A Covering Property with respect to Generalized Preopen Sets

Ajoy Mukharjee

ABSTRACT: In this paper, we introduce and study the notion of μ-precompact spaces on the observation that each μ-preopen set of a generalized topological space is contained in a μ-open set. The μ-precompactness is weaker than μ-compactness but stronger than weakly μ-compactness of generalized topological spaces.

Key Words: μ-preopen, μ-compact, weakly μ-compact, μ-precompact.

Contents

1 Introduction 25

2 μ-precompact spaces 26

1. Introduction

Let (X, \mathcal{P}) be a topological space. We find that certain subsets like semi-open sets (Levine [10], also called β-sets by Njåstad [13]), pre-open sets (Mashhour et al. [11]), semi-pre-open sets (Andrijević [1], also called β-open sets by El-Monsef et al. [9]), α-sets (Njåstad [13]) of a topological space X possess properties more or less similar to those of open sets of X. Also topological properties generated by sets like semi-open, pre-open etc. had impacts in developing the study of classical objects, see e.g. [7,8,18]. On this observation, Császár [6] introduced and studied γ-open sets in X. Again following the properties of γ-open sets of a topological space, Császár [4] introduced and studied the concept of generalized topology.

Let X be a nonempty set and μ be a subcollection of the power set $\text{exp}(X)$ of X. μ is called a generalized topology on X if $\emptyset \in \mu$ and the union of arbitrary number of elements of μ is again a member of μ. A nonempty set X endowed with a generalized topology μ is called a generalized topological space and it is denoted by (X, μ). We write GT (resp. GTS) to denote the generalized topology μ (resp. generalized topological space (X, μ)). An element of μ is called a μ-open set of (X, μ). The complement of a μ-open set is called a μ-closed set of (X, μ). A generalized topological space (X, μ) is called strong [3] (also called μ-space by Noiri [14]) if $X \in \mu$. For brevity, we retain the term μ-space due to Noiri [14] to mean the strongly generalized topological space (X, μ) as well.

Henceforth, we write X to denote a GTS or μ-space to be understood from the context. For a subset A of a GTS X, the generalized closure [2] of A is denoted by $c_\mu(A)$ which is the intersection of all μ-closed sets containing A and the generalized interior [2] of A is denoted by $i_\mu(A)$ which is the union of all μ-open sets contained in A.

2010 Mathematics Subject Classification: 54A05, 54A10, 54D20.

Submitted April 27, 2017. Published December 28, 2017
in A. It can be proved that a subset A of X is μ-open (resp. μ-closed) if and only if $A = i_\mu(A)$ (resp. $A = c_\mu(A)$). Also for any subset A of X, we have $c_\mu(A) = X - i_\mu(X - A)$.

Throughout the paper, N denotes the set of natural numbers and R, the set of real numbers.

2. μ-precompact spaces

We begin by recalling some known definitions and results to use in the sequel.

Definition 2.1 (CsáSZár [2]). A subset A of X is called μ-preopen if $A \subset i_\mu(c_\mu(A))$ and μ-semiopen if $A \subset c_\mu(i_\mu(A))$.

Definition 2.2 (Sarsak [17]). A subset A of a GTS X is called μ-regularly closed if $A = c_\mu(i_\mu(A))$. The complement of a μ-regularly closed set is called a μ-regularly open set. So a subset A of a GTS is μ-regularly open if $A = i_\mu(c_\mu(A))$.

Note that if G is a μ-open set in X, then $i_\mu(c_\mu(G))$ is μ-regularly open in X.

We see that a subset A of X is μ-preopen if and only if there exists a μ-open set G such that $A \subset G \subset c_\mu(A)$. Also a subset A of X is μ-semiopen if and only there exists a μ-open set G such that $G \subset A \subset c_\mu(G)$.

We write ‘μ-open collection’ and ‘μ-preopen collection’ to mean a collection consisting μ-open sets and μ-preopen sets respectively of a μ-space. A cover of a μ-space X is a collection \mathcal{A} of subsets of X such that $\bigcup_{A \in \mathcal{A}} A = X$. \mathcal{A} is called a μ-open cover (resp. μ-preopen cover) of X if \mathcal{A} is a μ-open collection (resp. μ-preopen collection) of X and covers X. The terms ‘regularly μ-open collection’, ‘regularly μ-preopen collection’, ‘μ-semiopen collection’ ‘μ-semiopen cover’ are apparent.

Definition 2.3 (Sarsak [16]). A μ-space is called μ-compact if each μ-open cover of X has a finite subcover.

Definition 2.4 (Sarsak [17]). A μ-space is called weakly μ-compact (briefly, wμ-compact) if each μ-open cover \mathcal{G} of X has a finite subcollection \mathcal{G}_{n} such that $\bigcup_{G \in \mathcal{G}_{n}} c_\mu(G) = X$.

Definition 2.5 (Sarsak [15]). A μ-space is called μ-S-closed if each μ-semiopen cover \mathcal{G} of X has a finite subcollection \mathcal{G}_{n} such that $\bigcup_{G \in \mathcal{G}_{n}} c_\mu(G) = X$.

We now introduce the following.

Definition 2.6. Let \mathcal{F} be a μ-preopen collection of X. For each $A \in \mathcal{F}$, there exists a μ-open set U such that $A \subset U \subset c_\mu(A)$. We define $\mathcal{U} = \{U \mid A \in \mathcal{F}, A \subset U \subset c_\mu(A)\}$. Then \mathcal{U} is said to be a ‘μ-open super collection’ of \mathcal{F}.

It follows that there always exists a μ-open super collection of a μ-preopen collection of a μ-space X. We also see that \mathcal{U} is a cover of X if \mathcal{F} is a cover of X. In this case, \mathcal{U} is said to be a μ-open super cover of the μ-preopen cover \mathcal{F}.

Definition 2.7. A μ-space X is said to be μ-precompact if each μ-preopen cover of X has a finite μ-open super cover.
If \mathcal{V} is a finite μ-open super cover of a μ-preopen cover \mathcal{I} of a μ-precompact space X, then for each $U \in \mathcal{V}$, there exists a μ-preopen set $A \in \mathcal{I}$ such that $A \subseteq U \subseteq c_\mu(A)$. Thus we have a finite subcollection \{\(A \mid U \in \mathcal{V}, A \subseteq U \subseteq Cl(A)\}\) of \mathcal{I} corresponding to \mathcal{V}.

It is easy to see that a μ-compact space is a μ-precompact space and a μ-precompact space is a weakly μ-compact space but reverse implication relations are not true.

Example 2.8. On R, we define $\mu = \{0, R\} \cup \{(-\infty, n) \mid n \in \mathbb{N}\} \cup \{[1, \infty]\}$. The μ-space (R, μ) is μ-precompact but not a μ-compact space.

Lemma 2.9. If A is μ-preopen in X, then $i_\mu(c_\mu(A))$ is μ-regularly open in X.

Proof: Since A is a μ-preopen set in X, there exists a μ-open set G such that $A \subseteq G \subseteq c_\mu(A)$ which implies that $c_\mu(A) = c_\mu(G)$. Thus we have $i_\mu(c_\mu(A)) = i_\mu(c_\mu(G))$. Since $i_\mu(c_\mu(G))$ is μ-regularly open, $i_\mu(c_\mu(A))$ is μ-regularly open in X.

Example 2.10 (cf. Example 1 [12]). We define $\mu = \{0, (-\infty, b), (-\infty, b]\}$ where $b \in R$. So (X, μ) is a GTS. We put $A = (-\infty, a)$, $a \in R$ and $a > b$. We see that $i_\mu(c_\mu(A)) = (-\infty, b]$, $i_\mu(c_\mu((-\infty, b])) = (-\infty, b]$. It means that $i_\mu(c_\mu(A))$ is μ-regularly open in (X, μ). As $A \not\subseteq i_\mu(c_\mu(A))$, A is not μ-preopen in X.

So we conclude that the converse of Lemma 2.9 need not be true in general.

Theorem 2.11. A μ-space X is μ-precompact if and only if each μ-preopen cover \mathcal{I} of X has a finite μ-regularly open super cover $\{i_\mu(c_\mu(A)) \mid A \in \mathcal{I}\}$ where \mathcal{I} is a finite subcollection of \mathcal{I}.

Proof: By μ-precompactness of X, we obtain a finite μ-open super cover \mathcal{V} of \mathcal{I}. For each $G \in \mathcal{I}$, there exists $A \in \mathcal{I}$ such that $A \subseteq G \subseteq c_\mu(A)$ which implies that $A \subseteq G \subseteq i_\mu(c_\mu(A)) \subseteq c_\mu(A)$. We put $\mathcal{I} = \{A \in \mathcal{I} \mid G \in \mathcal{I}, A \subseteq G \subseteq c_\mu(A)\}$. It means that \mathcal{I} is a finite subcollection of \mathcal{I}, \mathcal{I} being a cover of X, $\{i_\mu(c_\mu(A)) \mid A \in \mathcal{I}\}$ is also a cover of X. By Lemma 2.9, $i_\mu(c_\mu(B))$ is regularly open for each $B \in \mathcal{I}$. So \mathcal{I} is a finite subcollection of \mathcal{I} such that $\{i_\mu(c_\mu(B)) \mid B \in \mathcal{I}\}$ is a μ-regularly open super cover of the μ-preopen cover \mathcal{I} of X.

Conversely, since $i_\mu(c_\mu(A))$ is μ-open and $A \subseteq i_\mu(c_\mu(A)) \subseteq c_\mu(A)$ for each $A \in \mathcal{I}$, $\{i_\mu(c_\mu(A)) \mid A \in \mathcal{I}\}$ is a finite μ-open super cover of \mathcal{I}. So X is μ-precompact.

Theorem 2.12. In a μ-space X, the following statements are equivalent.

1. X is μ-precompact.

2. Each μ-preopen cover \mathcal{I} of X has a finite subcollection \mathcal{B} such that $\{i_\mu(c_\mu(B)) \mid B \in \mathcal{B}\}$ covers X.

3. If \mathcal{E} is a collection of μ-preclosed sets of X such that $\bigcap_{E \in \mathcal{E}} E = \emptyset$, then there exists a finite subcollection \mathcal{F} of \mathcal{E} such that $\bigcap_{F \in \mathcal{F}} i_\mu(c_\mu(F)) = \emptyset$.

Proof: (a) ⇒ (b): Follows from Theorem 2.11.

(b) ⇒ (c): Let $\mathcal{E} = \{E_\alpha \mid \alpha \in \Delta\}$ be a collection of μ-preclosed sets such that $\bigcap_{\alpha \in \Delta} E_\alpha = \emptyset$. It means that $\{X - E_\alpha \mid \alpha \in \Delta\}$ is a μ-preopen cover of X. By (b), we find a finite subcollection $\{X - E_{\alpha_k} \mid \alpha_k \in \Delta, k \in \{1,2,\ldots,n\}\}$ of $\{X - E_\alpha \mid \alpha \in \Delta\}$ such that $\{i_\mu(c_\mu(X - E_{\alpha_k})) \mid k \in \{1,2,\ldots,n\}\}$ covers X. It means that $X - \bigcup_{k=1}^n i_\mu(c_\mu(X - E_{\alpha_k})) = \emptyset$ and hence $\bigcap_{k=1}^n i_\mu(E_{\alpha_k}) = \emptyset$.

(c) ⇒ (a): Let X be a μ-space satisfying (c). Suppose $\mathcal{W} = \{W_\alpha \mid \alpha \in A\}$ is a μ-preopen cover of X. So we find that $\mathcal{E} = \{X - W_\alpha \mid \alpha \in A\}$ is a collection of μ-preclosed sets such that $\bigcap_{\alpha \in A} X - W_\alpha = \emptyset$. By (c), we obtain a finite subcollection $\{X - W_{\alpha_k} \mid \alpha_k \in A, k \in \{1,2,\ldots,n\}\}$ such that $\bigcap_{k=1}^n i_\mu(X - W_{\alpha_k}) = \emptyset$ which in turn implies that $\bigcup_{k=1}^n i_\mu(W_{\alpha_k}) = X$. So $\{W_{\alpha_k} \mid \alpha_k \in A, k \in \{1,2,\ldots,n\}\}$ is a finite subcollection \mathcal{W} such that $\{i_\mu(c_\mu(W_{\alpha_k})) \mid \alpha_k \in A, k \in \{1,2,\ldots,n\}\}$ covers X. Then by Theorem 2.11, X is μ-precompact. □

Definition 2.13. A collection \mathcal{A} of subsets of X is called a μ-proximate cover of X if $c_\mu(\bigcup_{\alpha \in \mathcal{A}} A) = X$.

Theorem 2.14. Each μ-preopen cover of a μ-precompact space X has a finite μ-proximate μ-preopen cover.

Proof: Let $\mathcal{A} = \{A_\alpha \mid \alpha \in \Delta\}$ be a μ-preopen cover of a μ-precompact space X. By μ-precompactness of X, we obtain a finite μ-open super cover $\{G_1, G_2,\ldots,G_n\}$ of \mathcal{A}. For each $k \in \{1,2,\ldots,n\}$, there exist an $\alpha_k \in \Delta$ such that $A_{\alpha_k} \subset G_k \subset c_\mu(G_{\alpha_k})$. Since $\{G_1, G_2,\ldots,G_n\}$ is a cover of X, we have $X = \bigcup_{k=1}^n c_\mu(A_{\alpha_k}) = c_\mu(\bigcup_{k=1}^n A_{\alpha_k})$. So $\{A_{\alpha_1}, A_{\alpha_2},\ldots,A_{\alpha_n}\}$ is a finite μ-proximate μ-preopen cover of X. □

Definition 2.15 (Császár [3]). A μ-space X is called μ-extremally disconnected if $c_\mu(G)$ is μ-open for each μ-open set G of X.

Theorem 2.16. A w\mu-compact and μ-extremally disconnected space is a μ-precompact space.

Proof: Let $\mathcal{E} = \{E_\alpha \mid \alpha \in A\}$ be a μ-preopen cover of a w\mu-compact μ-extremally disconnected μ-space X. For each $\alpha \in A$, there exists a μ-open set G_α such that $E_\alpha \subset G_\alpha \subset c_\mu(E_\alpha) = c_\mu(G_\alpha)$. We see that $\mathcal{G} = \{G_\alpha \mid \alpha \in A\}$ is a μ-preopen cover of X. Since X is w\mu-compact, we obtain a finite subcollection $\{G_{\alpha_k} \mid \alpha_k \in A, k \in \{1,2,\ldots,n\}\}$ such that $\{c_\mu(G_{\alpha_k}) \mid \alpha_k \in A, k \in \{1,2,\ldots,n\}\}$ covers X. By μ-extremal disconnectedness of X, we see that $\{c_\mu(G_{\alpha_k}) \mid \alpha_k \in A, k \in \{1,2,\ldots,n\}\}$ is a finite μ-open super cover of \mathcal{E}. □

Definition 2.17. A μ-semiopen set A in X is said to be covered if $G \subset A \subset c_\mu(G)$ for some μ-open set G, then there exists a μ-open set H such that $G \subset A \subset H \subset c_\mu(G)$.

Lemma 2.18. A covered μ-semiopen set in X is μ-preopen in X.
Proof: Let A be a covered μ-semiopen set and $G \subset A \subset c_\mu(G)$ for some μ-open set. Then $c_\mu(A) = c_\mu(G)$. Also we have another μ-open set H such that $G \subset A \subset H \subset c_\mu(G)$ which implies that $A \subset i_\mu(c_\mu(G)) = i_\mu(c_\mu(A))$. Hence A is μ-preopen.

In Example 2.8, $[1, \infty)$ is μ-open and hence it is both μ-semiopen and μ-preopen. But there exist no μ-open set G such that $[1, \infty) \subset G$. So $[1, \infty)$ is not covered μ-semiopen. So we conclude that the converse of Lemma 2.18 may not be true.

Theorem 2.19. If each μ-semiopen set of a μ-precompact space X is covered, then X is μ-S-closed also.

Proof: Let \mathcal{F} be a μ-semiopen cover of X. By Lemma 2.18, \mathcal{F} is a μ-preopen cover of X. By Theorem 2.11, \mathcal{F} has a finite subcollection \mathcal{F} such that $\{i_\mu(c_\mu(A)) \mid A \in \mathcal{F}\}$ covers X. For each $A \in \mathcal{F}$, we have $A \subset i_\mu(c_\mu(A)) \subset c_\mu(A)$. So \mathcal{F} is a finite subcollection of \mathcal{F} such that $\{(c_\mu(A) \mid A \in \mathcal{F}\}$ covers X and so X is μ-S-closed.

A subset A of a μ-space is said to μ-precompact with respect to X if each μ-preopen cover with respect to X of A has a finite μ-open super cover. In view of Theorem 2.11, it can be showed that a subset A of X is μ-precompact with respect to X if each μ-preopen cover \mathcal{F} with respect to X of A has a finite subcollection \mathcal{F} such that $\{i_\mu(c_\mu(G)) \mid G \in \mathcal{F}\}$ covers A.

Theorem 2.20. If each proper μ-regularly closed set of a μ-space X is μ-precompact with respect to X, then X is μ-precompact.

Proof: Let $\mathcal{F} = \{A_\alpha \mid \alpha \in \Delta\}$ be a μ-preopen cover of X. Since \mathcal{F} is a cover of X, there exits an $A \in \mathcal{F}$ such that $A \neq \emptyset$. By Lemma 2.9, $i_\mu(c_\mu(A))$ is μ-regularly open in X and so $X - i_\mu(c_\mu(A))$ is μ-regularly closed in X. By the assumption, we get a finite subcollection $\{A_\alpha_k \mid \alpha_k \in \Delta, k \in \{1, 2, \ldots, n\}\}$ such that $X - i_\mu(c_\mu(A)) \subset \bigcup_{k=1}^n i_\mu(c_\mu(A_\alpha_k))$ and thus $X \subset \bigcup_{k=1}^n i_\mu(c_\mu(A_\alpha_k)) \cup i_\mu(c_\mu(A))$. Therefore by Theorem 2.11, X is μ-precompact.

Recall that a nonempty collection \mathcal{C} of nonempty subsets of a set S is called a filter base [19, p. 78] if $C_1, C_2 \in \mathcal{C}$, then $C_3 \subset C_1 \cap C_2$ for some $C_3 \in \mathcal{C}$. A filter base is called maximal [19, p. 80] if its not properly contained into another filter base. A filter base is always contains in a maximal filter base [19, p. 80].

Definition 2.21. A filter base \mathcal{F} on a μ-space X is called p_μ-converges to a point $x \in X$ if for each μ-preopen set A of X with $x \in A$, there exists $F \in \mathcal{F}$ such that $F \subset i_\mu(c_\mu(A))$.

Definition 2.22. A filter base \mathcal{F} on a μ-space X is called p_μ-accumulates to a point $x \in X$ if for each μ-preopen set A of X with $x \in A$, $F \cap i_\mu(c_\mu(A)) \neq \emptyset$ for each $F \in \mathcal{F}$.
Lemma 2.23. If a filter base \mathcal{F} in X p_μ-converges to a point $x \in X$, then the filter base is p_μ-accumulates to x.

Proof: By p_μ-convergence of \mathcal{F} to $x \in X$, there exists $F \in \mathcal{F}$ such that $F \subseteq i_\mu(c_\mu(A))$ for each μ-preopen set A with $x \in A$. Let $E \in \mathcal{F}$. Then there exists $D \in \mathcal{F}$ such that $D \subseteq E \cap F \subseteq F \subseteq i_\mu(c_\mu(A))$. So $D \cap i_\mu(c_\mu(A)) \neq \emptyset$. As $D \subseteq E$, we have $E \cap i_\mu(c_\mu(A)) \neq \emptyset$. So \mathcal{F} p_μ-accumulates to $x \in X$. \hfill \Box

Lemma 2.24. Let \mathcal{F} be a maximal filter base in X. Then \mathcal{F} p_μ-converges to $x \in X$ iff and only if \mathcal{F} is p_μ-accumulates to $x \in X$.

Proof: Since \mathcal{F} is a filter base, \mathcal{F} is p_μ-accumulates to $x \in X$ by Lemma 2.23 if \mathcal{F} is p_μ-converges to $x \in X$.

Conversely, let \mathcal{F} be a maximal filter base \mathcal{F} p_μ-accumulate to $x \in X$. If \mathcal{F} does not p_μ-converges to x, then for each $F \in \mathcal{F}$, there exists a μ-preopen set A containing x such that $F \not\subseteq i_\mu(c_\mu(A))$ i.e. $F \cap c_\mu(i_\mu(X - A)) \neq \emptyset$. We put $\mathcal{E} = \mathcal{F} \cup \{F \cap c_\mu(i_\mu(X - A)) \mid F \in \mathcal{F}\}$. Then \mathcal{E} is a filter base properly containing \mathcal{F}, a contradiction to the fact that \mathcal{F} is a maximal filter base. \hfill \Box

Theorem 2.25. The following statements are equivalent:

1. X is μ-precompact.

2. Each filter base p_μ-accumulates to some $x_0 \in X$.

3. Each maximal filter base p_μ-converges in X.

Proof: $(a) \Rightarrow (b)$: Suppose that there exists a filter base $\mathcal{F} = \{F_\alpha \mid \alpha \in A\}$ in X and \mathcal{F} does not p_μ-accumulates in X. It means that for each $x \in X$, there exists a μ-preopen set A containing x and an $F_\alpha(x) \in \mathcal{F}$ such that $F_\alpha(x) \cap i_\mu(c_\mu(A)) = \emptyset$. So $\mathcal{F} = \{A_x \mid x \in X\}$ is a μ-preopen cover of X. By Theorem 2.11, \mathcal{F} has a finite subcollection $A_{x_1}, A_{x_2}, \ldots, A_{x_n}$ such that $\{i_\mu(c_\mu(A_{x_k})) \mid k \in \{1, 2, \ldots, n\}\}$ covers X. As \mathcal{F} is a filter base, there exists an $F_0 \in \mathcal{F}$ such that $F_0 \subseteq \bigcap_{k=1}^n F_{\alpha(x_k)}$. It means that $F_0 \cap i_\mu(c_\mu(A_{x_k})) = \emptyset$ for each $k \in \{1, 2, \ldots, n\}$. Now $F_0 = F_0 \cap X = F_0 \cap (\bigcup_{k=1}^n i_\mu(A_{x_k}))) = \bigcup_{k=1}^n (F_0 \cap i_\mu(A_{x_k})) = \emptyset$, a contradiction to the fact that $F_0 \neq \emptyset$.

$(b) \Rightarrow (c)$: Let \mathcal{F} be a maximal filter base in X. By (ii), \mathcal{F} p_μ-accumulates to some $x_0 \in X$. \mathcal{F} being a maximal filter base in X, \mathcal{F} p_μ-converges to $x_0 \in X$ by Lemma 2.24.

$(c) \Rightarrow (a)$: Let $\mathcal{F} = \{A_\alpha \mid \alpha \in \Delta\}$ be a μ-preopen cover of X. If possible, let X be not μ-precompact. Then for each finite subcollection Δ_0 of Δ, we have $\bigcup_{\alpha \in \Delta_0} i_\mu(c_\mu(A_\alpha)) \neq X$ which implies that $\bigcap_{\alpha \in \Delta_0} c_\mu(i_\mu(X - A_\alpha)) \neq \emptyset$. We put $F_{\Delta_0} = \bigcap_{\alpha \in \Delta_0} c_\mu(i_\mu(X - A_\alpha))$. Let Λ be the collection of all finite subcollection of Δ. We write $\mathcal{F} = \{F_\lambda \mid \lambda \in \Lambda\}$ (each F_λ bears the meaning as of F_{Δ_0}). We see that \mathcal{F} is a filter base on X and hence there exists a maximal filter base \mathcal{M} containing \mathcal{F}. By (c), \mathcal{M} p_μ-converges to some point $x_0 \in X$ and so \mathcal{M} p_μ-accumulates to
some point \(x_0 \in X \) by Lemma 2.24. As \(\mathcal{S} \) is a cover of \(X \), there exists \(A_0 \in \mathcal{S} \) such that \(x_0 \in A_0 \). Then by construction, \(c_\mu(i_\mu(X - A_0)) \in \mathcal{M} \). Since \(\mathcal{M} \) \(p_\mu \)-accumulates to \(x_0 \) and \(x_0 \in A_0 \), we see that \(M \cap i_\mu(c_\mu(A_0)) \neq \emptyset \) for each \(M \in \mathcal{M} \), in particular, \(c_\mu(i_\mu(X - A_0)) \cap i_\mu(c_\mu(A_0)) \neq \emptyset \), a contradiction to the fact that \(c_\mu(i_\mu(X - A_0)) \cap i_\mu(c_\mu(A_0)) = \emptyset \). □

Acknowledgments

The author is thankful to the referees for their some kind comments and suggestions which lead to revise the paper in the present form.

References

A. Mukharjee
Department of Mathematics
St. Joseph’s College
Darjeeling
W. Bengal-734 104
India.
E-mail address: ajoyjee@gmail.com