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ABSTRACT. The Dirac equation have been solved for the q-deformed hyperbolic Scarf potential coupled to a
Coulomb-like tensor potential under the spin symmetry. The parametric generalization of the Nikiforov-Uvarov
method is used to obtain the energy eigenvalues equation and the normalized wave functions.
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Problema de Dirac-hiperbélico scarf incluindo um tensor de Coulomb como potenciais

RESUMO. A equacio de Dirac foi resolvida para o potencial hiperbdlico q-deformado de Scarf acopladas a um
potencial de tensio tipo Coulomb sob a simetria de rotagio. A generalizacio paramétrica do método Nikiforov-
Uvarov foi usado para obter a equagio dos valores energéticos e as fun¢des normalizadas de ondas.

Palavras-chave: equacio de Dirac, potencial hiperbélico g-deformado de Scarf, a simetria de rotagio, tensor tipo Coulomb.

Introduction

One of the
mechanics is to find exact analytic solutions of the
wave equations are only possible for certain

important tasks of quantum

potentials of physical interest under consideration
since they contain all the necessary information
regarding the quantum system. It is well known that
the exact solutions of these wave equations are only
possible in a few simple cases such as the harmonic
oscillator, the coulomb, pseudo harmonic potentials
and others (IKHDAIR; SEVER, 2006, 2008;
LANDAU; LIFSHITZ, 1977, NEITO, 1979;
SCHIFF, 1968).

The exact solution of the Dirac equation with
any potential is an important subject in relativistic
quantum physics. These solutions are valuable tools
in checking and improving models. Many authors
have studied the Dirac under the spin and/or
pseudo-spin symmetry for various potentials. For
exemple, see (ARDA; SEVER, 2009; ESHGHI,;
MEHRABAN, 2011a and b; MOVAHEDI;
HAMZAVI, 2011; PANAHI; BAKHSHI, 2011).

Tensor potentials were introduced into the Dirac
equation with the substitution p — p—imafB-FU(r)-
In this way, a spin-orbit coupling term is added to
the Dirac Hamiltonian. In this regard, see (AKCAY,
2009; AKCAY; TEZCAN, 2009; AYDOGDU;
SEVER, 2010; HAMZAVI et al., 2010a and b;
HAMZAVI et al., 2011; ZARRINKAMAR et al,,

2010). Tensor coupling and exactly solvable tensor
potential have been used to investigate nuclear
properties (ALBERTO et al., 2005; FURNSTAHL
et al,, 1998, MAO, 2003) and have also some
physical applications (MOSHINSKY; SIMIRNOV,
1996, PACHECO et al., 2003).

On the other hand, the spin symmetry appears
when the magnitude of the scalar and vector
potentials are nearly equal, i.e., V, (r)=V,(r), in the

difference  potential
However, the

nuclei (ie., when the
A(r)=V, (r)-V (r)=C, =const.)
pseudo-spin symmetry
V.(ry=-V.(r) (ie, when the
2(r)=V, (r)+V (r)=C, =const.)

(GINOCCHIO, 1997). The bound states of

nucleons seem to be sensitive to some mixtures of
these potentials. The A(r)=0 and X(r)=0

correspond to SU(2) symmetries of the Dirac
Hamiltonian (GINOCCHIO, 2005). The spin
symmetry is relevant for mesons (PAGE et al., 2001)

occurs when
sum potential

and the pseudo-spin symmetry has been used to
explain the features of deformed nuclei (BOHR
et al., 1982), super-deformation (DUDEK et al.,
1987), and to establish an effective nuclear shell-
model scheme (ARIMA et al., 1969; HECHT;
ADLER, 1969). Summary, such symmetry, the near
equality of an attractive scalar potential with a
repulsive vector potential is well know in the

literature (GINOCCHIO, 1997; 2005) of the Dirac
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equation and has been proved very useful in
describing the motion of nucleons in the relativistic
fields resulting form
interactions, nucleon-nucleon
interactions and QCD sum rules.
According to the report given in the researcher
(ESHGHI; MEHRABAN, 2011a), the g-deformed
hyperbolic Scarf potential is defined by oz > In,[g as

nucleon-meson

Skyrme-type

mean

following

V() =V, 4V, coth? ar + 7, e & !
ry= co — .
K o E zsinhqar 1)

In this present work, we give the approximate
solutions, and corresponding wave functions of the
Dirac equation for the q-deformed Hyperbolic Scarf
potential (1) under the case of spin that including a

coulomb-like tensor potential (AKCAY, 2009,
ESHGHI; MEHRABAN, 2011¢)
2
viy=-1L, gLl sp, @)
r 4re,

(where R, =7.78 fm is the Coulomb radius, Z, and
7, denote the charges of the projectile a and the

target nuclei b, respectively.). We obtain the energy
equation and the normalized corresponding spinor
wave functions. In order to find the spectrum we
use the parametric generalization of the Nikiforov-
Uvarov (NU) is a powerful tool to solve of the
second order linear differential equations with
special orthogonal functions.

NU method

We give a brief description of the conventional
NU method (NIKIFOROV; UVAROV, 1988).
This method is based on solving the second order
differential equation of hypergeometric-type by
means of special orthogonal functions

) (54 T

()

n n 0 3
W, (s)+ o) Pl (s)= 3)
where: 0(s) and G(s) are polynomials, at the
and ?(S)

polynomials, at most of the first degree. In this
method, it we take the

factorization ¥/, () = @(s)y,(s) , (3) becomes

most of the second degree,

following

Eshghi
a($)y, () +7()y,(s)+ A, (s) =0, “)
where:
d
o(s)= E(S)d—(ln #(s)) ®)
S
and
7(s) =7 (s) + 27(s), 7'(s) <0, (6)

where:
72(r) is a polynomial of order at most one, and

Y, () can be written as

n

s) ds"

Y, (5) = EZOLO) )

where: @, is a normalization constant and the
weight function O(s) must satisfy the differential

equation

d@r(“”]mw=m o) =0(E)ps). ()
o(s)

The function 77(s) and the parameter A4 in the

above equation are defined as follows

_0'(s)—%(s)
7(s)= ) ;
N AR ON )
£ —— —0(s)+qo(s)
and
A=q+7(s). (10)

The determination of ¢ is the essential point in

the calculation of 7(s). It is simply defined by

setting the discriminate of the square root which
must be zero. The -eigenvalues equation have
calculated from the above equation

n(n 1)

A=A, =-nt'(s)- o’(s). n=0,12... (11)

For a more simple application of the method, we
develop a parametric generalization of the NU
method valid for any potential under consideration
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The Dirac equation

by an appropriate coordinate transformation

s = 8(7) . The following equation is a general form

of the Schrodinger equation written for any
potentials (HAMZAVI et al., 2011; ESHGHI, 2011)

as

s2(1—0!3s)2d2‘//—"z(s)
ds
dy,(s) (12)
ds
+[_§1S2 +&,s _53:“//}1 (s)=0.

+s (1-as ) (o —as)

We may solve this as follows. Comparing (12)
with (3), yields

(s)=o—a,s , o(s)=s(l-as)

~ ) (13)
G(s) == +65 =G
Substituting these into (9), we find
n(s)=o,+as
1 (14)
i[(% —koy)s®+(o, +k)s +a8]2,
with the following parameters
a, :l(l—al) A :l(oz2 -2a,),
2 2
(15)

2
Oy =05 +¢, o, =2a,0,-&,,
2
o, =0, +&.
In Equation (14), the function under the square

root should be the square of a polynomial according
to the NU method. so that

k., =—(o, +20,0) £2\/oyx, (16)
where:
Oy = 0,0, + 000 + O (17)

For cach k the following 77’s are obtained. The
function 77(s) becomes

7Z'(S)=0!4+0658—[(\/079+a3\/;8)s—\/;8], (18)

for the k-value

209
k=—(e, +20n0,) -2 [, - (19)
We also have from 7(s) =7(s)+27(s),
()=, +2a, — (o, = 205)s
(20)

~2A(Jo, + e \Joy )s —\Jer 1

Thus, we impose the following condition to fix
the k-value

7(s) = (0, = 20,) - 2(\Jor, + o5 Jry)
=20, - 2(\Ja, +o\Jory ) <.

When (10) is used with (20) and (21) the
following equation is derived

1)

n[(n—=1o, +a, —204]
-0 +(2n + l)(\/;9 + o, \/(Z_S) (22)
+a, + 2050, + 2\ Jo,0, =0

This equation gived the energy spectrum of a
given problem. By using (8)

@_alo—l
pls)=s""1-a)™ | =

and together with (7), we have

no=n B gy, @
where:

o, =0, +20, +2\ 0, (25)
and

o, =0, — 20, +2(\Jor, +e\Jor,) 26)

and P”(a”b,) are Jacobi polynomials. By using (5), we
get

%3

o) =" (=) @)

and the total wave function become

%3

W(s)=s(l-as)
(28)
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where: o, =0, 4o and o =05 — (o +o5]oy) -

In some problems the situation appears where
o, =0. For such problems, the solution given in

(28) becomes as
W (s)=s“e“ L5 (a,,5) (29)

In some cases, one may need a second solution
of (12). In this case, if the same procedure is
followed, by using

k=—(o, +2a,0) + 2\ oy0x, (30)

the solution becomes

*

Y(s)=sT(l-ays) @
. (€2))
[0’10—1 %—“1*0 —lj
P! 1= 2a),

and the energy spectrum is

n[(n-o, + o, =204

+2n +1)(Je, —erJer) (32)

+o, + 200, — 24\ o0 + o =0
Pre-defined & parameters are:

oy =0+ 200, =20t
o), =, =20+ 2( oty — Nt -
O, =0, =0,

o, =, —(\/;9—053\/38).

Solution of the Dirac equation

According to the report given in the researcher
(AKCA, 2009; AYDOGDU; SEVER, 2010;
HAMZAVI et al., 2010a and b; HAMZAVI et al.,
2011; ESHGHI; MEHRABAN, 2011a and ¢
ZARRINKAMAR et al., 2010), the Dirac equation
with the attractive scalar potential V' _(r), repulsive

vector potential / (r) and a tensor potential U (r)

is(h=c =1):

[P+ (M +V,()=i B U (1) [y, ()

=[E -V, ("], (7), o9

Eshghi

where E is the relativistic energy of the system,
P =—iV is the three-dimensional momentum

operator, & and ﬂ are the 4 X4 matrices which

have the following forms (GRINER, 2000),
respectively
0 o I 0

where I denotes the 2X2 identity matrix and O are
three-vector Pauli spin matrices

(01 (0 -y (10
771 o ’UZ_L oj’ 03_{0 —1]' (36)

For a particle in a spherical (central) field, the
total angular momentum J , and the spin-orbit

matrix operator K =—f(6.L +1) commute with

the Dirac Hamiltonian, where L is orbital angular
momentum operator. For a given total angular

A

momentum j, the eigenvalues of K are

k =—(j +1/2) for aligned spin (5,5, P5,,€fc) and
k =j+1/2 for unaligned spin (pl/z,dg/zaefc )-

The Dirac spinor can be written using the Pauli-
Dirac representation

1| Ex (P) ,,(6,9)
Va6 o 6.
i rY : (6,
nk Jjm ¢ (37)
k=( '+l)
J ) )
where:
1 I .
ij (6,¢) and Y, (6,9) are the spin and
pseudo-spin  spherical ~ harmonics  functions,

respectively, F, (r) and G, (r) are the radial wave

nk
functions of the upper- and the lower-spinor
components respectively, m is the projection of the
total angular momentum on the z-axis, n is the
radial quantum number. The orbital and the
pseudo-orbital angular momentum quantum
numbers for spin symmetry / and pseudo-spin

symmetry | refer to the upper- and lower-
component respectively. For a given spin-orbit
quantum number k£ ==%1,%2,..., the orbital angular

momentum and pseudo-orbital angular momentum

I=|k+1/2]-1/2  and
I =|k =1/2|=1/2, respectively.

are given by
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The Dirac equation

Substituting (37) into (34) and using the
following relations (BJORKEN; DRELL, 1964) as

(6.4)(G.B) = AB+iG.(AxB), (38)

(G.P)=GF(F.P+ i‘i‘L) , (39)

and properties

(G.L)Y},(8,0)=(k-1)Y] (8,0), (40)
(B.L)Y},(6,9)=—(k-DY (6,0), (41)
(G.HY](6,9)=-Y(6,0), 42)

(G (8,0)=~Y](6,9). 43)

Splitting oft the angular part and leaving the
radial wave function satisfy the following equations

(57 +§—U (ﬂ]Fnk ()=[Ey+M ~AM]G, (). (44)

(1_5+U00GMU)[M —E, +3OF, (), (45)
dr r

to eliminating G, (') in (43) and F, (7) in (45),
one obtains Schrodinger-like equations for the
upper and lower components, respectively

{dz_k(kﬂ) 2k U

dr’ r? " TU(V)
+(E, +M-A)E,
dA(r)

_dr [k -
"M +E, —A(r))( r U(r)j }F”k(r) O

dau(r)
dr

- M —3(r)) (46)

and

d’ _k(k— 1) 2k dU(r) 2
{ o 3 U( )+ ——= = -U"(r)

+(E,+M— A(r))(Enk
d3(r)

+M(d—f+U(V)j }Gnk (r)=0,

-M -%(r)) (47)

where:

k(k+1)=1({+1) and k(k-1)=I[(+1) .

211

Equations (45) and (46) can not be solved exactly for
k =0,—1 and k£ =0,1, because of the spin-orbit
centrifugal term. We applied deform hyperbolic

functions introduced for the first time by Arai in
(ARAL 1991)

sinh, x = _Zq scosh, x = +2qe ,
sinh x 1 (48)
tanh x = ¢ __,sech x = )
! cosh, x K cosh, x

where g is real parameter and ¢ > 0.

Substituting (1) and (2) into (46) and
considering spin symmetry (the condition of spin
symmetry dA(r)/dr=0 or A(r)=const=C, )
(MENG et al., 1998), we have

d?  (k+H)(k+H+1)
dr’ r’

M —E NE, +M -C)—(E,+M =C) (49)

oth or
——— |(Fu(r)=0"
nh or

This equation is describes a particle of spin-1/2
such as the electron in the Dirac theory with g-
deformed hyperbolic Scarf potential including a
tensor coupling.

We apply the approximation for the centrifugal
term of the form as

6720# :l
T ov | (30)

where the dimensionless

{V +V, coth2 or+V,

constant  C, =1/12 1S
reported in Ref. (ANTIA et al., 2010). However,
when C; =0 then new improved approximation
Scheme become the conventional approximation
Scheme suggested by Greene and Aldrich in Ref.
(GREENE; ALDRICH, 1976).

By wusing the approximation in (50) and
transformation of the form s = coshar , we rewrite
(48) as follows

{dz = d

+ + X
ds* q-s’ds (q-s?)

[~(46,Cy+bby+b Y +b), )5 +(-bF s B

~(by=bsbsg —4b,Coq +bV q) | }Fnk (s)=0,
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by comparing (51) with (12) we have obtained the
parameter set as

E =4bC +bb, +bV , +bY,,
fz = _b2V~2 >
53 =b, —=b,b,q—4bCg +b}V \q ,
,=0,0,=1, a, =1

1 1

1
0’425’ 0(52—5, aézz-’_fl’

1 1
0(7 :_5—§2a a8:Z+§37

0y = (4b,C, +b,b, +b ) )(1-q)
+b,V,-V,)+b,

0(10=1+21/%+.f3 ; (52)

o, =2

+24b.C, +b,b, +bY )N1-q) +b,(, —V,) +b,

1 1
ay =—+,—+&>
12 2 4 4:3

1
;3 :_E

_\/(4blc(] +b2b3 +b2V~o)(1_‘I)+bz([/~1 _V~z)+b2
1
4 Z"’ &

Using (14), (16) and (52), we calculate the
parameters required for the method

1
+2 Z+§3

7(s) :%i{&%b,co +byb, +b Y +bY, —k jsz

+[—;+b2V~2 +kjs

(53)
1
1 - 2
+Z+b' ~bb,g—4bC g +b) g )
where:
- 1 -
ki,=b}),-2 (4 +b,—b,bq —4bC g +b}V g J
1 ~
i2{ [Z-’-bl -b,byg —4b,Cq +b2V0q}< 54

- 1
{(41;@0 +b,b,+b Y, )(l—q)} }z
+b,(V, =V ,) +b,

Eshghi

Different k’s lead to the different 7T ’s. For

k =by, —2u+b1 —b,b,q —4bCq +b2V~0qj~

1 .
[4 +b,—b,byg —4bCq +b2Voq} ’ (55)

_2 -
><{(419100 +bby +b Y1 —q)}
+b,(V, -V ,) +b,

7(s) become

\/(4b1Co +b,b, +b2V~o)(1 _Q)"'bz(Vl _V~2)+b2

- ~ § 56
+\/|:41‘+b1 -b,byg —4bCq +b2VOq} ( )

1 -
_\/[4+b1 -b,b,g—4bC g +b2V0q},

and

7(s)=1-2s

J@bCy+b,b, +bY )1=q)+b,(V, V) +b,

-2
1 -
+\/[4 +b,—b,b,q —4b,C g +b2V0q} (57)

1 -
_\/[4 +b,—-b,b,qg —4b,C g +b2V0q:|,

where: 7°(s) <0.

Using (22) and (52), the Energy eigenvalue
equation for the potential under the consideration
following as

1=2,J(4b,C, +b,b, +b Y 1=q) +b,(V, =V,) +b,

n°+n 1 ~
—2\/{2 +b,—b,b,q —4bC g +szoq}

+[-1+2\/1 +b, —b,b,q —4bCyq +b2VOqJ
4 (58)

x{ J@bC,+b,b, +bY Y1) +b,0/, V) +b,

+\/i+bl —b,byg —4bCoq +bY J+b;f2 =0-

The corresponding normalized eigen-functions
are obtained in terms of the functions,
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The Dirac equation

2 \/%b‘ —bybyq—4b,Coq +bY o

ps)=s

x(1—s )2\/(4b1C0+b2b3+b2V~0)(1—q Y+by V1=V 5)+b,

9
and

1 ~ - —

—+by—bobsg—4bCog b g 2| (AbCothbs bV N1=q 11, V5, ytby

gt o 60
7,(6)=P, a-2),  (60)

and

l+\ji+bl —bybsq —4b,Coq +bV oq

p(s)=s"

1—g )\/(4blc() +byby+bV ) Y(1=q ) +by (V, V5 )+b,

: (61)

X(

now, let us give the corresponding lower Dirac
spinor. Using (28), the corresponding wave
functions to be

l+bl ~bybyq—4b,Cog +bF oq

1+\/
F(s)=a,s* "

X(l -3 )\/(4b1C0 +byby+b o )(1=q )+by (V= )+b, (62)

[Z,j};b. g —4Coab Y . Wy by T 1 by V3 )wz]
xP,

n

(1-2s).

Where @, is a normalization constant that the

wave functions satisfy the normalization condition
(IKHDAIR; SEVER, 2009)

|

1
Fnk (l")|2 dl" = J.S_l

0

F, () ds =1, (63)

and @, can be determined via

1
ba:k J‘ g2t (1-s )2b5+2 |:Pn(2b4,2b5+l)(l o ):'z ds=1. (64)

0

Therefore, we have

1
RN A

S =b (1)’ [(n +2bs +)T(n +2b, +1)
[(n +2b, +2b, +1)
3 (~1Y*" T(n +2b, +7—p +1) (65)
plri(n—p)(n—r)!T'(n+2b, +r+2b,+1)
y (n+2b,+1)
T(n+2b,—p+DTQ2b, +7+1) )

p.r=0

213
where
b =(k+H)k+H+1),
b,=E,+M -C,, b, :M_izEnk’
a
1 ~
b,= \/4 +b,—b)byg —4bCoq +b) g, (66)

b

l

\/(4b1C0 +b2b3 +b2V~o)(1_‘I)+bz(V~1 _V~z)+bz >
4 Vi
ral

=
1§}

~
sV =2 -
2 az

The lower component of Dirac spinor can be
calculated by using (12) as

6 =45 st U |y (6)

M +E , —A(r)\dr

Conclusion

The Dirac equation have solved with q-deformed
hyperbolic Scarf potential including Coulomb-like
tensor coupling in the case of spin symmetry. By using
the approximation Scheme and the parameteric
generalization of the Nikiforov-Uvarov method, we
have obtained the energy eigenvalues equation and the
normalized wave functions.
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