$, $G = L N$. Moreover $|G : L| \big| |N|$, thus $p \big| |N|$. Let $P \in Syl_p(N)$. If $P \not\subseteq G$, by the Frattini argument we have $G = N \cdot N_G(P)$. Suppose that $N_G(P) \leq M < G$, there exists $G_P \in Syl_p(G)$ satisfying $N_G(P) \geq N_G(G_P)$. This means $M \geq N_G(G_P)$ and therefore $M \in F_G$. But $N \not\subseteq M$, by the uniqueness of N we get that M is core-free. By the hypothesis, $p \big| |G : M|$. Since $M \geq N_G(G_P)$, $p \big| |G : M|$. This leads to a contradiction. Thus $P \not\subseteq G$ and $P = N$ is a nontrivial solvable normal subgroup of G. □

3. Main Results

The following is the main result of the paper which gives a description of p-solvable group.

Theorem 3.1 Let p be the largest prime divisor of the order of G. The G is p-solvable if and only if for each non-nilpotent maximal subgroup M of G in F^p_C, there exists a normal completion C in $I(M)$ such that $C/k(C)$ is a p'-group.

Proof. It suffices to prove the sufficient condition. Suppose that the result is false and let G be a counterexample of minimal order, now we can claim that:

i) F^p_C is not empty. Indeed if F^p_C is empty, then $S^p(G) = G$. Using [9, Lemma 2.2], $S^p(G)$ is p-closed. So $P \in Syl_p(G) < G$ and G is p-solvable. This leads to a contradiction.

ii) Every maximal subgroup M of G in F^p_C must be non-nilpotent. Indeed if there exists a maximal subgroup M in F^p_C which is also nilpotent, then $|G : M|_p =$
1 and \(G \) is \(p \)-solvable. It is a contradiction.

iii) \(G \) has a unique minimal normal subgroup \(N \) such that \(G/N \) is \(p \)-solvable. Indeed if \(G \) is simple, then for every \(M \) of \(G \) in \(F^p \), \(G \) is the only normal completion in \(I(M) \) with \(k(G) = 1 \). By hypothesis, \(G = G/k(G) \) is a \(p' \)-group. This contradicts with the fact that \(p \) is the largest prime dividing \(|G| \), hence \(G \) is not simple. Let \(N \) be a minimal normal subgroup of \(G \), we will according to cases of \(N \leq k(C) \) or \(N \notin k(C) \) prove that \(G/N \) satisfies the hypothesis of the theorem.

If \(N \leq k(C) \), then \(N \leq C \) and \(C/N \) is a normal completion for \(M/N \) in \(G/N \). By Lemma 2.1, \(C/N \xrightarrow{k(C/N)} C/N \xrightarrow{k(C)/N} C/k(C) \). Again \(C/k(C) \) is a \(p' \)-group, so \(C/N \xrightarrow{k(C/N)} C/k(C) \) is a \(p' \)-group.

If \(N \notin k(C) \), then \(N \notin C \). For otherwise, either \(N = C \) or \(N < C \), so either \(G = MC = MN = M \) or \(N < k(C) \). Each of which is a contradiction. Since \(N \) is a minimal normal subgroup of \(G \), we have either \(C \cap N = N \) or \(C \cap N = 1 \). If \(C \cap N = N \), then \(N \leq C \). It is also a contradiction. So \(C \cap N = 1 \). Then \(CN/N \) is a normal completion for \(M/N \) in \(G/N \). We are to show that \(C/N \xrightarrow{k(C/N)} C/N \) is a \(p' \)-group. Since \(k(C) \leq C \cap N = 1 \), it follows that \(k(C)N/N < CN/N \). Also \(k(C)N/N \triangleleft G/N \), so we have \(k(C)N/N \leq k(CN/N) \).

We define a map \(\phi \colon C/k(C) \to CN/N \xrightarrow{k(CN/N)} k(CN/N) \), by

\[
\phi(xk(C)) = xNk(CN/N)
\]

for all \(xk(C) \in C/k(C) \). Now \(xk(C) = yk(C) \) implies that \(x^{-1}y \in k(C) \), so \((xN)^{-1}(yN) = (x^{-1}y)N \in k(C)N/N \leq k(CN/N) \) and

\[
(xN)k(CN/N) = (yN)k(CN/N).
\]

That is to say, \(\phi(xk(C)) = \phi(yk(C)) \). Hence the map is well defined. It can be verified that \(\phi \) is an epimorphism and \(CN/N \xrightarrow{k(CN/N)} k(CN/N) \) is an epimorphic image of a \(p' \)-group. Thus \(G/N \) satisfies the hypothesis of the theorem. By the minimality of \(N \), \(G/N \) is \(p \)-solvable.

Similarly, it can be shown that \(G/N_1 \) is \(p \)-solvable if \(N \) is another minimal normal subgroup \(N_1 \) of \(G \). Thus \(G = G/N \bigcap N_1 \), which is isomorphic a subgroup of the \(p \)-solvable group \(G/N \times G/N_1 \), is \(p \)-solvable. So in the following suppose that \(N \) is the unique minimal normal subgroup of \(G \).

If \(p \nmid |N| \) or \(N \) is a \(p \)-group, then \(N \) is \(p \)-solvable and so \(G \) is \(p \)-solvable. It is a contradiction. Hence, \(|N|_p \neq 1 \) and \(N \neq N_p \in Syl_p(N) \). Let \(M \) be a maximal subgroup of \(G \) such that \(N_G(N_p) \leq M \). By the Frattini argument, we obtain that \(G = N \cdot N_G(N_p) \). Using [7, lemma 5], there exists a \(G_p \in Syl_p(G) \) with \(N_G(N_p) \geq N_G(G_p) \), so \(M \in F^p \) and \([G : M]_p = 1 \). If \(|G : M| = q \) be a prime less than \(p \), then \(|G| \) divides \(q! \). This leads to another contradiction. Thus \(|G : M| \) is
composite and \(M \in F^p_{pc} \). By ii) and hypothesis, there exists a normal completion \(C \) in \(I(M) \) such that \(C/k(C) \) is a \(p' \)-group. Obviously \(N \) is a normal completion of \(M \). Combining with Lemma 2.2, we have \(C/k(C) \cong N/k(N) = N \). Thus \(N \) is a \(p' \)-group, which leads to the final contradiction. This completes the proof. \(\square \)

As we have known in [3], a group \(G \) is \(\pi \)-solvable if and only if for every maximal subgroup \(M \) of \(G \) there exists a normal completion \(C \) in \(I(M) \) such that \(C/k(C) \) is \(\pi \)-solvable. We now extend this result by considering a smaller class of maximal subgroups.

Theorem 3.2 Let \(G \) be a finite group. \(G \) is \(\pi \)-solvable if and only if for every maximal subgroup \(M \) of \(G \) in \(F'_{G} \) there exists a normal completion \(C \) in \(I(M) \) such that \(C/k(C) \) is \(\pi \)-solvable.

Proof. \(\Leftarrow \) Let \(G \) be a group satisfying the hypothesis of the theorem. If \(F'_{G} \) is empty then \(\Phi'(G) = G \), and \(G \) is solvable. Thus assume that \(F'_{G} \) is not empty. If \(G \) is simple, then for every \(M \) in \(F'_{G} \), \(G \) is the only normal completion in \(I(M) \) with \(k(G) = 1 \) and thus \(G = G/k(G) \) is \(\pi \)-solvable. So suppose that \(G \) is not simple. Let \(N \) be a minimal normal subgroup of \(G \). Without loss of generality, one can suppose that \(F'_{G/N} \) is not empty. We will use induction on the order of \(G \). For each \(M/N \in F'_{G/N} \), by [7, Lemma 3], it follows that \(M \in F'_{G} \). So by hypothesis there exists a normal completion \(C \) in \(I(M) \) such that \(C/k(C) \) is \(\pi \)-solvable.

Similar to the proof in Theorem 3.1, \(CN/N \mod \Phi'(G) \) is \(\pi \)-solvable. Thus \(G/N \) satisfies the hypothesis of the theorem. Using the induction we obtain that \(G/N \) is \(\pi \)-solvable. Furthermore, we can assume that \(N \) is the unique minimal normal subgroup of \(G \). By the same way, \(G/N \) is still a \(\pi \)-solvable group.

Now if \(N \trianglelefteq \Phi'(G) \), then from Lemma 2.3 \(\Phi'(G) \) is solvable. Thus, \(N \) is \(\pi \)-solvable, and furthermore \(G \) is \(\pi \)-solvable. If \(N \not\trianglelefteq \Phi'(G) \), there exists a maximal subgroup \(M_0 \in F'_{G} \) with \(N \not\trianglelefteq M_0 \). Then \(\text{Core}_{G} M_0 = 1 \) and \(G = NM_0 \). So \(N \) is a normal completion in \(I(M_0) \). By hypothesis there exists a normal completion \(C \) in \(I(M_0) \) such that \(C/k(C) \) is \(\pi \)-solvable. By Lemma 2.2, \(N/k(N) = N \cong C/k(C) \). Again \(C/k(C) \) is \(\pi \)-solvable, therefore \(N \) is \(\pi \)-solvable and moreover, \(G \) is \(\pi \)-solvable.

\(\Rightarrow \) The converse is obvious. \(\square \)

The following theorem can be proved similarly as Theorem 3.2, and we omit it here.

Theorem 3.3 Let \(G \) be a finite group. \(G \) is solvable if and only if for every maximal subgroup \(M \) of \(G \) in \(F'_{G} \) there exists a normal completion \(C \) in \(I(M) \) such that \(C/k(C) \) is solvable.

As we have known [4], if \(G \) is \(S_4 \)-free, then \(G \) is super-solvable if and only if for each maximal subgroup \(M \) of \(G \), there exists a maximal completion \(C \) in \(I(M) \) such that \(G = CM \) and \(C/k(C) \) is cyclic. The following theorem extends this result.

Theorem 3.4 Suppose that \(G \) is \(S_4 \)-free. \(G \) is super-solvable if and only if for each
maximal subgroup M of G in F_G, there exists a maximal completion C in $I(M)$ such that $G = CM$ and $C/k(C)$ is cyclic.

Proof. Let G be a super-solvable group. Then every chief factor of G is a cyclic group of prime order. \forall M \in F'_G$, it is clear that the set $S = \{ T \trianglelefteq G \mid T \leq M \}$ is not empty. Choose an H to be the minimal element in S. Clearly, $H \in I(M)$ and $H/k(H)$ is a chief factor of G, hence $H/k(H)$ is cyclic.

Let G be a group satisfying the hypothesis of the Theorem. If F'_G is empty then $G = \Phi(G)$ and G is super-solvable [9]. We now assume that F'_G is not empty and then G is solvable. In the remainder of the proof we will drop the maximality imposed on the completion C in $I(M)$ in the hypothesis. For each maximal subgroup M in F'_G, there exists a completion C in $I(M)$ such that $G = CM$ and $C/k(C)$ is cyclic. From [5, Lemma 2], we can get a normal completion A in $I(M)$ such that $A/k(A)$ is either cyclic or elementary abelian of order 2^2.

First suppose that there exists an M in F'_G which has a normal completion A such that $A/k(A)$ is elementary abelian of order 2^2. Let $\overline{G} = G/\text{core}_G(M)$ and \overline{M}, \overline{N} be the images of C, M and A in \overline{G} respectively. Then $\overline{G} = \overline{C} \cdot \overline{M} = \overline{N}$. It is easy to verify that $k(A) = A \cap \text{core}_G(M)$, so $A/k(A) \cong A/\text{core}_G(M)/\text{core}_G(M) = \overline{C}$. Since $\text{core}_G(\overline{M}) = 1$, $k(\overline{A}) = 1$, \overline{A} is a minimal normal subgroup of \overline{C}. \overline{A} is an elementary abelian of order 2^2 and $\overline{M} \cap \overline{A} = 1$. Considering the permutation representation of G on 4 cosets of \overline{M}, G is isomorphic to a subgroup of S_4. Again S_4 and A_4 are the only non-super-solvable subgroups of S_4, A_4 doesn’t satisfy the hypothesis of the theorem, and G is S_4-free, so G is super-solvable.

Now assume that for each maximal subgroup M in F'_G, M has a normal completion A so that $A/k(A)$ is cyclic. Let N be a minimal normal subgroup of G. Obviously, that G is S_4-free is quotient-closed. By [4, Lemma 3] and [7, Lemma 3], we can assume that the hypothesis holds for G/N. Using induction, we obtain that G/N is super-solvable. Similar to Theorem 3.1, we can suppose that N is the unique minimal normal subgroup of G. If $N \leq \Phi(G)$, then G is super-solvable. If $N \not\leq \Phi(G)$, there exists a maximal subgroup M in F'_G so that $G = NM$ and $\text{core}_G(M) = 1$. Obviously N is a normal completion in $I(M)$. By hypothesis, there exists a normal completion A so that $A/k(A)$ is cyclic. By Lemma 2.2, $A/k(A) \cong N/k(N) = N$. Thus N is cyclic and G is super-solvable.

Remark Let G be a solvable group. To obtain the conclusion in Theorem 3.4, the condition of maximality imposed on the completion C is nonsignificant. So we have the following result: If G is S_4-free and solvable, G is super-solvable if and only if for each maximal subgroup M of G in F'_G, there exists a completion C in $I(M)$ so that $G = CM$ and $C/k(C)$ is cyclic.

Theorem 3.5 Let G be a group and M be an arbitrary maximal subgroup of G in F_G. Then G is nilpotent if and only if for each normal completion C of M,

$$|C/k(C)| = |G:M|.$$

Proof. \Leftarrow Let G be a group satisfying the hypothesis of the theorem. If F_G is
empty then $G/N = \Phi_1(G/N)$. Using [9, Lemma 2.3], G/N is nilpotent. If G is simple, then for every M in F_G, G is the only normal completion in $I(M)$ with $k(G) = 1$. By hypothesis $|G/k(G)| = G = |G : M|$, $M = 1$, hence G is a cyclic group of prime order. So assume that G is not simple. Let N be a minimal normal subgroup of G. Without loss of generality, suppose that $F_{G/N}$ is not empty. For any maximal subgroup M/N in $F_{G/N}$, suppose that C/N is an arbitrary normal completion in $I(M/N)$. From [7, Lemma 3] we have M in F_G. Obviously C is a normal completion in $I(M)$ and $|C/k(C)| = |G : M|$. Using Lemma 2.1,
\[
|C/N/k(C/N)| = |C/N/k(C)/N| = |C/k(C)| = |G : M| = |G/N/M/N|.
\]

Thus G/N satisfies the hypothesis of the theorem. Applying induction one can see G/N is nilpotent. Similar to the proof in Theorem 3.1, we may assume N is the unique minimal subgroup of G.

If $N \leq \Phi_1(G)$, by [5, Lemma 2.3] G is nilpotent. If $N \not\leq \Phi_1(G)$, there exists an M in F_G so that $G = NM$. Clearly, N is a normal completion in $I(M)$. By hypothesis $|N/k(N)| = |N| = |G : M|$. For any L in F_G with $\text{core}_G(L) = 1$, obviously $N \not\leq L$ and $G = NL$. N is also a normal completion in $I(M)$, so $|N/k(N)| = |N| = |G : L|$. By Lemma 2.4 G has a nontrivial solvable subgroup K, so $N \leq K$ and N is solvable. Since G/N is nilpotent, G is solvable. Thus N is an elementary abelian p-group. If G is not a p-group, we assume that $|G|$ has a prime factor q different from p. If the subgroup $Q = \langle a | a \in G \rangle$ and $|a| = q \leq M$, this contradicts with the fact that $\text{core}_G M = 1$. So there exists an of order q element a in $G - M$. This implies that $G = \langle M, \langle a \rangle \rangle$. However, $|N| = |G : M|$ is a power of p. This leads to another contradiction. So G must be a p-group and then is a nilpotent group.

\Rightarrow The converse holds obviously. \square

References

<table>
<thead>
<tr>
<th>Name</th>
<th>Department</th>
<th>Institution</th>
<th>Location</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang Xiaojing</td>
<td>Department of Basic Science</td>
<td>Beijing Institute of Civil Eng. and Arch.</td>
<td>Beijing, 100044, P.R.China</td>
<td></td>
</tr>
<tr>
<td>Jiang Lining</td>
<td>Department of Mathematics</td>
<td>Beijing Institute of Technology</td>
<td>Beijing, 100081, P.R.China</td>
<td>jiangjl@yahoo.com.cn</td>
</tr>
</tbody>
</table>