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ABSTRACT. The space and time discretization of the finite element method was optimized 
for following application in multicomponent diffusion simulation during Prato cheese salting, 
a traditional and much consumed foodstuff in Brazil originated from the European Gouda 
cheese. It was ascertained that the correct choice of the time intervals and mesh is fundamental 
in applying the method. After optimization the simulated results were in agreement with the 
experimental and calculated results by the analytical method, showing that the method is a 
promising tool for simulation of diffusive processes when two solutes are considered, and is 
also a much less restrictive technique than the analytical method. 

Key words: response surface methodology, simplex optimization, desirability functions, prato cheese salting. 

RESUMO. Otimização da discretização espaço-temporal do método de 

elementos finitos aplicado a simulação da difusão multicomponente. Neste 
trabalho foi realizada a otimização da discretização espaço-temporal do método de 
elementos finitos para sua posterior aplicação na simulação da difusão multicomponente 
durante a salda de queijo prato, um alimento tradicional e muito consumido no Brasil e 
similar ao queijo Gouda. Foi verificado que a escolha correta dos intervalos de tempo e da 
malha é fundamental para a aplicação do método. Após a otimização os resultados 
simulados concordaram com os experimentais e estimados pelo método analítico. 
Mostrando que o método é uma ferramenta promissora para a simulação de processos 
difusivos quando dois solutos são considerados, além de ser uma técnica muito menos 
restritiva que o método analítico. 

Palavras-chave: metodologia de superfície de respostas, otimização simplex, funções de 
desejabilidade, salga de queijo prato. 

IntroductionIntroductionIntroductionIntroduction    

Many people have avoided consuming Prato 

cheese to reduce sodium chloride ingestion, and 

consequently reduce problems related to arterial 

hypertension (Rapacci, 1989).  Sodium consumption 

is one of the main factors that have been proven to 

cause increase in arterial pressure (He and 

MacGregor, 1999). Several substitutes for sodium 

chloride have been studied, especially potassium 

chloride, because it presents similar physical 

properties (Lynch, 1987). Therefore, brine containing 

NaCl/KCl mixture in adequate proportions, to avoid 

sensorial problems, is used to produce a cheese with 

reduced sodium content (Rapacci, 1989; Zorrilla and 

Rubiolo, 1994; Katsiari et al., 1998). The 

NaCl/KCl/water system is classified as ternary 

(Nauman and Savoca, 2001) and the flow of 

potassium chloride and its influence on the flow of 

sodium chloride should be considered. Thus, a more 

extensive mathematical modeling is needed to 

simulate the diffusion process that occurs in this 

multicomponent system. Prato cheese is an example 

of a food with high nutritional value and common in 

the Brazilian diet, where the quantity and 

homogeneous distribution of sodium chloride are 

relevant for its final quality. Thus, studies involving 

sodium chloride diffusion, in the presence of a 

substitute (KCl) are fundamental in estimating 

parameters (such as salting and maturation time) 

essential for its industrial scale manufacture. The finite 

element method (FEM) has already been successfully 

used in simulating sodium chloride diffusion in Prato 
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cheese, using the Fick’s second law as a theoretical 

basis for the phenomenon (Silva et al., 1998; 1999). 

However, as far as it is known, there are no studies in 

the literature using FEM to simulate multi-

component diffusion in solid foods by the generalized 

Fick equation.  According to Wang and Sun (2003), 

there are few publications in food area that have used 

FEM to simulate three-dimensional conditions as 

proposed in the present study. 

The objective of this study was to optimize the 

discretization used for three-dimensional simulation 

of multicomponent diffusion during mixed salting of 

Prato cheese in brine at rest. 

MaterialMaterialMaterialMaterial and  and  and  and methodsmethodsmethodsmethods    

ExperiExperiExperiExperimental proceduremental proceduremental proceduremental procedure    

Seven cheeses samples (Queijo Prato Lanche Di 

Carlo, Laticínios Campina Alta, Manoel Ribas , Estado 

do Paraná) were salted for 11 hours in a brine at rest 

containing 15.0 g NaCl/100 g NaCl + KCl + water and 5.6 g 

KCl/100 g NaCl + KCl + water at 10º± 1ºC. Periodically two 

cylindrical samples were removed to estimate the 

NaCl and KCl concentrations (Figure 1) using a 

CELM FC-280 atomic emission photometer. The 

moisture, fat content and initial quantity of sodium 

chloride and potassium chloride were also determined 

in a sample that was not salted (Bona et al., 2005). 
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Figure 1. Dimensions of the Prato cheese used (axis X, hidden 
in the Figure, measured 4cm) and sampling adopted to study 
multicomponent diffusion. 

ThreeThreeThreeThree----dimensional modeling of dimensional modeling of dimensional modeling of dimensional modeling of the multthe multthe multthe multiiiicomponent component component component 

diffusion during diffusion during diffusion during diffusion during saltingsaltingsaltingsalting by the finite element method by the finite element method by the finite element method by the finite element method    

The following considerations or simplifying 

hypotheses were used to formulate the simultaneous 

diffusion in finite elements: 

The diffusion of two solutes was modeled in a 

three-dimensional cheese that occupied the volume Ω 

⊂ R3, Ω  ≡ [-R1, R1]x[-R2, R2]x[-R3, R3], associated 

to a system of Cartesian coordinates x, y, z with origin 

located in geometric center of the Prato cheese. 

The system under study was considered not 

reactional, bearing in mind that the most significant 

chemical reactions occurred during the maturation 

period (Zorrilla and Rubiolo, 1998). 

The diffusion coefficient or mass diffusivity was 

considered constant in relation to the concentration 

(regardless of time and position). 

The external resistance was equal for the two 

solutes, because they are very similar ionic 

compounds (Zorrilla and Rubiolo, 1994). 

The sample contraction was considered negligible, 

because according to the literature the variation in 

volume is minimal during cheese salting (Silva et al., 

1998; Gerla and Rubiolo, 2003). 

The process is done under very approximately 

isothermal conditions. 
Under these conditions it was proposed to analyze 

the cheese salting process considering it immersed in 
an unstirred aqueous solution containing NaCl and 
KCl in the mass proportion recommended by Rapacci 
(1989) to ensure good sensorial acceptability. The 
C1(x,y,z,t) and C2(x,y,z,t), concentration of the NaCl 

and KCl solutes, respectively, at a point P(x,y,z) ∈ Ω 
and at instant t, can be described by Onsager (1945) 
equations for the solute concentrations: 

 

2
2

221
2

21
2

2
2

121
2

11
1

CDCD
t

C

CDCD
t

C

∇+∇=
∂

∂

∇+∇=
∂

∂

            (1) 

 

where Dii are the main coefficients, Dij crossed 

coefficients, that combine the flows and ∇2(.) = 

∇.∇(.), is the Laplacian operator. 

In the salting process, the initial conditions are 

given by 
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where C1,0 and C2,0 are known. The Cauchy boundary 

condition for no stirred brine were (Luna and 

Bressan, 1986): 
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where ∂Ω is the set of points on the surface that wraps 

the Prato cheese; C1,s and C2,s are the solutes 

concentrations in brine; hm (g cm-2 h) is the mass 

transfer coefficient; λm (g cm-1 h) is the mass 

conductivity and ∂/∂η is the normal derivative 

operator. The hm and λm coefficients are related to 

Biot mass-exchange number by 

 

m

im Rh
Bi

λ
⋅

= ;  i = 1,2,3.            (4) 

 

where Ri is the characteristic length (cm). 

The diffusion coefficients and the Biot mass-

exchange number (Bona et al., 2005) were estimated 

(Table 1) from the experimental data obtained and by 

a one-dimensional analytical model for 

multicomponent diffusion in a brine at rest. 

Table 1. Fitted values for the parameters of the analytical 
solution (Bona et al., 2005).  

 NaCl KCl 

Main coefficients (cm2/day) 0.225 (D11) 0.240 (D22) 
Cross coefficients (cm2/day) 0.027 (D12) 0.045 (D21) 

Biot mass-exchange number 40.660* 
hm/λm (cm-1) 20.330 

* Related to X axis. 

The system of partial differential equations formed 

by equation (1) and by the conditions (2) and (3), even 

with the simplifying hypotheses adopted in the 

process, it is difficult to be resolved analytically. In this 

situation a transformation obtained with the 

eigenvalues and eigenvectors of the matrix of the 

differential operator that appears on the right side of 

equation (1) was used (Bona et al., 2005).  The 

disadvantages of this method are the restrictions in the 

geometry, in the process and further the fact that the 

transformed variables have no physical meaning.  An 

alternative that does not have these restrictions that 

can be applied in more general problems like this 

situation is the numerical solution of the system by 

the finite element method (FEM). Therefore the 

generalized Galerkin formulation was used (Huebner 

et al., 1995) to obtain the expression to be descritized 

by finite elements whose main steps are summarized 

as follows: 

For system (1) the expression of weighted residues 

formed is: 
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where Φ and Ψ are weighting functions that are 

null in ∂Ω  

b) The right side of the equation (5) is integrated 

in parts, obtaining, after considering the boundary 

conditions (3), the following:  
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where ∂Ω is the boundary of Ω and C1,s, C2,s are 
known values. ∫Ω ΩΩ df )(  and ∫ Ω∂

dssf )(  are, 

respectively, integrals of volume over the dominion 

and boundary. 

The discretization continued and the next steps 

were identified as follows (Singh, 1983): 

c) Partition of the domain (Ω) in subdomains 

called finite elements is adopted. 

d) In each finite element (with N nodes and two 

degrees of freedom per node) the variables of the 

problem were locally interpolated. Therefore, 

equation (6) can be rewritten, in matrix form, for each 

element as: 
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e) The global interpolation is formed by 

combining the elements, resulting in a system of 

ordinary differential equations. 

f) The solution of this system is obtained by an 

implicit process of finite differences, supplying the 

values of the concentrations in the element nodes.  

The concentration profiles in any part (point) of the 

Prato cheese at any time could be determined by local 

interpolation. 

SSSSpatial patial patial patial discretizationdiscretizationdiscretizationdiscretization    

The spatial domain was represented by a set of 

serendipity hexahedron elements of the C0, type. Each 

element had twenty nodes with two degrees of 

freedom (one for each solute), distributed at the edges 

and vertices of its external surface, totalizing forty 

degrees of freedom (Brebbia and Ferrante, 1975; Silva 

et al., 1998). The element, defined in standard 

Cartesian coordinates -1 ≤ ξ, η, ζ ≤ 1 (Chung, 1978), 

the arrangement of the nodes and their local 

enumeration are shown in Figure 2. 

The interpolation functions preserve the 

continuity between the elements and are deduced 

from an incomplete quadratic polynomial, following 

the same procedure to obtain the Lagrange functions 

(Chung, 1978; Akin, 1982).  In the formulation 

proposed φi = ψi was used.  
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Figure 2. (a) Standard hexahedron element, with 20 nodal 
points. (b) Orientation of the standard hexahedron element and 
enumeration of the surfaces. 

TimeTimeTimeTime    discretizationdiscretizationdiscretizationdiscretization    

The Crank-Nicholson scheme or central 

difference method was used for the dominion (Ω) and 

boundary (∂Ω) (Bickford, 1990). In this problem the 

vectors 2NC& and 2NC , equation (7), were discretized 

as follows 
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where, ∆t is a discrete increase in time, 0
2NC  is the 

solute concentration vector, already known, of the 

element before the adding of ∆t and 1
2NC  represents 

the concentration vector that will be calculated, after 
adding time (∆t). Organizing the terms of the 
equation (8) it can be shown that: 
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Resolution of the linear equation systemResolution of the linear equation systemResolution of the linear equation systemResolution of the linear equation system    

The LU decomposition method (Sperandio et al., 
2003) was used to solve the proposed system of linear 
equations.  The computational implementation of the 
method was carried out by a set of subroutines 
(DLSLRB and DLFCRB) based on the LINPACK 
package (Cline et al., 1979; Dongarra et al., 1979).  The 
DLSLRB subroutine was used to solve the linear 
equation system stored in band without using 
interactive refinement. This procedure uses the 
subroutines: DLFCRB that estimates the matrix 
condition number and performs the LU 
decomposition; DLFSRB that solves the system 
formed by the matrixes L and U. 

MeMeMeMeshshshsh    

A mesh generating subroutine was used because in 

practical applications the finite element method 

requires many input data. The global enumeration 

and the node coordinates of the mesh were obtained 
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automatically for rectangular domains. This procedure 

facilitates the identification of each node position at 

the element enabling sampling at any point or region 

of the mesh (Silva et al., 1998). 

Integration and interpolation of the simulation resultsIntegration and interpolation of the simulation resultsIntegration and interpolation of the simulation resultsIntegration and interpolation of the simulation results    

The experimental values obtained represented the 
mean NaCl and KCl concentration for the cylindrical 
sample (Figure 1). However, the finite element 
method supplies point concentrations, therefore, the 
simulated points had to be interpolated onto the 
imaginary axis located at the center of the sample. The 
mean was calculated by integrating these points 
according to equation (10). 

 

( )

∫
∫=

V

V i

dV

dVtzyxC
C

,,,
; i = 1.2          (10) 

 

The integral was calculated numerically by a Gauss 

formula (Sperandio et al., 2003) with the abscissas and 

weights obtained according to Davis and Polonsky 

(1965). 

The computer program The computer program The computer program The computer program     

The computational program for simulation of 

multicomponent diffusion, called Simul 3.0, was 

developed in Fortran language. The minimal 

requirement for his use is a Pentium III processor and 

256 Mb of RAM memory. 

SSSStatistictatistictatistictatisticalalalal test test test test    

The concentrations calculated by FEM, the 

analytical method (Bona et al., 2005) and the 

experimental method were compared by percentage 

deviation (Heldman, 1974) to assess the quality of fit.  
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where, 

calcC  is the mean concentration estimated by 

the numerical solution; 
expC  is the experimental 

mean concentration and N is the number of 
observations considered. 

Optimization of theOptimization of theOptimization of theOptimization of the space and time space and time space and time space and time    discretization discretization discretization discretization     

The objective of optimization was to determine 
values for the discrete time and space intervals that 
permit to minimize the deviations without significant 
increase in computer time. Some tests were 
performed for time discretization (Table 2) with 
different time intervals. The set of time intervals that 

produced the best combination between deviation and 
computer time was chosen.  At this stage all the 
simulations were carried out using a mesh of seven 
elements on each axis (totaling 343 elements). 

Table 2. Assessment of the intervals tested for time 
discretization.   

Number of loops in each 
Percent  

deviation in  Computer 

Time interval (h) 
Relation to  

experimental data Time 

0.05 0.20 0.30 0.50 1.00 2.00 NaCl KCl (minutes)* 

- - - - 11 - 21.47% 11.28% 12.70 
- - - 22 - - 17.26% 10.06% 26.79 
- 5 - - 10 - 17.23% 10.23% 19.04 
2 - 3 - 10 - 17.29% 10.24% 18.45 
2 - 3 - 2 4 17.30% 10.25% 14.52 

*For a microcomputer with Pentium III 800MHz processor and 256 Mbytes RAM 
memory. 

To assess the efficiency of the spatial discretization, 
which depends on the quantity of elements and their 
distribution, preliminary tests were carried out. This 
previous evaluation indicated that at least six elements 
per axis are necessary to simulate the proposed system. 
Otherwise, the results are far away from the 
experimental values. Further, due to the restrictions 
imposed by the microcomputer used, at most ten 
elements per axis could be used.  An experimental 
design (conveniently randomized) of the Box-
Behnken type with a central point (Table 3) was 
applied to determine the quantity of elements to be 
used on each axis, to minimize the deviations and 
computer time.  

Table 3. Results obtained using the Box-Behnken design. 

Factors or inputs Responses or outputs 

Elements per axis* 
% Deviation relative to 

experimental data Computer 

X Y Z NaCl (%) KCl (%) time (min)** 

6 (-1) 6 (-1) 8 (0) 12.26 7.60 10.67 

10 (1) 6 (-1) 8 (0) 7.62 6.87 17.53 

6 (-1) 10 (1) 8 (0) 8.32 7.63 40.17 

10 (1) 10 (1) 8 (0) 3.54 6.79 76.88 

6 (-1) 8 (0) 6 (-1) 22.11 12.12 11.01 

10 (1) 8 (0) 6 (-1) 16.11 10.00 17.64 

6 (-1) 8 (0) 10 (1) 7.83 7.19 39.44 

10 (1) 8 (0) 10 (1) 3.33 6.29 72.30 

8 (0) 6 (-1) 6 (-1) 19.74 11.47 7.63 

8 (0) 10 (1) 6 (-1) 16.23 11.01 28.09 

8 (0) 6 (-1) 10 (1) 6.28 7.01 24.66 

8 (0) 10 (1) 10 (1) 2.54 7.11 117.97 

8 (0) 8 (0) 8 (0) 3.43 7.15 30.43 

*The codified levels are in parenthesis. **For a microcomputer with Pentium III 800 
MHz processor and 256 Mbytes RAM memory. A time discretization with two 0.05h, 
three 0.30h, two 1.00h and four 2.00h intervals were adopted.   

The replications at the central point were not 

included, because the responses are computer 

calculation and thus would be the same. This type of 

design was chosen because only three levels of variation 

were needed for the independent variables and is 

possible to fit a quadratic model (Box and Draper, 
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1987). From the results obtained for the design, 

regression models were fitted relating the number of 

elements on each axis with the dependent variables: 

computer time and deviation among the calculated 

and experimental results (StatSoft, 2005). The models 

obtained were then submitted to simultaneous 

optimization by the Simplex method (Bona et al., 

2000) using the desirability functions (Derringer and 

Suich, 1980) to determine the best quantity of 

elements on each axis of the mesh. 

Results and Results and Results and Results and discussiondiscussiondiscussiondiscussion    

Table 2 shows the most promising results selected 
from the different tests to assess the best time 
discretization.  

The deviation compared to the experimental 

values was greater than 10% in all the attempts made 

because a poor mesh was used (with 343 elements). 

However, at this stage, the objective was to assess only 

the influence of time discretization. Table 2 shows 

that shorter time intervals are necessary at the start of 

the simulation, but after the first step, the intervals can 

be increased (Lyra, 1993).  An indication of the 

importance of using short time intervals at the start of 

the simulation can be obtained from the profile of salt 

distribution along X axis (Figure 3).   

 

 

Figure 3. Influence of the time discretization on the simulation 
of the salt distribution profile, in function of distance.  The solid 
curve (—) represents the simulation of the first hour by a single 
time interval.  In the dotted curve (---) two 0.05h loops and three 
0.30h loops were used for the same simulation. 

For the simulations showed in Table 2, it was 

observed that, except for the attempt with eleven one-

hour loops, all the others presented a similar profile. 

One can see in Figure 3, which depict the simulation 

curves for the first and the last line showed in Table 2, 

that the initial oscillatory phenomenon in the results, 

that is inherent to the finite element method (Britz    

et al., 2002), was damping when short time intervals 

were used in the beginning of the simulation.  This 

fact was justified by the great salt concentration 

gradient between the brine and the cheese in the 

beginning of the process. Also, when short time 

intervals were used, the increase in concentration is 

reduced for each loop of the simulation. In addition, 

the results obtained (Table 2) indicated that the 

increase in the number of discretization intervals did 

not ensure a continuous reduction in the deviation. In 

fact, a convergence to values of around 17% was 

observed for NaCl and 10% for KCl. A greater 

reduction in the deviations could only be obtained by 

modifying the mesh. Therefore, discretization time 

was chosen with refinement in the initial time 

intervals and less computer time (last line of Table 2) 

and, it was used to optimize the mesh (Table 3). 
The regression models were attained (Table 4) from 

the results obtained to the proposed design (Table 3) in 
function of the number of elements per axis 

Table 4. Quadratic regression models fitted to the data obtained 
by the Box-Behnken design. 

 % Deviation from NaCl  
experimental dataa 

(Computer time)-1/2 b
 

Model Coefficients Standard error Coefficients Standard error 

Intercept 223.6300 5.5618 1.8680 0.0711 
X -13.3000 0.6197 -0.0680 0.0077 
Y -7.6694 0.5798 -0.1383 0.0077 
Z -28.4931 0.6197 -0.1346 0.0077 
X2 0.7066 0.0362 0.0020 0.0004 
Y2 0.4197 0.0362 0.0037 0.0004 
Z2 1.5222 0.0362 0.0037 0.0004 
X*Y - - 0.0015 0.0003 
X*Z 0.0937 0.0273 0.0014 0.0003 
Y*Z - - 0.0040 0.0003 

R2 (adjusted) 0.9989 0.9950 
aThe model in relation to deviations of potassium experiments were not considered 
because they were highly correlated with the sodium deviations. b The computer time 
response was presented as a Box Cox transformation to stabilize variance. 

Deviation relative to experimental data for NaCl 

and KCl were highly correlated (r=0.98), and 

therefore the use of only one of these dependent 

variables is recommended in the simultaneous 

optimization (Peterson, 2004). Thus, when one is 

minimized the other one will consequently be 

minimized as well. As the deviation in relation to the 

experimental NaCl values resulted in a better model, 

this response was adopted to carry out the 

simultaneous optimization. Regarding the computer 

time, it was observed this model violated one of the 

assumptions of the variance analysis. A Box-Cox 

power transformation was used to stabilize the 

variance (Box and Draper, 1987). The quality of the 

fitted models can be assessed in Figure 4. It can also be 

observed by the fitted coefficients that the deviation 

for the experimental values underwent greater 
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reduction with the increase in the number of elements 

on the X and Z axis. This observation is in line with 

the characteristics of the mesh adopted. Since the 

concentrations calculated and used for comparison 

with the experimental values were taken along the X 

axis, a greater refinement on this was important to 

reduce the deviations. The number of elements on Z 

axis, due to the characteristics of the subroutine used 

to generate the mesh, is mainly responsible for the 

matrix dimension of the linear equation system. Thus, 

increasing the number of elements on this axis also 

increases both numbers of equations used as the 

precision of the method. Regarding computer time, it 

was observed that an increase in the number of 

elements, increased the computing time, especially for 

Y and Z axis. This performance was also explained by 

the characteristics of the mesh generator subroutine. 

 

 

Figure 4. Observed versus predictive values by the regression 
models. 

As can be observed from the characteristics of the 

fitted equations, the system led to an interesting 

problem of optimization. An increase in the number 

of elements led to a reduction in deviation 

(desirable), but also implied an increase in computer 

time (undesirable). This problem was solved using 

the Derringer and Suich desirability functions 

(Derringer and Suich, 1980), which were adjusted to 

a maximum computer time value (30 minutes) and 

to minimize the deviation compared to the 

experimental results of sodium chloride. The 

general desirability was then optimized by the 

Simplex method (Bona et al., 2000). As a result of 

the optimization, a mesh was obtained with eight 

elements on X axis, seven on Y axis and nine on Z 

axis, totaling 504 elements (Table 5).  

Comparison of the dotted curve in Figure 5 and 

the solid curve in Figure 3 (for NaCl and KCl) shows 

the evident damping of the oscillation obtained by the 

optimization of the space and time discretization. The 

oscillatory damping during the salting first hour 

simulation could be observed in Figure 5. 

Table 5. Results obtained for optimized mesh with 8 elements 
on X axis, 7 on Y axis and 9 on Z axis. 

 Model 

Response Deviation from experimental 
NaCl concentration 

Computer time 
(min) 

Predict 2.94 28.61 
Observed 2.86 28.31 

Error (%) 2.80 1.06 

 

 
Figure 5. Influence of the spatial discretization on the simulation 
of the salt distribution profile, in function of distance.  The solid 
curve (—) represents the simulation of the salting first hour 
using a mesh with seven elements in each axis. In the dotted 
curve (---) was used optimized mesh with eight elements along 
X axis, seven along Y and nine along Z axis. 

A comparison between the results obtained by the 

analytical method (AM) and experimental values 

(Bona et al., 2005) and those from finite element 

method (FEM) are shown in Figure 6.  
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Figure 6. Comparison of the experimental results (dots), 
analytical method (dotted line) and the finite element method 
(solid line) after optimization of the spatial and time 
discretization. 

It was verified that after optimization, the FEM 

obtained a good agreement with the experimental 

results (deviations of 2.86% for NaCl and 7.09% for 
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KCl) and the simulated results by AM (deviations of 

3.14% for NaCl and 2.74% for KCl).  Comparing the 

deviations between the optimized mesh with 504 

elements (see the deviations above) and the starting 

mesh with 343 elements (see the last line of Table 2) 

there was a substantial reduction. It makes clear the 

importance of the optimization performed. 

ConclusionConclusionConclusionConclusion    

The proper choice of the time intervals and the 

mesh permitted the optimization of the results 

obtained by the finite element method (FEM) by 

damping the oscillation without significant increase in 

computer time. Once again the importance of these 

parameters was confirmed in the application of FEM. 

The use of short time intervals was important to damp 

the inherent oscillation in the first loops of the 

simulation. However, this reduction was restricted 

and should be accompanied by a correct fit of the 

mesh. After optimizing the results simulated by the 

FEM, these were very close to the experimental values 

or values estimated by the analytical method (AM). 

Therefore, the use of FEM is recommended to 

simulate multicomponent diffusion because it 

presents three-dimensional characteristics (that makes 

it more appropriate for the cheese maturation stage) 

and also permits the use of various boundary 

conditions without great changes in the basic 

formulation. Furthermore, it enables study with the 

other geometry and permits simultaneous simulation 

of other parameters (for example, heat transfer). 
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