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ABSTRACT. We investigate how it is possible to obtain different diffusive regimes from the Continuous 
Time Random Walk (CTRW) approach performing suitable changes for the waiting time and jumping 
distributions in order to get two or more regimes for the same diffusive process. We also obtain diffusion-
like equations related to these processes and investigate the connection of the results with anomalous 
diffusion. 
Keywords: random walk, anomalous diffusion, diffusive regimes. 

Caminhantes Aleatórios e diferentes regimes difusivos 

RESUMO. Investigamos como é possível obter diferentes regimes difusivos do formalismo de caminhadas 
aleatórias com espaço-tempo contínuo fazendo mudanças adequadas na distribuição de tempos de espera e 
de saltos de forma a obter dois ou mais regimes para o mesmo processo difusivo. Também obtivemos 
equações tipo difusão para estes processos e investigamos a conexão desses resultados com a difusão 
anômala. 
Palavras-chave: caminhates aleatórios, difusão anômala, diferentes regimes. 

Introduction 

Since the first observations performed by Robert 
Brown on the random motion of particles 
suspended in a fluid and the explanation proposed 
by Einstein for this phenomenon, the diffusive 
processes have been widely investigated in several 
contexts. One of the main characteristics of this 
phenomenon is the behavior of the mean square 
displacement which is linear in time, i.e., 

( ) txx ∝− 2 . This behavior for the mean square 

displacement accomplished by the Gaussian solution 
is essentially due to the Markovian nature of this 
process. The phenomena characterized by these 
properties are described by the usual diffusion 

ρρ 2
xt ∂=∂ D , in which 0=⋅∇+∂ J


ρt  can be 

obtained by considering the continuity equation 
with the Fick law ( )ρ∇−= DJ


. It should be noted 

that this equation may be obtained by using other 
approaches, such as Langevin equations or random 
walks. However, there are several situations which 
are not conveniently described in terms of the usual 
form of the diffusion equation. For example, 
diffusion in a fractal medium (ACEDO; YUSTE, 
1998; ANH et al., 2007; CAMPOS;  MÉNDEZ,  2004;  

METZLER et al., 1994; O'SHAUGHNESSY; 
PROCACCIA, 1985), relaxation in systems with 
memory (CROTHERS et al., 2004; HILFER, 2000; 
SCHRIESSEL; BLUMEN, 1995), transport in porous 
media (MUSKAT, 1937; POLUBARINOVA-
KOCHINA, 1962), fluctuation in financial markets 
(PLEROU et al., 2000), tumor development 
(FEDOTOV; IOMIN, 2007; IOMIN, 2006), micelles 
solvated in water (OTT et al., 1990). In these 
situations, the diffusive process is not normal but 
anomalous and the distribution which characterizes 
these processes is not the Gaussian one. In addition, 
the mean square displacement may be finite or not. For 
the finite case, in general, we have that 

( ) αtxx ∝− 2  where 1<α  and 1>α  corresponds 

to the sub- and superdiffusive case. Situations 
characterized by different diffusive regimes are also 
verified in several contexts such as biological systems 
(GREGOIRE et al., 2001; ROGERS et al., 2008; WU; 
LIBCHABER, 2000), motion of colloidal particles 
(TIERNO et al., 2007), system with long range 
interactions (LATORA et al., 1999; LATORA et al., 
2001), and adsorption-desorption processes (LENZI  
et al., 2009a). These physical situations have been 
investigated by several approaches such as fractional 
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diffusion equations (BADINI et al., 2007; 
GONÇALVES et al., 2006; HILFER et al., 2004; 
ISFER et al., 2010; LENZI et al., 2011; LENZI et al., 
2010; LENZI et al., 2009b; METZLER; KLAFTER, 
2000; SANTORO et al., 2011; ROSSATO et al. 2007), 
nonlinear diffusion equations (FRANK, 2005), 
random walks (WEISS, 1994) and Langevin equations 
(COFFEY et al., 2004). 

In this manuscript, we investigate how it is 
possible to get different diffusive regimes from the 
Continuous Time Random Walk (CTRW). We 
consider suitable choices to the waiting time 
distribution and jumping probability density in 
order to obtain different diffusive regimes for the 
same diffusive process. Depending on the choice of 
these functions, the system may exhibit two or more 
diffusive regimes which may present a finite or 
divergent (Lévy flights) second moment. 

Material and methods 

Continuous Time Random Walk 

Let us start our discussion about Continuous 
Time Random Walk (CTRW) and different regimes 
by performing a review of some aspects of the 
CTRW approach. Following the discussion 
presented by Metzler and Klafter (2000), we start by 
introducing a jump probability distribution function 
(pdf) ),( txψ  which contains the characteristics of 
the system in analysis. From ),( txψ , we can obtain 

 


∞

∞−

= dxtxt ),()( ψω  (1)

 
and 

 


∞

=
0

),()( dttxx ψλ   (2)

 
As such, the quantity dxx)(λ  is the probability 

for a jump length in the interval ),( dxxx +  and 

dtt)(ω  the probability for a waiting time in the 
interval ),( dttt + . If the jump length and waiting 

time are independent random variables, one finds 
the decoupled form )()(),( xttx λωψ =  for the jump 
pdf ),( txψ . If both are coupled, a jump of a certain 

length involves a time cost or, vice versa; i.e., in a 
given time span the walker can only travel a 
maximum distance. By using these definitions, a 
CTRW process can be described by the following 
equation 

xdtdttxxtxtxtx
t

 
∞

∞−

−−+=
0

),(),()()(),( ψηδδη  (3)

 
which connects the (pdf) ),( txη  of just having 
arrived at position x  at time t , with the event of 
having just arrived at 'x  at time 't , )','( txη  . The 
first term in the above equation is the initial 
condition for the random walk. Consequently, the 
distribution ),( txρ  of being at point x  at time t  is 
given by 
 

 −Ψ=
t

tdtttxtx
0

)(),(),( ηρ  (4)

 
where: 
 

−=Ψ
t

tdtt
0

)(1)( ω  (5)

 
is the cumulative probability. In addition, by using 
the Fourier-Laplace transform, Equation (4) can be 
written as 

 

),(1
1)(1),(
sks

ssk
ψ

ωρ
−

−=  (6)

 
The previous discussion essentially characterizes 

the CTRW approach that we use to investigate the 
situations characterized by different diffusive 
regimes. 

Results and discussion 

Before analyzing a complex situation, let us study 
a usual diffusive process within this approach, in 
order to gain some insight on the changes we have 
to make. The usual diffusive process may be 
obtained from the above formalism by an 
appropriate choice of ),( skψ . To do this, it is 
necessary to note that the usual diffusion has a 
variance, i.e., the second moment is finite, and the 
average of the waiting time distribution is defined. 
These features are related to the Markovian 
characteristic of this process in which we are 
interested. These characteristics lead us to choose 
the jumping probability and waiting time 
distributions function with the following behavior 

)(1)( 42 kkk OD +−≈λ  and )(1)( 2ss Os +−≈ τω , to 
assure the previous assumptions. In order to check 
our choices and the relation to the usual diffusion, we 
may directly relate Equation (6) with the distribution 
that emerges from the diffusion equation 



Anomalous diffusion 203 

Acta Scientiarum. Technology Maringá, v. 34, n. 2, p. 201-206, Apr.-June, 2012 

),(),( 2

2

tx
x

tx
t

ρρ
∂
∂=

∂
∂

D  (7)

 
after applying the Fourier and Laplace transforms. 
This enables us to compare Equation (6) with the 
distribution obtained from Equation (7). 
Performing some calculations, it is possible to 
show that 

 

( ) 2
1),(

ks
sk

τ
ρ

D+
=  (8)

 
for the diffusion equation with the initial condition 

)()0,( xx δρ =  and the boundary conditions 

0),( =±∞ tρ . By comparing Equation (8) with 
Equation (6) we can find )(xλ  and )(tω , which for 

this case in the Fourier-Laplace space are given by 
21)( kk D−≈λ . Note that the solution is 

( )τω ss += 11)(  in agreement with our previous 

choice for these functions. 
This result obtained for the diffusion equation 

indicates that to model another diffusive process, we 
have to choice a suitable ),( skψ  accomplishing the 

characteristic of the diffusive process. In the 
previous discussion, the first situation that we can 
consider is the mixing between a long and short 
tailed behavior for the waiting time distribution. 
The previous choice to )(sω , i.e., 

)(1)( 2ss Os +−≈ τω , gives a short tailed behavior. A 
long tailed behavior for )(sω  may be obtained by 
considering, e.g., )(1)( 2γγ

γ
γτω ss Os +−≈ , with 

10 << γ . By incorporating these two behaviors in 

)(sω , we obtain )(1)( γ
γ

γττω s+−≈ ss . Note that the 

different diffusive behaviors manifested by this 
choice to )(sω  are exhibited in accordance with a 
characteristic time determined by τ  and γτ ; i.e., 

depending on the time scale considered, we may 
have an usual or anomalous behavior. In this 
context, a typical choice to the waiting time 
distribution is given by 

 

( )γγττ
ω

ss
s

++
=

1
1)(  

 (9)

 
This waiting time distribution has two different 

behaviors which may be evidenced by considering 
0→s  ( )∞→t  and ∞→s  ( )0→t . For the first 

case, the behavior of )(sω  is essentially governed by 

( )γγτ
ω

s
s

+
=

1
1)(  (10)

 
which has as inverse Laplace transform 

 






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



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γ
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γ τττ

ω ttt ,

1
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where ( )xβα ,E  is the generalized Mittag-Leffler 

function (PODLUBNY, 1999). For the other limit, 
the behavior of )(sω  is essentially governed by 

 

τ
ω

s
s

+
=

1
1)(  (12)

 
which has as inverse Laplace transform 

 
τ

τ
ω tet −= 1)(   (13)

 
The inverse Laplace transform of Equation (9) is 

given by 
 







−










= −

∞
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 ττ

τ
τ
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n
t (n)

α,β

n

n
E

!
11)( 1

0

 (14)

 
with 1=α  and nγβ −=1  , where: 

)(E)(E ,
)(

, x
dx
dx n

n
n

βαβα ≡ . Similar to the case worked out 

for the usual diffusion process, it is possible to relate 
this diffusive process to a diffusion-like equation. In 
particular, it is given by 

 

),(),(),( 2

2

tx
x

tx
t

tx
t

ρρτρτ γ

γ
γ
γ ∂

∂=
∂
∂+

∂
∂

D  (15)

 
The behavior considered for the )(tω  may be 

verified from Equation (15) by analyzing the mean 
square displacement ( )22 xxx −=σ which for the 

initial conditions considered here is equal to the 
second moment. The second moment for this case 
is give by Lenzi et al. (2003) 

 











−= −

−
γ

γ
γ

γ τ
τ

τ
1

2,1
2 E2 tx t

D  (16)

 
see Figure 1. By taking the previous limits into 
account, it is possible to show γtx ≈2  and 

tx ≈2  characterizing two different regimes for the 



204 Ribeiro et al. 

Acta Scientiarum. Technology Maringá, v. 34, n. 2, p. 201-206, Apr.-June, 2012 

spreading of the system, as expected. It also is 
possible to extend the previous analysis by 
considering the waiting time distribution 

 

)(1
1)(

ss
s

Λ++
=

τ
ω  (17)

 
where: 

)(sΛ  is the Laplace transform of a time-
dependent function )(tΛ . Equation (16) may 

present different behaviors depending on the choice 
performed for )(sΛ . 

 

 
Figure 1. The continuous line is the variance versus time when 
considering Equation (16) with 5.0=γ , 1=D , 1.0=τ  and 

1.0=γτ  . The dotted line is the asymptotic expansion for small 

times, tx ~2σ  , and the dashed line for long times, γσ tx ~2 . 

The inverse Laplace transform to Equation (17) 
may be obtained and it is given by 
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In addition, the diffusion-like equation related to 

this choice for the waiting time distribution is given by 
 

),(~)',(
'

)'( 2

2

0
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x

tdtx
t

tt
t

ρργ

γ

∂
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∂
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with )(')()( ttt Λ+=Φ τδ  and Λ=Λ
t

dttt
0

')'()(' . From 

this equation, is also possible to obtain the mean 
square displacement, for simplicity, by considering 
the initial condition )()0,( xx δρ =  which simplifies 

our calculation for the second moment. After some 
calculations, it is possible to show that it formally 
can be written as 
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The previous analysis was performed by 

considering the changes obtained by incorporating 
different situations to the waiting time distribution. 
Now, we investigate the changes produced by 
modifying the jumping probability )(kλ  in order to 

incorporate, for example, long tailed behavior. A 
typical change to be performed in )(kλ , which 

accomplishes long tailed behavior, is to add the term 
μ

μ kD . Thus, the jumping probability in the Fourier 

space is given by μ
μλ kk D−≈ 1)( . This choice for 

)(kλ  has two behaviors, one of them governed by a 

Gaussian distribution and the other by a Levy 
distribution, since )1(1)( τω ss += . In this case, the 

diffusion-like equation is given by 
 

),(),(),( 2

2

tx
x

tx
x

tx
t

ρρρτ μ

μ

μ
∂
∂+

∂
∂=

∂
∂

DD  

 
Another choice that can be performed for 

μ
μλ kkk DD −−≈ 21)( , where )(kμD  is a spatial 

dependent function that admits an inverse of the 
Fourier transform. For this general case, the 
diffusion equation is given by 
 

'),'()'(),(),( 2

2

dxtxxxtx
x

tx
t

ρρρτ μ
∞

∞−

−+
∂
∂=

∂
∂

DD  (19)

 
Figure 2 illustrates the behavior of the[ ]2),0(/1 tρ  

obtained from Equation (19) versus t  by 

considering 2
3

231)( kkk DDD +=μ . Note that the 

presence of different diffusive regimes, which may 
be detected by considering an appropriated time 
scale. In order to evidence these different diffusive 
regimes, which are manifested by a previous choice 
of )(kμD , we plot straight lines to indicate the 

dominant time dependence in such time scale. 
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Figure 2. Behavior of the [ ]2),0(/1 tρ  versus t  by considering 

2
3

231)( kkk DDD +=μ . For simplicity, we choose, without 

loss of generality, 1=D , 11 =D , and 1023 =D . The dotted 

line represents [ ] 3
42 ~),0(/1 ttρ  , the dotted – dashed line 

corresponds to the behavior [ ]2),0(/1 tρ and the dashed line is the 

asymptotic behavior [ ] 22 ~),0(/1 ttρ . 

Another possibility to model situations with 
different diffusive regimes by using the CTRW 
approach is to consider simultaneous changes to the 
waiting time distribution and the jumping 
probability in order to produce the suitable behavior 
to describe the diffusive process under investigation. 
In this direction, it is possible to consider the 
waiting time distribution given by  

 

)(1
1)( 1 sss

s
Λ++

= −γτ
ω  

 
and the jumping probability given by )(1)( kk μλ D−≈  

which yields, 
 

'),'()'(~)~,(~)~(),(
0

dxtxxxtdtx
t

tttx
t

t

ρρρ μγ

γ


∞

∞−

−=
∂
∂−Λ+

∂
∂

D (20)

 
The previous equation may exhibit different 

regimes depending on the choices performed for 
)(tΛ , )(xμD  and γ . 

Conclusion 

We have investigated the diffusive regimes which 
can be obtained from the Continuous Time 
Random Walk formalism when suitable changes are 
considered. We first analyzed the CTRW by 
performing several choices for the waiting time or 
jumping distributions. The changes considered for 
the waiting time distribution led us to situations 
with finite mean square displacement and different 

regimes for the same processes, which are detected 
in different time scales. A typical example is given by 
Equation (16), which has two different regimes; one 
of them is manifested for small times and the other 
for long times. Finally, we expect that the results 
found here may be useful to investigate anomalous 
diffusion. 
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