On the existence of positive solutions for a local fractional boundary value problem with an integral boundary condition

  • Asghar Ahmadkhanlu Azarbaijan Shahid Madani University

Abstract

In this work, we are concerened with the fractional differential equation     
\begin{displaymath}
D^{\alpha}_{0^+} u(t)+f(t,u(s))=0,\quad 1<\alpha\leq 2
\end{displaymath}
where $D^\alpha_{0^+}$ is  the standard Riemann-Liouville fractional  derivative, subject to the local boundary conditions
\begin{displaymath}
u(0)=0,\quad u(1)+\int_0^\eta u(t)dt=0, \quad 0\leq \eta< 1.
\end{displaymath}
We try to obtain the existence of positive solutions by using some fixed point theorems.
\end{abstract}

Downloads

Download data is not yet available.

References

Agrawal, O. P., Formulation of Euler-Lagrange equations for fractional variational problems, Journal of Mathematical Analysis and Applications, 272(1), 368-379, (2002).

Ahmadkhanlu A, Jahanshahi M., On the Existence and Uniqueness of Solution of Initial Value problem for Fractional order Differential Equations on Time scales, Bull. Ira. Math. Soc. 38(1), 241-252, (2012).

Bagley, R. I., A theoretical basis for the application of fractional calculus to viscoelasticity, Journal of Rheology, 27(3), 201-210, (1983).

Bai, Z., Lu, H.S., Positive solutions of boundary value problems of nonlinear fractional differential equation, J. Math. Anal. Appl.,311, 495-505, (2005).

Bai, Z., On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 72, 916-924, (2010).

Bayin, S., Mathematical Methods in Science and Engineering. United States: John Wiley & Sons, Inc., (2006).

Bildik, N. Deniz, S..A new efficient method for solving delay differential equations and a comparison with other methods Eur. Phys. J. Plus 132(51), (2017).

Diethelm, .K, Ford, N. Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248, (2002).

Douglas, J. F., Some applications of fractional calculus to polymer science, Advances in chemical physics, John Wiley & Sons, Inc., 102, 121-191, (1997).

Fellah, Z. E. A, Depollier, C., Application of fractional calculus to the sound waves propagation in rigid porous materials: Validation via ultrasonic measurement., Acta Acustica, 88, 34-39,(2002).

Furati, K. M, Tata,r N., An Existence Result for a Nonlocal Fractional Differential Problem, J. Frac. Calculus., 26, 43-51, (2004).

Hadid S. B. Local and global existence theorems on differential equations of non-integer order., J. Fract. Calculus, 7: 101-105, (1995).

Hadid, S. B., Masaedeh, B., Momani, S., On the existence of maximal and minimal solutions of differential equations of non-integer order., J. Fract. Calculus, 9, 41-44, (1996).

Hilfer, R., Applications of Fractional Calculus in Physics, WorldScientific Publishing Co., (2000).

Inc, M., The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J.Math. Anal. Appl, 345, 476-484, (2008).

Jahanshahi, M., A. Ahmadkhanlu, On Well-Posed of Boundary Value Problems Including Fractional Order Differential Equation, Bull. South. Asi. Bull. Math. Soc., 38, 53-59, (2014).

Kilbas, A. A., Marzan, A., Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, J. Diff. Equa., 41, 84-89, (2005).

Kilbas, A. A., Srivastava , H. M., Trujillo, J. J.m Theory And Applications of Fractional Differential Equations North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, (2006).

Kilbas, A. A.,Marichev, O. I., Samko, S. G., Fractional Integral And Derivatives (Theory and Applications), Gordon and Breach, Switzerland, (1993).

Krasnosel’skii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations (A. H. Armstrong, Trans.), Pergamon, Elmsford, (1964).

Leggett, R.W., Williams, L.R., Multiple positive fixed points of nonlinear operators on ordered Banach space, Indiana Univ. Math. J., 28, 673-688, (1979).

Mainardi, F., Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York, NY, USA, (1997).

Magin, R., Fractional calculus in bioengineering, Critical Reviews in Biomedical Engineering 32(1), 1-104, (2004).

Metzler, R., Klafter, J., Boundary value problems for fractional diffusion equations, Physica A, 278(1-2), 107-125, (2000).

Momani, S., Odibat, Z., Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Phys. Lett. A, 355, 271-279, (2006).

Momani, S., Odibat, Z., Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A, 365, 345-350, (2007).

Odibat, Z., Momani, S., Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos, Solitons and Fractals, 36, 167-174, (2008).

Nishimoto, S. Tu, K., Jaw, S., Lin, S. D., Applications of fractional calculus to ordinary and partial differential equations of the second order, Hiroshima Mathematical Journal, 23(1), 63-77, (1993).

Oldham, K. B. , Fractional differential equations in electrochemistry, Advances in Engineering Software, 41(1), 9-12, (2010).

Ortigueira, M., Special issue on fractional signal processing and applications, Signal Processing, 83(11), 2285-2480, (2003).

Podlubny, I., Fractional Differential Equations Academic Press, (1999).

Rabei,E. M., Alhalholy, T. S., Rousan, A., Potentials of arbitrary forces with fractional derivatives, International Journal of Modern Physics A, 19(17-18), 3083-3092, (2004).

Robinson, D. A., The use of control systems analysis in neurophysiology of eye movements, Ann. Rev. Neurosci., 4, 462–503, (1981).

De la Sen, M., Positivity and stability of the solutions of Caputo fractional linear time-invariant systems of any order with internal point delays, Abstract and Applied Analysis, 2011, Article ID 161246, 25 pages, 2011.

Deniz, S., Bildik, N., Application of Adomian decomposition method for singularly perturbed fourth order boundary value problems, AIP Conf. Proc., 1738, 290017 (2016).

Deniz, S., Bildik, N., A new analytical technique for solving Lane - Emden type equations arising in astrophysics, Bull. Belg. Math. Soc. Simon Stevin 24(2), (2017), 305-320.

Sorrentinos, G., Fractional derivative linear models for describing the viscoelastic dynamic behavior of polymeric beams, Proceedings of the IMAS Conference and Exposition on Structural Dynamics, St. Louis, Mo, USA, (2006).

Sorrentinos, G., Analytic modeling and experimental identification of viscoelastic mechanical systems, Advances in Fractional Calculus, Springer, (2007).

Vinagre, B. M., Podlubny, I., Hernandez, A., Feliu, V. Some approximations of fractional order operators used in control theory and applications, Fractional Calculus & Applied Analysis, 3(3), 231-248, (2000).

Wang, G., Liu, S., Agarwal, R. P., Zhang, L., Positive solutions of integral boundary value problem involving Riemann-Liouville fractional derivative, Journal of Fractional Calculus and Applications, 4(2), 312-321, (2013).

Zhang, Y., Sun, H. G., Stowell, H. H., Zayernouri, M., Hansen S. E., A review of applications of fractional calculus in Earth system dynamics Chaos, Solitons and Fractals, (in Appear).

Zhang, S.Q., Positive solutions for boundary value problems of nonlinear fractional differential equations, Electr. J. Differential Equations 2006, 1-12, (2006).

Published
2020-10-09
Section
Research Articles