A class of global weak solutions to the axisymmetric isentropic Euler equations of perfect gases in two space dimensions

Paul Godin

We consider the compressible isentropic Euler equations for a perfect gas \((t > 0, x \in \mathbb{R}^N)\):

\[
\partial_t \rho + \sum_{1 \leq k \leq N} \partial_k (\rho u_k) = 0 \quad (1)
\]

(conservation of mass),

\[
\partial_t (\rho u_i) + \sum_{1 \leq k \leq N} \partial_k (\rho u_k u_i) + \partial_i p = 0, \quad (2_i)
\]

\(1 \leq i \leq N\) (conservation of momentum), where \(\rho\) is the density, \(u = \begin{pmatrix} u_1 \\ \vdots \\ u_N \end{pmatrix}\) the velocity, and \(p(\rho)\) the pressure. We assume that \(p(\rho) = a \rho^\gamma, \ a > 0, 1 < \gamma \leq 1 + \frac{2}{N}\).

We impose the initial conditions

\[
u(x, 0) = u_0(x), \ \rho(x, 0) = \rho_0(x). \quad (3)
\]

One has the following results.

(I) If \(\rho_0 = \bar{\rho} + \rho_1\), where \(\bar{\rho} > 0\) is a constant, \(\rho_1\) and \(u_0 \in H^s(\mathbb{R}^N)\) with \(s\) an integer \(> \frac{N}{2} + 1\) and \(\inf \rho_0 > 0\), one can find a solution to (1), (2), (3) for \(t\) small (see \([7]\)).

(II) If \(\rho_0^{\frac{N+1}{2}}\) and \(u_0 \in H^s_{ul}(\mathbb{R}^N),\) \(s\) integer > \(\frac{N}{2} + 1\) and \(\rho_0 > 0\), one can find a solution to (1), (2), (3) for \(t\) small (Chemin \([2]\)). Here \(H^s_{ul}(\mathbb{R}^N) = \{ v \in H^s_{loc}(\mathbb{R}^N), \sup_{x \in \mathbb{R}^N} ||\varphi x^e||_s < +\infty \) if \(\varphi \in C^\infty_0(\mathbb{R}^N)\}\), where \(\varphi x(y) = \varphi(x-y)\) and \(|| \ ||_s\) is the standard \(H^s\) norm.

In general, solutions to (1), (2), (3) are not global in \(t\) (Sideris \([10]\), Rammaha \([8]\)). In case (I), when \(N = 2\) and \(\rho_0, u_0\) are rotation invariant around \(0\) with \(\rho_1 = \varepsilon \tilde{\rho}_1, u_0 = \varepsilon u_0, \tilde{\rho}_1, \tilde{u}_0 \in C^\infty_0(\mathbb{R}^2)\) and \(|\tilde{\rho}_1| + |\text{div} \tilde{u}_0| \neq 0\), Alinhac \([1]\) has shown that the lifespan of solutions is \(\sim \frac{1}{\varepsilon^2}\) (\(\varepsilon\) small); see also Sideris \([11]\).
Grassin-Serre [5] and Grassin [4] have obtained global results (see also [9]) that we are going to describe now. If \(\rho \) never vanishes, it follows from (1), (2) that

\[
\frac{\partial_t u_i + \sum_{1 \leq k \leq N} u_k \partial_k u_i + \frac{\partial_i \rho}{\rho}}{\rho} = 0 \tag{2'}
\]

for \(1 \leq i \leq N \). One can symmetrize (1), (2') (1 \(\leq i \leq N \)) by introducing \(\pi = C_1^{-1} \sqrt{\rho'(\rho)} \), \(C_1 = \frac{\gamma - 1}{2} \). (1), (2') (1 \(\leq i \leq N \)) become

\[
\frac{\partial_t \pi + \sum_{1 \leq k \leq N} u_k \partial_k \pi + C_1 \pi \sum_{1 \leq k \leq N} \partial_k u_k}{\rho} = 0, \tag{4}
\]

\[
\frac{\partial_t u_i + \sum_{1 \leq k \leq N} u_k \partial_k u_i + C_1 \pi \partial_i \pi}{\rho} = 0, \tag{5_i}
\]

1 \(\leq i \leq N \). This symmetrization has already been used by Chemin [2] for (II).

Consider the initial data

\[
u(x,0) = u_0(x), \quad \pi(x,0) = \pi_0(x). \tag{6}\]

Grassin-Serre and Grassin have introduced the following assumptions:

\[
\partial^\alpha u_0 \in L^\infty(\mathbb{R}^N) \text{ if } |\alpha| = 1, \quad \partial^\alpha u_0 \in H^{s-1}(\mathbb{R}^N) \text{ if } |\alpha| = 2, \quad \inf_{x \in \mathbb{R}^N} \text{dist}(sp \, du_0, \mathbb{R}^-) > 0, \quad \pi_0 \in H^s(\mathbb{R}^N) \text{ and } ||\pi_0||_s \text{ is small (s integer } > \frac{N}{2} + 1). \tag{7}\]

Theorem 1 ([5], [4]). If (7) is satisfied, (4), (5), (6) has a global solution when \(t > 0, \ x \in \mathbb{R}^N \).

This theorem is obtained by comparing \((\pi, u)\) with \((0, \bar{u})\), where \((0, \bar{u})\) is the solution to (4), (5_i), \(1 \leq N \), with initial data \((0, u_0)\).

The purpose of this talk is to describe a result of the same type (contained in [3]) for a class of non-smooth initial data.

We shall assume that \(N = 2 \) and consider initial data which are rotation invariant around 0, so \(u_0(Sx) = S u_0(x) \) and \(\pi_0(Sx) = \pi_0(x) \) for every rotation \(S \) with center 0. It follows that

\[
u_0(x) = A_0(r) \frac{x}{r} + B_0(r) \frac{x^+}{r} \text{ and } \pi_0(x) = \Pi_0(r) \text{ with } r = |x|,
\]

\[
x^+ = (-x_2, x_1).
\]

We start with \(\bar{u}_0(x) = A_0(r) \frac{x}{r} + B_0(r) \frac{x^+}{r} \), satisfying (7) with \(s = 3 \), and consider two small perturbations of \(\bar{u}_0 \), namely \(u_0^{(1)}, u_0^{(2)} \), rotation invariant around 0. We assume that

\[
\sum_{|\alpha| \leq 1} ||\partial^\alpha (u_0^{(1)} - \bar{u}_0)|| + \sum_{|\alpha| = 2} ||\partial^\alpha (u_0^{(2)} - \bar{u}_0)|| \leq \varepsilon.
\]
Consider \(\pi^{(j)}_0(x) \equiv \Pi^{(j)}_0(r) > 0, j = 1, 2 \), such that \(||\pi^{(j)}_0||_3 \leq \varepsilon \) and \(\Pi^{(j)}_0(r) \geq C_0 \varepsilon \) if \(0 \leq (-1)^j(r - 1) \leq C \varepsilon \) \((C > 0 \text{ large enough})\). Put

\[
(\pi_0, u_0) = \begin{cases}
(\pi^{(1)}_0, u^{(1)}_0) & \text{if } r < 1, \\
(\pi^{(2)}_0, u^{(2)}_0) & \text{if } r > 1.
\end{cases}
\]

Write \(u_0(x) = A_0(r) \frac{x}{r} + B_0(r) \frac{x^\perp}{r}, \pi_0(x) = \Pi_0(r) \), and assume that

\[
0 < [A_0 \pm \Pi_0](1) \leq C_2 \varepsilon^{2+\theta},
\]

\[
0 < ||B^2_0(1)|| \leq C_3 \varepsilon,
\]

where \(C_2, C_3 \) are small and \(0 < \theta < \frac{1}{2} \). Here \([F](1) = \lim_{r \to 1} F(r) - \lim_{r \to 1} F(r)\). Theorem 2 \((5)\). If \(\varepsilon \) is small, there exists a weak solution to (1), (2) which is rotation invariant around 0 and global in \(t > 0 \), such that \(\rho_{|t=0} = \tilde{C} \pi_0^{1/C_1} \), \(u_{|t=0} = u_0 \), where \(\tilde{C} = C_1^{1/C_1} (a \gamma)^{-1/2 C_1} \). This solution consists of two centered waves (in the \((r, t)\) variables) and one contact discontinuity.

Local existence is obtained by adapting results and ideas of \([6] \). The global results can be proved by a continuation method.

References

3. P. GODIN, Global centered waves and contact discontinuities for the axisymmetric isentropic Euler equations of perfect gases in two space dimensions, preprint.

Paul Godin
Université Libre de Bruxelles
Département de Mathématiques
Campus Plaine CP 214
Boulevard du Triomphe
B - 1050 Bruxelles
Belgium
e-mail : pgodin@ulb.ac.be