

http://www.uem.br/acta
ISSN printed: 1806-2563
ISSN on-line: 1807-8664

Acta Scientiarum

Doi: 10.4025/actascitechnol.v35i1.13713

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

Development of a toolkit in Silverlight to detect physiognomies in
real time

Marcelo Cabral Ghilardi1, Vinicius Gadis Ribeiro1*, Jorge Rodolfo Zabadal2 and Cristiana
Andrade Poffal3
1Centro Universitário Ritter dos Reis, Faculdade de Informática, Porto Alegre, Rio Grande do Sul, Brazil. 2Departamento de Engenharia Mecânica,
Universidade Federal do Rio Grande do Sul, Av. Osvaldo Aranha, 99, 90046-900, Porto Alegre, Rio Grande do Sul, Brazil. 3Departamento de Matemática,
Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil. *Author for correspondence. E-mail: vinicius@uniritter.edu.br

ABSTRACT. Security demands, forensic practices and the identification of criminals require the
detection and recognition of iris and fingerprints and of faces in videos and photographs. Moreover, there
is an increasing need for multiple forms of human-machine interaction. Control devices by body stimulus
are a need and a trend. For example, currently some computers, laptops, phones and video games provide
interaction from their cameras, not only for face detection but also for body movements and the detection
of objects. Most devices are Internet accessed, which creates an even greater range of possibilities. These
technological trends have prompted the development a toolkit for detecting faces in real time. The choice
of Silverlight framework for the development of this toolkit provides these applications with instruments
that could be implemented in a web browser. This toolkit may be used for other purposes, such as face and
iris recognition, body movement and the monitoring of premises. An application was developed as example
and proof of concept.
Keywords: technology, face detection, skin color, Silverlight, framework.

Desenvolvimento de um toolkit em Silverlight para detecção de faces em tempo real

RESUMO. A demanda por segurança em todos os setores, as práticas forenses e a identificação de
criminosos fazem com que a detecção e o reconhecimento de faces em vídeos e fotografias,
reconhecimento de íris e digitais, tornem-se um estudo importante. Além disso, há cada vez mais
necessidade de múltiplas formas de interação homem/máquina. Controlar dispositivos por estímulos
corporais é uma necessidade e tendência. Atualmente, por exemplo, alguns computadores, notebooks,
telefones e videogames permitem interação a partir de suas câmeras, não apenas pela detecção de face, mas
movimento corporal e detecção de objetos. A maioria destes dispositivos, além de câmera, possui acesso à
Internet, o que cria uma gama de possibilidades ainda maior. Estas tendências tecnológicas justificam o
desenvolvimento de um toolkit para a detecção de faces em tempo real. A escolha do framework Silverlight
para o desenvolvimento deste toolkit proporciona que as aplicações que o utilizarem possam ser executadas
em um navegador de internet. Este toolkit pode ser aprimorado para outras áreas de detecção e
reconhecimento, por exemplo, reconhecimento de faces, de íris, movimento corporal e monitoramento de
ambientes. Como prova de conceito, foi desenvolvida uma aplicação-exemplo.
Palavras-chave: tecnologia, detecção de faces, cor de pele, Silverlight, framework.

Introduction

Automatic recognition systems for credit cards,
bank cards and driver’s license cards are examples in
which two images are compared, or rather, a target
image obtained at the recognition instance is
compared to the image on the card, or to an image
bank in which the target image must have an
equivalent. Forensic practice and the identification
of criminals use the same system in which an image
taken from a security camera or from photographs is
researched in police data banks. The same occurs in
the recognition of people in data bases retrieved

from videos installed in streets, in shopping malls
and others. Several authentication systems are
currently validated through the recognition of faces,
irises, fingerprints and voices.

Further, several forms of interactions between
people and machines are constantly in demand.
A trend exists to control devices by body stimuli.
New videogames, such as WII, Playstation and Xbox
have interaction modules with the games activated
by body movements. Handicapped accessible
computers may be controlled by body movements
and even by brain stimuli. Another trend is

20 Ghilardi et al.

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

enhanced reality, or rather, it is the integration of the
real with the virtual world in real time and in three
dimensions (AZUMA, 1993), in which objects in
videos are detected and overlaid by other objects,
animations or information (LIN; FAN, 2001).

Possibilities are also very high for the invention
of other applications to detect objects, faces and
people (COSTA et al., 2005; JENG et al., 1998;
LOPES, 2005; MORAES, 2006; VEZHNEVETS,
2002). In fact, they were the possibilities that
stimulated the project under analysis. It focuses on
the invention of a toolkit that would help in the
development of Web applications for the detection
of faces in real time. Face detection method used in
the development of the toolkit comprises the color
spectrum of the human skin (CAI; GOSHTASBY,
1999; LOW, 2001; SUNG; POGGIO, 1998;
ZAIDAN et al., 2010; LEE, et al., 2007;
VIJAYANANDH; BALAKRISHNAN, 2012).
In spite of different intensities, human epidermis
has slight chrominance variations (DAI; NAKANO,
1996; VEZHNEVETS, 2002). The following section
deals with some techniques for face detection,
coupled to its advantages and disadvantages.

The framework Silverlight was developed since
the toolkit should make it possible that applications
are performed by web browsers and accessed by the
client’s machine webcam. The framework has been
developed by Microsoft and made possible the
creation of Web and desktop applications (BORCK,
2010; SCHULTE, 2011). Adobe Flash is another
available and competing tool. Although the two
technologies are highly similar, research by Borck
(2010) describes the superiority of Silverlight when
compared to the Adobe Flash. In current assay
Silverlight has been selected for analysis.

An application-example explaining all the stages
for face detection was developed for the validation of
the toolkit. Several skin hues and backgrounds have
been tested to arrive at a skin color interval that
applied to most people and backgrounds. The toolkit
contains parameters to frame new backgrounds and
several types of skin color. It may be improved so
that new methods in the detection and recognition
of faces, irises, body movements or monitoring of
premises could be developed.

The main objective of this paper is to present, as
a proof of concept, the development of an
application for face recognition.

Current work consists of the following sections:
material and methods, showing the basic method
employed to development of software; next section
discusses results obtained; last section deals with

conclusions. The Appendix demonstrates results and
configurations for several situations (which in some
cases are far from being ideal) for face recognition.

Material and methods

The basic method

The method, which foregrounded current
analysis, was developed from analysis methods in
skin texture. This option was taken due to the high
speed in processing, its use in real time by webcams
and the low complexity of the algorithm in the
Silverlight development.

However, face detection by this method is not
easy since it is affected by such factors as skin hues,
different visualization points of view, facial
illumination and the webcam’s image quality.

Keeping in mind the above difficulties and taking
into consideration processing in real time and
webcam use, its architecture will be detailed in the
section below.

Use of color YCbCr space

Even before processing, images are received in
pixel matrices when Silverlight technology is
employed. Each pixel contains 32 bits representing
alpha, red, green and blue, or rather, in ARGB –
RGBA (Red Green Blue Alpha) format. Although
sometimes described as a color space, in fact it is an
RGB color model with additional information, the
Alpha channel.

The RGB color space – the color space used by
the monitor of cathode ray tubes – has several
important disadvantages when dealing with the
filtering of bands of a certain color. In other words,
if it is required that filtering be accomplished by skin
texture, a space with only slight light influence is
required. A greater volume of color spaces is
required in the case of RGB space, with a
consequent impossibility for defining a simple color
thresholding. There are other color spaces without
the above-mentioned problem: for instance, HSV
hue space – the system of colors formed by the
components hue (matrix), saturation and value –
defines the color in its three components Hue,
Saturation and Value (brightness), in which true color
(Hue) is represented by a 0-360º circle and
brightness is the height of the cylinder.

The space is highly used in algorithms for skin
detection since computer costs for RGB conversion
into HSV are high and a complicating factor for the
face detection project in real time. YCbCr colors space
– color space characterized by a non-linear
transformation of space RGB, greatly used in TV signal
standardization in Europe – also allows the limitation

Development of a toolkit to detect physiognomies in real time 21

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

of space for skin texture and its computer costs are
lower than those of HSV space. The latter space stores
the brightness of Y and the color of Cb (blue) and Cr
(red). The conversion of RGB into YCbCr may be
accomplished by simple addition and multiplication.

Image processing for face detection is composed of
four phases. The first phase consists of filtering the
original image with the selection of pixels with values
contained in the pre-established skin color thresholds
and the generation of a binary image from the filter
results. In the second phase, the image is generated and
noises filtered, or pixels that do not belong to a face
owing to their distance from other pixels, are deleted to
generate a binary image once more. The third phase
consists of the expansion of remaining pixels, since
important pixels may have been lost during noise
filtering during the second phase. In the fourth phase, a
quantitative, vertical and horizontal histogram is
produced so that the face area could be determined by
these values. Results of such procedure are coordinates
x1, y1, x2, y2 of the probable face area in the original
image (SINGH et al., 2003).

Algorithm of filtering by skin texture

Algorithm development required the definition
of the spectrum or thresholds of the skin color –
defined from the 13-image tests. Two properties,
which define the maximum and minimum standard
thresholds, changeable when required, are used for
the performance. This is required since camera
quality and background illumination may interfere
in the thresholds.

SkinLowerThreshold = new YCbCr(0.10, -0.25,
0.05);

SkinUpperThreshold = new YCbCr(1.00, 0.05,
0.20);

In the algorithm below, the original image (1) is
received and a resulting image (empty) of the same
size as the original one is produced (2). Henceforth,
all the pixels of the original image (3) are surveyed
and RGB pixels are converted into YCbCr (4) since
the skin spectrum lies in YCbBr. Verification occurs
to see whether the pixel is contained in the
established thresholds for the skin (5): if positive, a
value that defines that the pixel is a skin pixel (6) is
attributed to the pixel of the same place, albeit in the
resulting image. The other pixels of the resulting
image remain empty. A binary image is thus
produced in which marked pixels represent pixels
that may be skin pixels (7).

1 public WriteableBitmap

ToSkin(WriteableBitmap imagem) {
2 WriteableBitmap result = new

WriteableBitmap(imagem.PixelWidth,

imagem.PixelHeight);
 var p = image.Pixels;
 var rp = result.Pixels;
3 for (int i = 0; i < p.Length; i++) {
4 var ycbcr = YCbCr.FromARGB(p[i]);
5 if (ycbcr.Y >= SkinLowerThreshold.Y &&

ycbcr.Y <= SkinUpperThreshold.Y
&& ycbcr.Cb >= SkinLowerThreshold.Cb &&

ycbcr.Cb <= SkinUpperThreshold.Cb
&& ycbcr.Cr >= SkinLowerThreshold.Cr &&

ycbcr.Cr <= SkinUpperThreshold.Cr) {
6 rp[i] = ColorSkin; } }
7 return result; }

Figure 1 shows that the original image is a colored

one. After algorithm processing, the resulting image is
a binary one that represent pixels that may be skin
pixels.

 Resulting image

Figure 1. Images of skin filtering.
Source: original image of Dick Cheney, http://www.wikimedia.org.

Algorithm for noise reduction

The algorithm runs through all the pixels of the
image produced by the previous one: when it is a
skin pixel, it searches all the neighboring pixels at a
distance of three pixels in all directions. If any
neighboring pixel is found empty, it cleans the pixel
– henceforth it is not a skin pixel anymore – and
thus the image is freed from the noise. Thirteen
images were tested to cover a 3-pixel distance by
employing distances between 1 and 5 pixels.

The codification of the algorithm is given below.
It first receives the resulting image of the previous
algorithm (1) and creates a new resulting image
(empty) of the same size as the original one (2). In the
PosPix matrix, all adjacent pixels which will be visited
are informed (3), starting from the pixel-position
(0, 0), the pixel to the right (0, 1) and so on and so
forth, up to the more distant pixel (-3, 3). All the
image pixels are visited, line by line (4). The adjacent
pixels are run in each skin pixel (5): if no adjacent
empty pixel is found (6), the corresponding pixel is

22 Ghilardi et al.

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

marked in a new resulting image as if it were the skin
pixel (7). Consequently, a new binary image is
obtained in which all image noises are deleted (8). A
function which verified whether an adjacent pixel is
either empty or a skin pixel is thus accomplished (9)

1 public WriteableBitmap SkinFiltro(Writeable

Bitmap image) {
 var p = image.Pixels;
 var w = image.PixelWidth;
 var h = image.PixelHeight;
2 var result = new WriteableBitmap(w, h);
 var rp = result.Pixels;
 int i = 0;
 int qtdPosPix = 49;
3 int[,] PosPix = { {+0,+0},{+1,+0},{+1,

+1},{+0,+1},{-1,+1},{-1,+0},{-1,-1},
 {+0,-1},{+1,-1},{+2,-

1},{+2,+0},{+2,+1},{+2,+2},{+1,+2},
 {+0,+2},{-1,+2},{-2,+2},{-

2,+1},{-2,+0},{-2,-1},{-2,-2},
 {-1,-2},{+0,-2},{+1,-

2},{+2,-2},{+3,-2},{+3,-1},{+3,+0},
 {+3,+1},{+3,+2},{+3,+3},

{+2,+3},{+1,+3},{+0,+3},{-1,+3},
 {-2,+3},{-3,+3},{-3,+2},{-

3,+1},{-3,+0},{-3,-1},{-3,-2},
 {-3,-3},{-2,-3},{-1,-3},{+0,-

3},{+1,-3},{+2,-3},{+3,-3}};

4 for (int y = 0; y < h; y++) {
 for (int x = 0; x < w; x++, i++) {
 int iPosPix = 0;
 bool bContinue = true;
5 while (bContinue && iPosPix < qtdPos

Pix) {
6 if (PixelIsEmpty(x+PosPix[iPosPix, 0],

y + PosPix[iPosPix, 1], p, w, h))
 { bContinue = false; break; }
 iPosPix++; }
 if (bContinue)
7 rp[i] = ColorSkin;} }

return result; }

9 private bool PixelIsEmpty(int x, int y, int[]

p, int w, int h) {
 bool isEmpty = false;
 if (x > 0 && x < w && y > 0 && y < h) {
 isEmpty = (p[y * w + x] ==

ARGB.Empty); }
 return isEmpty; }

As may be seen in Figure 2, the original image

consists of an image with noises. After algorithm
processing, the resulting image is a noiseless image.

Initial image Resulting image

Figure 2. Images by noise filter.

Algorithm for pixel expansion

The previous process by which noises were
eliminated may also delete important pixels from a
face. An algorithm for the expansion of the
remaining pixels is required and thus eventual blank
spaces in the face, probably caused by excessive
brightness, hair, spectacles or other factors, may be
improved.

When the expansion algorithm receives the
image resulting from the noise algorithm, it runs
through all the pixels and verifies the neighborhood
of each empty pixel at a distance up to three pixels in
all directions. If it finds any adjacent skin pixel, it
marks the pixel as a skin pixel. All existing skin
pixels are thus expanded.

The implementation of the algorithm’s code
follows. The resulting image of the previous
algorithm is received (1) and a new resulting image
(empty) of the same size as the original image is
created (2). The position of adjacent pixels that will
be visited are informed in the PosPix matrix (3) –
although differently from that in the previous
algorithm, the result is the same – verifying from the
nearest adjacent pixels to the most distant ones, up
to a distance of three pixels. All the image’s pixels
are visited, line by line (4), while the adjacent pixels
are run for each empty pixel (5). If an adjacent skin
pixel is found (6), the corresponding pixel is marked
in the new resulting image as if it were a skin pixel
(7). A new binary image is found in which all the
pixels of the received image (8) are expanded.
A function is thus accomplished which verified
whether an adjacent pixel is either a skin pixel or an
empty one (9)

1 public WriteableBitmap SkinDilate

(WriteableBitmap image) {
 var p = image.Pixels;
 var w = image.PixelWidth;
 var h = image.PixelHeight;
2 var result = new WriteableBitmap(w, h);

Development of a toolkit to detect physiognomies in real time 23

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

 var rp = result.Pixels;
 int i = 0;
3 int[] PosPix = { 0, -1, +1, -2, +2, -3, +3 };
 int ixPosPix;
 int iyPosPix;
 bool bContinue;
4 for (int y = 0; y < h; y++) {
 for (int x = 0; x < w; x++, i++) {
 ixPosPix = 0;
 iyPosPix = 0;
 bContinue = true;
5 while (bContinue && ixPosPix < Pos

Pix.Length) {
 while (bContinue && iyPosPix <

PosPix.Length) {
6 if (PixelIsNotEmpty(x-PosPix[ixPos

Pix],
y+PosPix[iyPosPix], p, w, h))

7 { rp[i] = ColorSkin; bContinue =
false; continue; }

 iyPosPix++; }
 ixPosPix++; } } }
8 return result; }

9 private bool PixelIsNotEmpty(int x, int y,

int[] p, int w, int h) {
 bool isNotEmpty = false;
 if (x > 0 && x < w && y > 0 && y < h) {
 isNotEmpty = (p[y * w + x] !=

ARGB.Empty); }
 return isNotEmpty; }

Figure 3 reveals that the original image is a

noise-less image, with some spaces open in the face.
After the processing of the algorithm, the face in the
resulting image has less open spaces.

Initial image

Resulting Image

Figure 3. Images from expansion algorithm.

Calculation of the area and position of the face

Since the image is the result of an expansion
algorithm, a matrix is produced with a certain
quantity of skin pixels per line and column, or
rather, the image’s X and Y. Taking these values into

consideration, the first and last positions with matrix
X value are respectively positions X1 and X2.
Similarly, in matrix Y, the first and last positions
with matrix Y value are respectively positions Y1 and
Y2.

So that the filter could be amplified, the
positions with lower values than LimitMinimumX
and LimitMinimumY are discarded. After several
tests with different sized images, the calculation
below defined the minimum limits of values for X
and Y.

MaximumLimitX = Image Width/20 and
MinimumLimitY = ImageHeight / 20

Two functions were produced from the above
calculation: the first function - GetHistogram() –
produces two matrices: matrix histX for the lines (1)
and matrix histY for the columns (2) of the image,
where the number of pixels of each line and column
are respectively stored. It also stores most of the
pixels found in each X and Y matrix (3). So that all
matrices would be complete, all the pixels of the
image are visited (4); each color skin pixel found is
added (5) and the quantity of each position of each
matrix is compared to find the greatest number of
pixels (6).

public void GetHistogram(WriteableBitmap image) {

 var p = image.Pixels;
 var w = image.PixelWidth;
 var h = image.PixelHeight;
1 histX = new int[w];
2 histY = new int[h];
3 histMaxX = 0; histMaxY = 0;
4 for (int y = 0; y < h; y++) {
 for (int x = 0; x < w; x++) {
5 if (p[y * w + x] == ColorSkin) {
 histX[x]++; histY[y]++;
6 if (histX[x] > histMaxX) {

histMaxX = histX[x]; }
if (histY[y] > histMaxY)

{histMaxY = histY[y]; } } } } }

The second function, GetLimits(), employs

the matrices of the previous function to calculate
the face’s position by running through the items
of each matrix and by discarding all values less
than the pre-defined ones (1). In the case of X
matrix, the first rated position marks X1 (2) and
the last rated position marks X2 (3). The same
occurs for matrix Y in which the first rated
position marks Y1 (4) and the last rated position
marks Y2 (5).

public void GetLimits(WriteableBitmap image) {

 var p = image.Pixels;

24 Ghilardi et al.

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

 var w = image.PixelWidth;
 var h = image.PixelHeight;
 X1 = w - 1; Y1 = h - 1; X2 = 0; Y2 = 0;
1 int limitMinimumX = w / 20;
 int limitMinimumY = h / 20;
 for (int x = 0; x < w; x++) {
 if (histX[x] > limitMinimumX) {
2 if (x < X1) { X1 = x; }
3 if (x > X2) { X2 = x; } } }
 for (int y = 0; y < h; y++) {
 if (histY[y] > limitMinimumY) {
4 if (y < Y1) { Y1 = y; }
5 if (y > Y2) { Y2 = y; } } }
 if (X1 == (w - 1) || Y1 == (h - 1)) {
 X1 = 0;
 Y1 = 0; } }

Implementation of toolkit

The toolkit was developed from the Integrated
Development Environment (IDE) Visual Studio
2010 in a notebook with webcam and Windows 7
system. Visual Studio 2010 is a Microsoft
manufactured IDE which may be used to develop
a great variety of applications for several ends.
A command console for programming and
graphic tools is available. The application-example
created to demonstrate the use of the toolkit was
developed on the toolkit’s IDE. Authorization and
tests were performed on Internet Explorer 8
browsers and on Google Chrome 10 on the same
notebook and on a desktop with webcam 2.0 and
Windows 7.

Toolkit was developed on platform .NET and
written in C# programming language so that it may
be used in applications developed on framework
Silverlight. C# is a strongly-typed programming
language specific to objects and developed by
Microsoft as part of platform .NET. Its syntax was
based on C++ and influenced by Java

Framework Silverlight belongs to the platform
.NET and allows the creation of Rich Internet
Applications (RIA) applications. It is an alternative
for Adobe Flash and Adobe Flex development tools
with similar characteristics. The possibility of
accessing the client’s machine equipments, such as
webcam, printer, microphone and others was
incorporated as from the Silverlight 4.0 version.
Microsoft-developed Silverlight currently performs
on Windows and Mac, coupled to an
implementation of Silverlight, called Moonlight,
funded by Microsoft and Novel, which performs on
Linux operational system.

RIA are Web applications with the characteristics
of Desktop applications. Microsoft Silverlight, Adobe

Flash, HTML 5.0 are examples of tools for the
development of RIA applications.

Further, .NET is a platform for the development
and performance of systems and applications. Codes
generated for .NET may be performed on any other
device with framework .NET. Although currently it
is used for Windows operational systems, parallel
performances exist for the Linux and MacOs
operational systems (MSDN, 2012).

Toolkit classes

The toolkit was developed in four classes. The
three classes ARGB, RGB and YCbCr are tools for
color spaces, and one class, FaceDetect, detects faces.
Class ARGB has color constants in ARGB format so
that conversion costs from RGB to ARGB could be
avoided.

Class RGB stores colors in RGB color and has
conversion methods for the ARGB format. Class
YCbCr stores colors in YCbCr format with
conversion methods for RGB format.

Class FaceDetect contains face detection
algorithms implemented for this job, as shown at the
beginning of the essay. There are other extra
methods - such as ToGray and ToLine - that are
study methods in the development of current
analysis and have been maintained in the class for
further implementation.

The following section will demonstrate and
discuss the results obtained.

Results and discussion

The application is equipped with a screen that
shows all the stages for face detection performed in
current analysis (Figure 4).

Figure 4. Screen of the application-example (Webcam image).

Area A equals area B – area A may receive any
image from areas B to I: user must click on the
desired area.

A B contains the image received from the
webcam or read on the user’s computer.

Development of a toolkit to detect physiognomies in real time 25

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

Area C contains only the face detected on the
image.

Area D contains the main image with a SMILE
on the detected face.

Area E represents the defined color spectrum of
the skin.

Area F is the binary image after the skin filter.
Area G is the binary image after noise filtering.
Area H is the binary image after the expansion of

the remaining pixels.
Area I is the graphic representation of the

histogram.
Area J is the key to start or stop the webcam.
Area L is the key to re-establish standard

configurations of area P on the color spectrum.
Area M is the key to read the image on the user’s

computer.
Area N is the key to process the image read on

the computer.
Area O is the key to save the image on area D and

to add a text on the image with information on the
employed configurations used in the color spectrum.

Area P consists of the configurations of the color
spectrum.

Libraries used: ImageTools and WriteableBitMap

Friendly access and image recording PNG and
JPG in the client’s machine were performed in the
application-example by means of the library
ImageTools available at http://imagetools.
codeplex.com. Library ImageTools for Silverlight
was employed to simplify image access. The latter is
an open-code library that provides easy downloading
and handling of images in different formats.

Images in format WriteableBitmap were handled
in the toolkit and in the application. Since the
original class provided in Silverlight does not have
all the required methods for the implementation of
current analysis but only simple functions to access
image pixels, the open code library
WriteableBitmapEx had to be employed. In fact, the
latter is a collection of extension methods for
Silverlight WriteableBitmap and is available at
http://writeablebitmapex.codeplex.com/.

Color spectrum of the skin

A set of 13 images of people with different skin
color shades (European, Asiatic and African) and in
different backgrounds or complexes was used to
obtain maximum and minimum value of YCbCr
color space. The job was performed manually and
individually for each image. The appendix show the
result of the tests in all images used. It should be
emphasized that as from image 06 color parameters
in some images failed to fit in the predetermined

values – alterations in the red standard were
detected. However, as previously remarked,
detection may be efficient if adjustments in
parameters are provided.

Analysis of images in adverse situations: complex
background, small face and different illumination

Figures 5, 6 and 7 show that the complex
background interfered in the noise filter when the
image was processed with the pre-defined values.
As a result, the binary image contains large areas
which do not consist of faces.

Figure 5. Image with complex background.
Source: original image of Jui Huang, http://www.mdemulher.abril.com.br.

Figure 6. Image with complex background.
Source: original image of Ronaldinho Gaúcho, http://www.extra.globo.com.

Figure 7. Image with complex background.
Source: original image of Dick Cheney, http://www.wikimedia.org.

26 Ghilardi et al.

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

Figures 8, 9 and 10 exhibit small-sized faces
when compared with the entire image, the
background is complex and the algorithms used are
not adequate for this image type.

Figure 8. Image with a small face and complex background.
Source: original image of a woman wearing winter clothes, http://www.topmulher.com.

Figure 9. Image with a small face and complex background.
Source: original image of Demi Lovato, http://www.demibrasil.com.

Figure 10. Image with a small face and complex background.
Source: original image of Miley Cyrus, http://www.mileycyrusworld.org.

Figure 11 shows a face with good front
illumination and scanty illumination in the
background. The background is not considered
complex owing to the scanty illumination of the
background. Face detection is easy.

Figure 12 shows a face with good front
illumination; the background also exhibits good

illumination – background colors are emphasized
and the background becomes somewhat more
complex.

Figure 11. Image with front illumination (Webcam image).

Figure 12. Image with total illumination (Webcam image).

Figure 13 shows a face with scanty front
illumination although the background has good
illumination. The face becomes a shade and face
detection is possible by adjustments of parameters.

Figure 13. Image without front illumination (Webcam image).

Figure 14 exhibits face and background with
almost no illumination; a small focus of light exists
on the left side of the image; the focus of light is
sufficient for face detection.

Development of a toolkit to detect physiognomies in real time 27

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

Figure 14. Image with low side illumination (Webcam image).

Conclusion

The toolkit for face detection was developed to
show its functionality and an application-example
that explored all its functionality and performance
was provided.

Some considerations are made from the results
of current experiment and research. Even when a
small image base is used, the algorithm for people
with different skin colors, ranging from white to
black, was efficient. Complex backgrounds are the
main difficulties involving the algorithm. Moreover,
it was not applied to find more than one face per
image. Image processing time was almost
imperceptible in the tested machines and might be
classified as a real time system.

Further experiments with the toolkit requires the
addition of algorithms to separate the areas of
possible faces in the image and face validation,
elimination of complex background issues and the
problem of more than one face in the same image.

Algorithms for face detection may be put into
operation for images and for videos and may be used
in log-ins for sites or for access to equipments,
search for people in image libraries and for the
recognition of people in video records at real time.

References

AZUMA, R. Tracking requirements for augmented
reality. Communications of the ACM, v. 36, n. 7,
p. 50-51, 1993.
BORCK, J. R. Microsoft Silverlight 4 vs. Adobe Flash
10.1. InfoWorld. Available from: <http://www.infoworld.
com/d/developer-world/infoworld-review-microsoft-silverlight
-4-vs-adobe-flash-101-260>. Access on: Oct. 18, 2010.
CAI, J.; GOSHTASBY, A. A. Detecting human faces in
color images. Image and Vision Computing, v. 18, n. 1,
p. 63-75, 1999.
COSTA, A.; RODRÍGUEZ, A. G.; SIMAS, E. P. L.;
ARAÚJO, R. S. Lógica fuzzy: conceitos e aplicações.
Relatório. São Leopoldo: Universidade do Vale do Rio dos
Sinos, 2005.

DAI, Y.; NAKANO, Y. Face-texture model based on SGLD
and its application in face detection in a color scene.
Pattern Recognition, v. 29, n. 6, p. 1007-1017, 1996.
JENG, S.-H.; HONG, Y. L.; CHIN, C. H.; MING, Y.
C.; YAO, T. L. Facial feature detection using geometrical
face model: An ancient approach. Pattern Recognition,
v. 31, n. 3, p. 273-82, 1998.
LEE, J.; KUO, Y.; CHUNG, P.; CHEN, E. Naked image
detection based on adaptive and extensible skin color
model. Journal of Pattern Recognition Society, v. 40,
n. 8, p. 2261-2270, 2007.
LIN, C.; FAN, K. C. Triangle-based approach to the
detection of human face. Pattern Recognition, v. 34,
n. 6, p. 1271-1284, 2001.
LOPES, E. C. Detecção de faces e características
faciais. Porto Alegre: PUCRS, 2005.
LOW, E. H.; KEE, B. Face detection: a survey.
Computer Vision and Image Understanding, v. 83,
n. 3, p. 236-274, 2001.
MORAES, D. A. O. Algoritmo para suavizamento de
imagens digitais por filtragem Gaussiana em
connection machines. Porto Alegre: UFRGS, 2006.
MSDN-Microsoft Developer Network. Informações
sobre .NET. Available from: <http://www.microsoft.
com/net, 2012>. Access on: Oct. 12, 2010.
SCHULTE, R. FaceLight – Silverlight 4: Real-Time
face detection. Available from: <http://www.rene-
schulte.info/>. Access on: Mar. 9, 2011.
SINGH, S. K.; CHAUHAN, D. S.; VATSA, M.; SINGH,
R. A robust skin color based face detection algorithm.
Tamkang Journal of Science and Engineering, v. 6,
n. 4, p. 227-234, 2003.
SUNG, K. K.; POGGIO, T. Example-based learning for
viewbased human face detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, v. 20, n. 1,
p. 39-51, 1998.
VEZHNEVETS, V. Face and facial features tracking
for natural human-computer interface. Available
from: http://www.graphicon.ru/2002/pdf/Vezhnevets_
En_Re.pdf>. Access on: Nov. 14, 2010.
VIJAYANANDH, R.; BALAKRISHNAN G.
Hillclimbing segmentation with fuzzy C-means based
human skin region detection using Bayes rule. European
Journal of Scientific Research, v. 76, n. 1, p. 95-107,
2012.
ZAIDAN, A. A.; ABDUL KARIM, H.; AHMAD, N. N.;
MAHABUBUL ALAM, G.; ZAIDAN, B. B. A new
hybrid module for skin detector using fuzzy inference
system structure and explicit rules. International Journal
of the Physical Sciences, v. 5, n. 13, p. 2084-2097, 2010.

Received on June 14, 2011.
Accepted on May 29, 2012.

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

28 Ghilardi et al.

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

Appendix 1

Obtained results

Table shows that most faces are detected by the following color spectrum:
Data:
Minimum value: Y = 0.10 Cb= -0.25; Cr = 0.05 and
Maximum value: Y = 0.10 Cb= -0.25; Cr = 0.05 and

Configuração
Y Cb Cr Photo Detection configuration

Min Max Min Max Min Max

1

Imagem de Amori

http://www.noticiashospitalares.com.br

0.1 1 -0.25 0.05 0.05 0.2

2

Carla Martins

http://www.oftalmocenter.med.br

0.1 1 -0.25 0.05 0.05 0.2

3

Foto 3X4

http://www.realmadridwallpapers.com

0.1 1 -0.25 0.05 0.05 0.2

4

George W. Bush

http://www.georgewbushlibrary.gov

0.1 1 -0.25 0.05 0.05 0.2

5

Ivan

http://www.cidadesaopaulo.olx.com.br

0.1 1 -0.25 0.05 0.05 0.2

6

Jui Huang

http://www.mdemulher.abril.com.br

0.1 1 -0.25 0.05 0.09 0.2

7

Indio da Costa

http://www.blogdolobo.com.br

0.1 1 -0.25 0.05 0.05 0.2

Continue…

Development of a toolkit to detect physiognomies in real time 29

Acta Scientiarum. Technology Maringá, v. 35, n. 1, p. 19-29, Jan.-Mar., 2013

…continuation
Configuração

Y Cb Cr Photo Detection configuration
Min Max Min Max Min Max

8

Elbridge Thomas Gerry
http://www.answers.com

0.1 1 -0.25 0.05 0.05 0.2

9

Ronaldinho Gaúcho

http:// www.extra.globo.com

0.1 1 -0.25 0.05 0.09 0.26

10

Vestido de inverno

http:// www.topmulher.com

0.15 1 -0.25 0.05 0.02 0.18

11

Demi Lovato

http://www.demibrasil.com

0.35 0.75 -0.25 0.05 0.16 0.18

12

Miley Cyrus

http:// www.mileycyrusworld.org

0.1 0.62 -0.25 0.05 0.05 0.18

13

Dick Cheney

http:// www.wikimedia.org

0.41 1 -0.25 0.05 0.05 0.18

