http://www.uem.br/acta ISSN printed: 1679-9275 ISSN on-line: 1807-8621

Doi: 10.4025/actascitechnol.v34i3.11636

Domination numbers of the complete grid graphs $P_k \times P_n$

Mahmoud Saoud

Ecole Normale Supérieure, Département de mathématiques, BP 92 Kouba, 16050, Alger, Algérie. E-mail: saoud m@yahoo.fr

ABSTRACT. This paper concerns the domination numbers $\gamma(P_k \times P_n)$ for the complete $P_k \times P_n$ grid graphs for k = 7, 8, 9 and for all $n \ge 1$. These numbers were previously established (BONDY; MURTY, 2008; CHANG; CLARK, 1993). Here we present dominating sets by other method.

Keywords: dominating Set, domination number, transformation of a dominating set, cartesian product of two paths.

Números de dominação de gráficos grid completos $P_k \times P_n$

RESUMO. Este artigo diz respeito aos números de dominação γ ($P_k \times P_n$) para gráficos completos $P_k \times P_n$, para k=7, 8, 9 e para todo $n \ge 1$. Estes números foram previamente estabelecidos por (BONDY; MURTY, 2008; CHANG; CLARK, 1993). Aqui apresentamos conjuntos dominados por outro método.

Palavras-chave: conjunto de dominação, número de dominação, transformação de um conjunto dominante, produto cartesiano de dois caminhos.

Introduction

A dominating set in a graph is a set of vertices having the property that every vertex not in the set is adjacent to a vertex in the set. The domination number γ (G) of a graph G is the cardinality of a smallest dominating set in G.

The problem of finding the domination number of a arbitrary grid graph (= subgraph of $P_k \times P_n$) is NP-complete (CLARK et al., 1990).

In this paper, we introduce the concept of transforming the domination from a vertex in a dominating set D of a graph G = (V, E) to a vertex in V - D, where G is a simple connected graph. We give an algorithm using this transformation to obtain a dominating set of a graph G.

A graph G = (V, E) is a mathematical structure which consists of two sets V and E, where V is finite and nonempty, and every element of E is an unordered pair $\{u, v\}$ of distinct elements of V; we simply write uv instead of $\{u, v\}$.

The elements of V are called vertices, while the elements of E are called edges (BONDY; MURTY, 2008).

Two vertices u and v of a graph G are said to be adjacent if $uv \in E$.

The neighborhood of v is the set of all vertices of G which are adjacent to v; the neighborhood of v is denoted by N(v). The closed neighborhood of v is $\overline{N}(v)$, $\overline{N}(v) = N(v) \cup \{v\}$.

The degree d(v) of a vertex v is the cardinality |N(v)|, d(v) = |N(v)|.

Material and methods

Defnitions

Let D be a dominating set of a graph G = (V, E).

1. We define the function C_D , which we call the weight function, as follows: C_D : $V \to N$, where N is the set of natural numbers, $C_D(v) = |\tilde{N}(v)|$, where $\tilde{N}(v) = \{w \in D: vw \in E \text{ or } w = v\}$.

i.e. the weight of v is the number of vertices in D which dominate v.

- 2. We say that $v \in D$ has a moving domination if there exists a vertex $w \in N(v) D$ such that $wu \in E$ for every vertex $u, u \in \{x \in N(v): C_D(x) = 1\}$.
- 3. We say that a vertex $\nu \in D$ is a redundant vertex of D if $C_D(w) \ge 2$ for every vertex $w \in \overline{N}(\nu)$.
- 4. If $v \in D$ has a moving domination, we say that v is inefficient if transforming the domination from v to any vertex in N(v) would not produce any redundant vertex.

Complete grid graph $P_k \times P_n$:

For two vertices v_o and v_n of a graph G, a $v_o - v_n$ walk is an alternating sequence of vertices and edges v_o , e_1 , v_1 ,..., e_n , v_n such that consecutive vertices and edges are incident.

A path is a walk in which no vertex is repeated. A path with n vertices is denoted by P_n , it has n-1 edges; the length of P_n is n-1; the cartesian product $P_k \times P_n$ of two paths is the complete grid graph with vertex set $V = \{(i, j): 1 \le i \le k, 1 \le j \le n\}$

322 Saoud

where (u_1, u_2) (v_1, v_2) is a edge of $P_k \times P_n$ if $|u_1 - v_1| + |u_2 - v_2| = 1$ (CHANG; CLARK, 1993).

If *D* is a dominating set of $P_k \times P_n$ which has no redundant vertex, then a vertex $v \in D$ has a moving domination if and only if one of the following two cases occurs:

Case (1): for every vertex $w \in N(v)$, we have $C_D(w) \ge 2$.

In this case, the domination of v can be transformed to any vertex in N(v) - D.

Case(2): there exists exactly one vertex $u \in N(v)$ such that $C_D(u) = 1$ in this case, the domination of v can be transformed only to u.

An algorithm for finding a dominating set of a graph $P_k \times P_n$ using a transformation of domination of vertices

- 1. Let $P_k \times P_n = (V, E)$ be a graph of order greater than 1; |V| = m.
- 2. Let D = V be a dominating set of $P_k \times P_n$. then, for any vertex $v \in D$ we have $C_D(v) = d(v) + 1 > 2$
- 3. Pick a vertex v_1 of D, and delete from D all vertices w, $w \in N(v_1)$ then, for $1 < n < \frac{m}{2}$, pick a

vertex $v_n \in D - \bigcup_{i=1}^{n-1} \overline{N}(v_i)$ and delete from D all

vertices $w, w \in N(v_n) - \bigcup_{i=1}^{n-1} \overline{N}(v_i)$.

4. If *D* contains a redundant vertex, then delete it. Repeat this process until *D* has no redundant vertex.

5. Transform domination from vertices of D which have moving domination to vertices in V - D to obtain redundant vertices and go to step 4.

If no redundant vertex can be obtained by a transformation of domination of vertices of D, then stop, and the obtained dominating set D satisfies:

for every $v \in D, \exists w \in \overline{N}(v)$ such that $C_D(w) = 1$.

Example

- 1. Let (k, n) be the vertex in the k-th row and in the n-th column of the graph $G = P_7 \times P_{16}$; |V| = 112.
 - 2. Let D = V, dominating set of G.
- 3. Pick a vertex $v_1 = (2,1) \in D$, and delete from D all vertices w, $w \in N(v_1)$, then, for $1 < n < \frac{112}{2}$, pick a vertex v_n , $v_n \in D \bigcup_{i=1}^{n-1} \overline{N}(v_i)$, and delete from D all vertices w,

$$w \in N(v_n) - \bigcup_{i=1}^{n-1} \overline{N}(v_i)$$
. We obtain the

dominating set D (black circles) in figure 1.

Figure 1. Dominating set (black circles).

- 4. Since for every vertex $v \in D$, $\exists w \in \overline{N}(v)$ such that $C_D(w)=1$, D has no redundant vertices.
- 5. Transform the domination from the vertex (6, 16) to the vertex (5, 16) and delete, from D, the resulting redundant vertex (5, 15).

Therefore, the set D indicated in figure 2 (black circles) is a dominating set of $G = P_7 \times P_{16}$.

Note that *D* minimum dominating set (see CHANG et al., 1994) $\gamma(P_7 \times P_{16}) = 27$.

$$\gamma(P_7 \times P_{16}) = 27$$
= $2(n-5) + 5$
= $2n-5$

Figure 2. Domination number (black circles).

And so, we gradually get domination numbers of $P_7 \times P_n$.

Table 1. Domination numbers $\gamma(P_7 \times P_n)$, $n \ge 1$.

Hence:

$$\gamma(P_7 \times P_n) = \begin{cases} 3 & \text{for } n = 1\\ 4 & \text{for } n = 2\\ 6 & \text{for } n = 3\\ 2n - t & \text{for } n = 3t + 1, 3t + 2, 3t + 3; t \ge 1 \end{cases}$$

= 2n - 3

where t is a positive integer.

Dominating sets for $P_8 \times P_n$ Grid graph

By self-method, we give in Table 2, $\gamma(P_8 \times P_n)$, $n \ge 1$.

And by gradually, we find that: $\gamma(P_8 \times P_n) = 2n$ for $6 \le n \le 14$.

$$n = 15$$

$$\gamma(P_8 \times P_{15}) = 29$$

$$= (\frac{n-5}{2})(3+1) + 9$$

$$= 2n - 1$$

And by gradually, we find that $\gamma(P_8 \times P_n) = 2n - 1$ for $15 \le n \le 22$.

$$n = 23$$

$$\gamma(P_8 \times P_{23}) = 44$$

$$= (\frac{n-7}{2})(3+1) + 12$$

$$= 2n - 2$$

And by gradually, we find that $\gamma(P_8 \times P_n) = 2n - 2$ for $23 \le n \le 30$.

$$\begin{array}{l} n=31\\ \gamma(P_8\times P_{31})=59\\ =(\frac{n-9}{2})(3+1)+15\\ =2n-3 \end{array}$$

And by gradually, we find that $\gamma(P_8 \times P_n) = 2n - 3$ for $31 \le n \le 38$.

And by gradually, we find that $\gamma(P_8 \times P_n) = 2n - 4$ for $39 \le n \le 46$. Hence:

$$\gamma(P_8 \times P_n) = \begin{cases} 2n+1 & \text{for } n = 1,2,3,5 \\ 2n & \text{for } n = 4 \text{ or } 6 \le n \le 14 \\ 2n - (t+1) & \text{for } n = 15 + 8t, 16 + 8t, ..., 22 + 8t; t \ge 0 \end{cases}$$

where t is a integer.

Table 2. Domination numbers $\gamma(P_{s} \times P_{n})$, $n \ge 1$.

324 Saoud

Dominating sets for $P_0 \times P_n$ Grid graph

By self-method, we give in Table 3, $\gamma(P_9 \times P_n)$, $n \ge 1$

$$n = 12$$

 $\gamma(P_9 \times P_{12}) = 26$
 $= 2(n-8) + 18$
 $= 2n + 2$

And by gradually, we find that $\gamma(P_9 \times P_n) = 2n + 2$ for $4 \le n \le 12$.

$$n = 13$$

 $\gamma(P_9 \times P_{13}) = 29$
 $= 2(n-6) + 15$
 $= 2n + 3$

And by gradually, we find that $\gamma(P_9 \times P_n) = 2n + 3$ for $13 \le n \le 23$.

$$n = 24$$

 $\gamma(P_9 \times P_{24}) = 52$
 $= 2(n-13) + 30$
 $= 2n + 4$

And by gradually, we find that $\gamma(P_9 \times P_n) = 2n + 4$ for $24 \le n \le 34$.

Hence:

$$\gamma(P_9 \times P_n) = \begin{cases} 2n+1 \text{ for } 1 \le n \le 3\\ 2n+2 \text{ for } 4 \le n \le 12\\ 2n+\left(t+3\right) \text{ for } n=13+11t,14+11t,...,23+11t; t \ge 0 \end{cases}$$

where *t* is a integer.

Table 3. Domination numbers $\gamma(P_9 \times P_n)$, $n \ge 1$.

We plan to deal with $P_k \times P_n$ grid graphs, for $n \ge 1$ and $k \ge 10$.

Results and discussion

$$\gamma(P_7 \times P_n) = \begin{cases} 3 & \text{for } n = 1\\ 4 & \text{for } n = 2\\ 6 & \text{for } n = 3\\ 2n - t & \text{for } n = 3t + 1, 3t + 2, 3t + 3; t \ge 1 \end{cases}$$

Table1. Domination numbers $\gamma(P_7 \times P_n)$, $n \ge 1$.

$$\gamma(P_8 \times P_n) = \begin{cases} 2n+1 \text{ for } n = 1,2,3,5 \\ 2n \text{ for } n = 4 \text{ or } 6 \le n \le 14 \\ 2n - (t+1) \text{ for } n = 15 + 8t, 16 + 8t, ..., 22 + 8t; t \ge 0 \end{cases}$$

Table2. Domination numbers $\gamma(P_8 \times P_n)$, $n \ge 1$.

$$\gamma(P_9 \times P_n) = \begin{cases} 2n+1 \text{ for } 1 \le n \le 3\\ 2n+2 \text{ for } 4 \le n \le 12\\ 2n+(t+3) \text{ for } n = 13+11t, 14+11t, ..., 23+11t; t \ge 0 \end{cases}$$

Table3. Domination numbers $\gamma(P_9 \times P_n)$, $n \ge 1$.

Conclusion

From these results, we note that it is possible to calculate the domination numbers quickly and without the need of a calculator in most cases, however the results published previously, you must necessarily use a calculator.

We tried this method on large grid graphs, and we obtained similar results quickly

References

BONDY, J. A.; MURTY, U. S. R. **Graph theory**, Springer, 2008.

CHANG, T. Y.; CLARK, W. E. The domination numbers of 5 x *n* and 6 x *n* grid graphs. **Journal of Graph Theory**, v. 17, n. 1, p. 81-107, 1993.

CHANG, T. Y.; CLARK, W. E.; HARE, E. O. Domination numbers of complete grid graph, I. **Ars Combinatoria**, v. 38, p. 97-111, 1994.

CLARK, B. N.; COLBOURN, C. J.; JOHNSON, D. S. Unit disk graphs. **Discrete Math**, v. 86, n. 1, p. 165-177, 1990.

Received on November 6, 2010. Accepted on October 14, 2011.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.