
Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

Adaptive software synthesis from extended dataflow specificationsAdaptive software synthesis from extended dataflow specificationsAdaptive software synthesis from extended dataflow specificationsAdaptive software synthesis from extended dataflow specifications

Ivanilton Polato1* and Antonio Mendes da Silva Filho2

1Faculdades de Ensino Superior do Centro do Paraná (UCP), Pitanga, Paraná, Brazil. 2Centro de Estudos e Sistemas
Avançados do Recife (CESAR), Recife, Pernambuco, Brazil. *Autor para correspondência. e-mail: ipolato@ucppitanga.edu.br

ABSTRACT. Embedded software development approaches used models of computation

such as dataflow, discrete events, synchronous/reactive, among others. Due to the
specialization of the existing models, each one can be better applied to a specific application
domain. Nevertheless, when there is no solution for applications in a specific domain,
heterogeneous models have been used. In this context, this paper discusses a heterogeneous
model called Extended Dataflow. It is an extension of the dataflow model with support to
event handling. This paper also addresses how software can be synthesized from extended
dataflow specifications and discusses the development of a code generation tool prototype.
This takes into account the possibility of component reuse for developing digital signal
processing applications. A case study of adaptative applications using digital filters is used to
illustrate our approach.

Key words: models of computation, embedded systems, dataflow, components, events.

RESUMO. Síntese de Software Adaptativo baseada em Especificações Extended

Dataflow. As abordagens de desenvolvimento de software embutido têm feito o uso de

modelos de computação, tais como fluxo de dados, eventos discretos, síncrono/reativo,
dentre outros. A especialização desses modelos faz com que sejam apropriados a um
domínio específico de aplicações. Entretanto, quando não existe uma solução adequada para
determinada aplicação, os modelos heterogêneos têm sido utilizados. Neste contexto, este
artigo discute um modelo heterogêneo, chamado Extended Dataflow, que é uma extensão
do modelo de fluxo de dados com suporte ao tratamento de eventos. O artigo mostra ainda
como um software pode ser obtido a partir de especificações usando Extended Dataflow e
discute o desenvolvimento de um protótipo de ferramenta de geração de código. Isso leva
em consideração a possibilidade de reuso de componentes em aplicações de processamento
digital de sinais. Um estudo de caso sobre aplicações adaptativas envolvendo filtros digitais é
utilizado para ilustrar o trabalho.

Palavras-chave: modelos computacionais, sistemas embutidos, fluxo de dados, componentes, eventos.

IntroductionIntroductionIntroductionIntroduction

Software development has been supported by
several methodologies along the last decades. Most
of these methodologies assume that computation is
accomplished as a result of mathematical functions,
expressed as procedures or methods. Henceforth,
these functions basically transform input data into
output data. However, it is not every software works
like that. Consider, e.g., embedded software. Its
main role is not data transformation, but the
interaction with the physical world. Usually, it is not
executed in traditional computers but within
telephones, robots, cars, airplanes, and others.

During the development of embedded software,
a special attention is given to their main
characteristics. Concurrency and performance are
important characteristics that should be
appropriately taken into account during software

design. Other constraints such as development time
and resources required must also be satisfied.
Development time should also be addressed to
satisfy, e.g., time to market requirement.

According to Lee (2002), characteristics such as
timeliness, concurrency, interfaces, heterogeneity,
and reactivity are considered intrinsic to embedded
software. These characteristics involve interaction
with the physical world. Embedded software takes
into account time, resources consumption and an
endless life cycle. Another important factor being
considered in embedded software is heterogeneity.
Their interaction with real world systems may be
accomplished in several ways, causing that software
uses several models of computation and
implementation technologies.

As a result of many constraints and
characteristics that could be met, traditional
methodologies have provided little support for

144 Polato e Silva Filho

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

developing this kind of software. The existing
models of computation have been trying to fill in
this existing gap within embedded software
development. They can be considered as a set of
rules that govern the interactions between the model
components. Most of these models of computation
have been developed over the last two decades, each
one giving support to specific application domain.
When two or more domains are involved, a solution
has been the creation of heterogeneous models.

Within this context, this paper presents a

heterogeneous model of computation called
Extended Dataflow (XDF) (Polato, 2004), which
is an extension of the original dataflow model
(Dennis, 1974; Davis and Keller, 1982; Ackerman,
1982) with additional support to event handling.
This model has been applied to digital signal
processing (DSP) applications. Specially, we have
been using the XDF model to support the
development of adaptative DSP applications
involving digital filters. These applications can
modify its initial configuration as long as events of
either performance or quality degradations take
place. This model of computation aims at
satisfying system requirements when developing
embedded software.

Given the preceding, a set of models of
computation related to ours are discussed in the
following section. The XDF model of
computation and the use of components within
the model are presented in Sections 3 and 4,
respectively. Section 5 presents our code
generation tool and explains how software can be
synthesized from an XDF specification. A case
study applying the XDF model to an adaptative
DSP application is made in Section 6. Finally,
concluding remarks are given in Section 7.

Models of Models of Models of Models of computationcomputationcomputationcomputation

Models of computation have been used within
embedded software design providing it with a set of
rules that define how interactions between
components can occur. It may also be viewed as a
conceptual framework in which a design is made
from the composition of components. Each model
has its advantages and limitations, being better
suitable to an application domain due to its specific
requirements. The most prominent models of
computation are discussed next.

Dataflow (DF)Dataflow (DF)Dataflow (DF)Dataflow (DF)

In the dataflow (DF) model, actors are
considered atomic entities, carrying out indivisible
computations. These actors only start computing

when all the input data needed for a computation is
available. It is a powerful model to support parallel
computation. This model appeared as one of the
first attempts for exploring parallelism in programs
(Dennis, 1974; Davis e Keller, 1982; Ackerman,
1982).

The DF model is widely used in digital signal
processing applications. Usually, the DF model uses
block diagrams as a mechanism to describe and
explain graphically the algorithms of signal
processing. The use of block diagrams is based on a

metaphor of circuits as well it establishes a
connection with the origins of digital signal
processing. It also facilitates the visualization of
complex systems. Such characteristics have made the
DF model to be largely used in the community of
digital signal processing.

Two important issues of the DF model are the
support for concurrency and the lack of
synchronism. These characteristics are present
because the DF model depends upon the data
availability. As a result, several components can be
ready for execution simultaneously, giving support
to concurrency. DF model can be mapped to
software specifications and, specifically, embedded
software. However, the original dataflow model is
not suitable for mapping hardware specifications
because of the lack of synchronism. This weakness
was solved with special cases by using synchronous
dataflow and dynamic dataflow models. In addition,
control-oriented systems cannot be suitably
supported by DF model.

The concurrency supported in the DF model is
also kept in the XDF model. However, the lack of
synchronism has been removed in XDF using the
synchronism approach existing in the SDF model,
where the data consumed and produced by each
component are specified in advance.

Synchronous/Reactive (SR)Synchronous/Reactive (SR)Synchronous/Reactive (SR)Synchronous/Reactive (SR)

The SR model (Benveniste and Berry, 1991)
deals efficiently with concurrent models using
irregular events. In this model, connections
between components contain values associated
with system global time. Due to this characteristic,
all components have the same notion of time
within the system. Components represent the
relationship between inputs and outputs of a
system at each time unit. The SR model is
appropriate to applications that have concurrent
and complex logical control as, for instance,
critical systems. Examples of languages using SR
model are Esterel (Berry and Gonthier, 1992) and
Signal (Gautier and Le Guernic, 1987).

Adaptive software synthesis 145

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

Discrete Discrete Discrete Discrete events events events events (DE)(DE)(DE)(DE)

The DE model provides a useful abstraction
for real-time systems. Milner (1980) and Hoare
(1985) proposed the first studies in this area.
Later, Lee (1999) proposed a model for studying
and handling discrete events. In this model,
connections represent a group of atomic events
along a timeline. Each event receives a pair (value,
time) where time is used for determining the
occurrence of an event. Events with the same time
are ordered based on data precedence. Similarly to
the SR model, a solid notion of global time exists.
However, the main difference is the importance
given to the time between events within a system.

The DE model is largely used for hardware
specification and telecommunications systems
simulation. The DE model has been applied in
several environments, simulation languages, and
hardware description languages, such as VHDL
(Lipsett et al., 1989) and Verilog (Thomas et al.,
2002). However, the DE model has a high
implementation cost in terms of software due to
the need to support a global time and an event
manager.

Finite Finite Finite Finite state machine state machine state machine state machine (FSM)(FSM)(FSM)(FSM)

The FSM (Gill, 1962) model differs from others
because it is a strictly sequential model. In this
model, a state can be considered a component.
During the execution of the model only one state
can be active at a time. Connections between
components are represented as transitions. The
execution of this model can be viewed as navigation
between system states as transitions get fired.

The FSM model is appropriate to describe the
control logic in embedded software and, more
specifically, in critical systems. It can be used to
predict the behavior of a system provided that a
formal analysis can be made. It can also be easily
mapped to hardware and software implementations.

However, the FSM model has limitations. It is
not sufficiently complete to describe all the existing
recursive functions of a system. Other limitation is
the number of states can rapidly grow even when
dealing with a minimum complexity. This happens
because the number of states can become large as
the system complexity increases, making difficult
the management of the states. Despite that the FSM
model is highly used to compose heterogeneous
models because of the predictable behavior it
provides to a system.

HeterogenHeterogenHeterogenHeterogeneous eous eous eous modelsmodelsmodelsmodels

Heterogeneous models have been used to

overcome existing limitations in the previous
models. In general, they combine two or more
models of computation, involving different
application domains. However, a problem when
creating a heterogeneous model is the semantics
resulting of the new model. Two options are
commonly taken into consideration: the use of
original semantics model or the creation of a new
operational semantics model for the heterogeneous
model.

For instance, consider the FSM model, it has

been combined with different models in two
different ways. The first one combines the FSM
model with the SR model. As a result, Statecharts
(Harel, 1987) has been obtained. In Statecharts,
three elements are presented: hierarchy,
concurrency and broadcasting. These three elements
turn the behavior of complex systems into simplified
diagrams. It can also be used to specify systems
behavior.

In addition, FSM has been combined with three
other models: DE, SR and DF models (Girault et al.,
1999), which has been called *charts (pronounced
“starcharts”). Note that a concurrent model can be
chosen independently of the use of an FSM model.
The main difference between these two ways of
creating heterogeneous models lies on the
semantics. While in Statecharts the semantics of the
FSM model is strongly coupled with the
concurrency model semantics, *charts decouples the
semantics of the concurrency model from the FSM.

DF model has also been combined with DE
model resulting in other heterogeneous model
(Chang et al., 1997). This new model maintains the
main characteristics of the DE model concerning the
event handling.

Besides the heterogeneous models, there are
other specific models. The DF model is widely
used in DSP applications. However, this model
does not support synchronism, essential for DSP
applications. To overcome this limitation, models
such as Synchronous Dataflow (SDF) (Lee e
Messerschmitt, 1987) and the Dynamic Dataflow
(DDF) (Buck, 1993) have been proposed. These
models have new characteristics not supported by
the DF model. For example, the SDF model
solves the synchronism problem, by defining in
advance the amount of data consumed and
produced by each component. Henceforth, it is
possible to generate schedules that run
synchronously. Nevertheless, no support has been
given to real-time event handling within dataflow
models. To fill in this existing gap, the XDF
model has been developed.

146 Polato e Silva Filho

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

Extended Extended Extended Extended dataflowdataflowdataflowdataflow

This section presents a heterogeneous model
called Extended Dataflow (XDF) (Polato and Silva
Filho, 2003, 2005) which has been applied to
embedded software. The reader is referred to
(Polato, 2004; Silva Filho, 2004) for further details.
This model is an extension of the DF model
(Dennis, 1974; Davis and Keller, 1982; Ackerman,
1982). The main characteristics of the DF model as
well as a subset of characteristics of the SDF model
have been kept. They include:

XDF can work synchronously or
asynchronously, based on a set of parameters,
defined at compile time, when creating a model
specification to an application.

The firing conditions of XDF components are
data dependent, i.e., its execution depends upon data
availability.

The amounts of data being produced and
consumed by each component are known in
advance. Nevertheless, this is only possible when
using the model in a synchronous manner.

In XDF, event handling is done in real-time. As
well, events have a priority used to solve conflicts
between two or more events occurring
simultaneously. Chang proposed a similar model
(Chang et al., 1997) by combining the DF model
with the DE model. However, two characteristics
make Chang´s model different from XDF:

The used dataflow model can be viewed as a
generic model supporting a weak synchronism.

Event handling is done according to the time

associated to the event, i.e., in agreement with a
global timeline within the system.

XDF has been used in embedded software
development, mainly in adaptative DSP applications
involving digital filters and speech compression (Polato
and Silva Filho, 2003; Polato, 2004). To support
specifications of software using the XDF model, a model
specification has been developed. The XDF model spec
can be viewed as a description language for the software
being designed, where components, connections
between them, inputs, outputs, and system events are
specified. A generic XDF model spec is shown in Listing
1. Due to its flexibility and extensibility, XML language
has been chosen to describe XDF model spec (Silva
Filho, 2004). XML also provides means to support the
XDF syntax through schemas. Although XML model
spec has been proposed to meet requirements of a
specific application domain (DSP), an extension of it can
be thought of to meet new requirements in other
application domain, but this issue is out of scope of this
paper. Note that in Listing 1, only the main XML
closing tags are shown.

<modelSpec>

 <systemName>

 <systemHeader>

 <componentName>

 ...

 <port>

 <portName>

 <portType>

 <portCapacity>

 ...

 <connector>

 <connectorName>

 <sourceComponentPort>

 <targetComponentPort>

 ...

 <event>

 <eventName>

 <eventPriority>

 ...

 </systemHeader>

 <systemBody>

 <component>

 <componentName>

 <interface>

 <in_port>

 <portName>

 <tokensConsumed>

 <minimumToFire>

 <connectorName>

 ...

 <out_port>

 <portName>

 <tokensProduced>

 <connectorName>

 ...

 <configurable_parameter>

 <paramName>

 <paramType>

 <paramSize>

 <paramValue>

 ...

 <accept_event>

 <eventName>

 <componentName>

 ...

 <raise_event>

 <eventName>

 <componentName>

 ...

 </interface>

 </component>

 </systemBody>

</modelSpec>

Listing 1. Generic XDF model specification

In a second abstraction level of the XDF model
spec, components are individually specified. At this
level, inputs and outputs of each component are
specified. In addition, events being raised or
accepted by components are also specified at this
level. In this model, only registered events in a
component specification can be raised or accepted
by a component. Possible exceptions occurring
during the execution of a system are handled as
events with maximum priority.

XDF model supports the specification of systems
that requires either synchronous or asynchronous
mode. XDF model works synchronously by defining
the parameters tokensConsumed, minimumToFire
and tokensProduced. If these parameters are not

Adaptive software synthesis 147

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

specified in a model specification, XDF model will
work asynchronously. These parameters are located
in the component interface and are child nodes of
inPort and outPort elements. Besides the
specification of system components, the XDF model
spec also defines how event handling is carried out.
For events raised by the system, there are specified
conditions that should be satisfied to raise a specific
event. Events accepted by a system have specified
actions that should be carried out when an event
occurs. Every specified event likely to be raised by a

system should have an equivalent specification with
actions to be carried out for handling that event.

The XDF approach goes beyond the proposition
of the XDF model spec. To assure the correctness of
the specification, both syntax and semantics of the
model have been formally defined. XDF syntax uses
XML. In addition, an operational semantics has been
developed avoiding inconsistency during the
execution of the model. Further details can be found
in (Polato, 2004).

XDF XDF XDF XDF componentscomponentscomponentscomponents

Our approach used components to compose new
applications. Thus, XDF can take advantage of
component-based development (CBD), once XDF
allows a designer to compose system by instantiating
and combining existing components. CBD
approaches have been widely studied and can benefit
software development process. Even so, CBD faces
limitations. First one is component retrieval.
Components must be retrieved to match the desired
functionality. Components must be chosen to

correctly meet non-functional requirements, being a
key issue when developing embedded software.

Note that research involving component
selection from a repository which aims at matching
non-functional requirements is currently in
development (Yen et al., 2002). Therein, an approach
to cope with the problem of component retrieval is
discussed. An integrated mechanism for
component-based development of embedded
software is further discussed in (Yen et al., 2002). In
this work, a repository has been created to provide
mechanisms of component retrieval according to
non-functional requirements. For this purpose, they
assume that the components selected are the most
suitable to compose an application.

Although CBD faces the limitations before
mentioned, it also provides benefits to the software
development. The major one is the reuse of software
components. Reuse may both improve quality of
software and reduce development time. By using
XDF model, a reduction in terms of development

effort is expected, provided that the developer can
reuse software in two ways. First, the component
itself can be reused in several applications. Second,
the specification of this component within the
model can be reused to create new applications
using the same component. Note that quality
improvement of an application may indirectly come
from using components being already tested and
used.

It is worth observing that the motivation to use
components is not only related to software reuse,

but also to time-to-market requirements where
products must be released as soon as possible.
Another benefit from using components when
developing applications is the ease of maintenance
and update of such applications. Components can be
more easily upgraded or replaced.

Furthermore, to create an application using
XDF, one could assume that a black box approach
for component is used. In addition, we consider that
a component must have a life cycle as defined in the
operational semantics of the model, as well as the
interfaces of a component must also be well known.
This is discussed next.

Components Components Components Components life cyclelife cyclelife cyclelife cycle

XDF component life cycle has been developed to
provide a base to XDF operational semantics (Polato,
2004). Within this life cycle, components can initially
assume two states: inactive or active. Components
assume the active state when executing. The active
state has four sub states: waiting, ready, running and
suspended. The waiting state is reached by a

component only when using the model
synchronously. It makes a component to wait until all
the input data needed to accomplish its computation is
available. When this condition is satisfied, a system
event called trigger will change the state of a
component to ready. The ready state is assumed by a
component when all conditions to start an execution of
a component are satisfied. A component in the ready
state waits to start its execution.

When using the model synchronously, a
component with one or more input ports will be
initially in the waiting state. Once its firing conditions
are satisfied, it will go to the ready state. An exception
occurs when a component does not need input data to
accomplish its computation. These components
without input ports, when selected, go directly from
the inactive to the ready state. This transition occurs
because these components do not have to meet any fire
conditions and can be requested to execute at any time.

The execution of a system is directed by an entity
called system coordinator. This entity is responsible for

148 Polato e Silva Filho

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

holding the schedules for the system, to select which
components will be running using the XDF life cycle,
and to solve possible problems of memory usage. The
system coordinator is also responsible for handling the
events within a system. By dealing with system events,
the system coordinator controls the state transitions of
a component. By dealing with component events, it
can control the events generated by components
during the system execution.

When requested by the system coordinator, a
component in the ready state can execute. This takes

place through a system event called start, which makes
the component enter the running state, as shown in
Figure 1. When in the running state, there are two
possibilities of state change for a component:

The suspend event changes the state of a
component from the running to the suspended state.

The stop event changes the component state to two
target states: waiting or ready. The transition is made
based upon the number of input ports. If the
component does not have input ports, it returns to the
ready state, where it will be able to be invoked again. If
there is any input port, components return to the
waiting state, where should wait the fire conditions to
be satisfied again.

Finally, when a component is in the suspended
state, it awaits the resolution of events or related actions
that caused its entrance in this state as, for instance,
exceptions. When these are solved, the component
returns to the running state. This state change is caused
by the resume event. The complete XDF components
life cycle is shown in Figure 1.

Figure 1. XDF Components life cycle.

Code Code Code Code generation toolgeneration toolgeneration toolgeneration tool

This paper also addresses the development of a
prototype of code generation tool. The main
purpose of this tool is to help the development of
applications that used the XDF model. Its main
functionality is the partial code generation from
XDF specifications.

Using this tool, C code is generated from the
XDF model spec. The tool also allows the edition of
a model spec for an application. The C language has
been chosen in part because it is widely used within
the DSP area. Other reason for using C language is
the performance it can provide.

The prototype can be divided into two major
parts: code generation module and GUI module.
Figure 2 shows the architecture of the prototype.
The code generation module is responsible to
generate the C code, having an XDF model spec as
input. The specification is read and stored in
memory. Each part of a specification has a table to
hold the related data located in the model spec. For
example, there are tables to keep information about
components, connectors, events, and ports of a
system. The reader is referred to Figure 3.

Figure 2. Code generation tool prototype architecture.

To generate the code from the XDF specification,
a mapping procedure is used. Components, ports,
connectors, and other entities of the model
specification have been mapped. Once all the
information has been read from the specification and
stored in the memory, the mapping algorithm is
called to generate the code. Firstly, a default header
for C programs is generated. This header contains the
basic libraries used in a C program. Once the header
is generated, prototypes of the components are
generated. The component table is read and the
prototype of each entry from this table is generated.

In addition, the declaration of the ports of a
system is generated. In this case, the semantics
considers that all communication is made through
buffers. So, at this point, declarations of the
connectors are generated. This generation is
illustrated in Figure 3. Note that the code generator
accesses both connector and port tables to create a
buffer declaration in the C code.

Adaptive software synthesis 149

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

Figure 3. Example of buffer code generation.

After the generation of the headers of an
application, involving libraries and buffers, the main
program is generated. In this case, a single schedule is
generated, according to the specification. The
schedule generated contains at least one entry of each
component in a system.

It is worth highlighting that we can use either our
components or third party components in the XDF
model specification and generate C code from this
specification. Note that a component in this case can
be seen under the ‘black box’ approach, where by

knowing the functionalities and interfaces, we can use
a component to compose an application using the
XDF model. A benefit of this approach is that
components can be reused, which results in less
development effort. Figure 4 shows a screenshot of
our code generation tool.

Figure 4. Code generation tool screenshot

The GUI module allows the user to develop
applications using component diagrams. Components
and connectors can be instantiated and specified

graphically. Once a system has been completely
specified using components diagrams, the XDF
model spec can be automatically generated by the
tool. With the model spec at hand, the code generator
module is called and generates the partial code for the
system. A complete example is given next.

A A A A case studycase studycase studycase study

To illustrate the use of the XDF model, a case
study of an application involving digital filters is
discussed. Digital filtering is one of the most
important functions within the DSP area, being
widely used. Applications including speech, image,
and video processing are just a few examples which
digital filters can be applied to.

Generally, digital filters are used with two main
purposes: signal restoration and signal separation. The
first case is used when the signal has been distorted
some way. The second one is applied when the signal
has been contaminated with interference, noise, or
even other signals.

A digital filter works as follow: the analog input
signal must first be sampled and digitized using an
ADC (analog-to-digital converter). The resulting
binary numbers, representing successive sampled
values of the input signal, are transferred to the
processor, which carries out numerical calculations
on them. These calculations typically involve
multiplying the input values by constants (these
constants are called coefficients) and adding the
products altogether. In addition, the results of these
calculations, which now represent sampled values of
the filtered signal, can be output to a DAC (digital-to-
analog converter) to convert the signal back to analog

form. Note that in a digital filter the signal is
represented by a sequence of numbers rather than a
voltage or current, generally, used in an analog filter.
The whole process is shown in Figure 5.

150 Polato e Silva Filho

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

Figure 5. Signal conversion and filtering.

The process of recording a song using
instruments (bass, guitar, drums, piano, etc) could
illustrate the transformation of the analog signal
through an ADC to a digital signal. To play the
recorded song on a CD player could represent the
opposite process where the digital signal is
converted back to an analog signal through a
DAC.

In addition, digital filters can be classified as
being recursive or non-recursive filters. A
recursive filter is one, which, in addition to input
values, also uses previous output values. These,
like the previous input values, are stored in the
processor memory. A non-recursive filter is also
known as an FIR (Finite Impulse Response) filter
while a recursive filter as an IIR (Infinite Impulse
Response) filter. An FIR filter is one whose
impulse response is of finite duration. An IIR
filter is one whose impulse response theoretically
continues forever because the recursive (previous
output) terms feed back energy into the filter
input and keeps it working.

Besides an impulse response, digital filters also
have a step response and a frequency response.
Each of these three responses provides complete
information about the filter, but in different
forms. If one out of three is specified, the other
two can be directly obtained. All these three
representations are important because they
describe how a filter will react under different
circumstances.

Another important characteristic of digital
filters is the filter length. The length of a
recursive filter is the largest number of previous
input or output values required to compute the
current output. Since the non-recursive (FIR)
filters uses only the current and previous inputs
to compute the current output, the order of a FIR
filter is the number of previous inputs (stored in
the processor memory) used to calculate the
current output. Moreover, filters may be of any
order from zero upwards.

Other characteristic of digital filters comprises
the coefficients. The values of these coefficients
determine the characteristics of a particular filter.
Both FIR and IIR filters need these coefficients in
order to do their job. There are several ways to

calculate the coefficients of a filter. However, this
is out of scope of this paper.

The example system illustrated here is one
designed to improve the signal-to-noise ratio
(SNR) of an input signal. A noise often causes
degradation in terms of speech quality and
intelligibility. So noise reduction is an important
feature to improve the quality of a signal in DSP
applications.

In the example shown in Figure 6, a system
receives an input signal and one out of three

filters is selected according to the needs of the
system. These filters comprise two FIR lowpass
filters and one LMS adaptative filter. A fourth
component appears in the model, and it is called
SNR. This component is in charge of selecting
one out of three digital filters. The system is
presented in terms of its components. Note that
the system can adapt itself to the environment,
according to the system needs. This is made by
the component SNR, which selects the
appropriate filter to the input signal.

SNR is the component that selects one filter
out of three that will be applied to the input
signal. A filter will be used according to the
conditions detected by the SNR component.
Herein the need for improving the ratio signal-to-
noise is considered. These filters are usually used
to remove Gaussian white noise present in the
signal. In this case, noise causes degradation of the
desired signal quality. This noise source is also
represented in Figure 6. Note that, even, one out
of three digital filters is in use. Another can
become active if the SNR component detects
degradation in signal quality, which depends on
signal-to-noise ratio among other parameters.

Figure 6. Digital filtering system.

The FIR filter components in this example are
all lowpass filters. The fir_lpf_parks component is
a filter that uses coefficients generated by the
Parks-McClellan method. Figure 7.a shows the
frequency response of this component when using
35 coefficients. Consider the following analysis: by
increasing the length of the filter a better result can
be achieved, according to the 70-point and the 128-

Adaptive software synthesis 151

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

point filter frequency responses shown in Figure 8a
and 8b, respectively. Note the larger, the filter, the
better, and the results achieved.

The second filter, the fir_lpf_kaiser, uses
coefficients developed using the Kaiser Window
method. It has a 0.19 cutoff. Figure 7.b shows the
frequency response of the fir_lpf_kaiser

component when using 37 coefficients. The same
analysis carried out with the previous component is
made again. The larger, the filter, the better, and
the results achieved. Figure 9a and 9b shows the
frequency responses for the 70-point and the 128-
point filters using coefficients generated by Kaiser
Window method.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-120

-100

-80

-60

-40

-20

0

20

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

M agnitude Response in dB

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-120

-100

-80

-60

-40

-20

0

20

Frequency (kHz)
M

ag
ni

tu
de

 (
dB

)

M agnitude Response in dB

(a) (b)

Figure 7. (a). Frequency response of fir_lpf_parks component using 35 coefficients. (b). Frequency response of fir_lpf_kaiser

component using 37 coefficients.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-160

-140

-120

-100

-80

-60

-40

-20

0

20

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

M agnitude Response in dB

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-200

-150

-100

-50

0

50

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

M agnitude Response in dB

(a) (b)

Figure 8. (a). Frequency response of fir_lpf_parks component using 70 coefficients. (b). Frequency response of fir_lpf_parks component

using 128 coefficients.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-140

-120

-100

-80

-60

-40

-20

0

20

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

M agnitude Response in dB

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-140

-120

-100

-80

-60

-40

-20

0

20

Frequency (kHz)

M
ag

ni
tu

de
 (

dB
)

M agnitude Response in dB

(a) (b)

Figure 9. (a). Frequency response of fir_lpf_kaiser component using 70 coefficients. (b). Frequency response of fir_lpf_kaiser
component using 128 coefficients.

Adaptive software synthesis 152

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

Experiments were made using both FIR filters
mentioned above to set standards that are used by
the SNR component. The first simulation has
analyzed the filter attenuation against the filter
length. The filters were applied to an input signal,
and the results are shown on Figure 10. Note that
the filter using coefficients generated with the
Parks-McClellan method has a better attenuation as
the filter length increases. The other filter has
attenuation almost constant, even when using a
larger filter length.

Filter Length x Signal Attenuation

0

20
40
60

80

100
120

140

10 20 30 40 50 60 70 80 90 10
0

12
8

25
6

51
2

Filter Length

S
ig

n
al

 A
tt

en
u

at
io

n
 (-

 d
B

)

Parks-McClellan

Kaiser Window

Figure 10. Filter length x signal Attenuation graph.

Other simulations have been made to test the
performance of both filters. The results have shown
that regardless the method used to generate
coefficients – in this case Parks-McClellan and
Kaiser Window – the performance of both has
shown to be almost the same. The results are
illustrated in Figure 11.

Filter Length x Execution Time

0

1

2

3

4

5

10 20 30 40 50 60 70 80 90 100 128 256 512

Filter Length

E
xe

cu
tio

n
 T

im
e

(s
)

Parks-McClellan

Kaiser Window

Figure 11. Filter Length x execution time graph.

A third set of simulations has been carried out to
check the improvement on the signal-to-noise ratio
caused by each filter. The results can be used by the
SNR component to select an appropriate filter
according to the system needs, as shown in Figure
12.

Although the Figure 12 shows that both filters
have almost the same improvement with same
amount of coefficients, the difference can be set
when selecting a filter that have, for example, a
better attenuation. If we select an FIR filter using

128 coefficients generated by the Parks-McClellan
method, it will have the same signal-to-noise
improvement that a FIR filter using 128 Kaiser
Window coefficients. But, the first one will have a
better attenuation than the second one.

A third filter appears in Figure 6. It is an
adaptative filter that uses the LMS algorithm. The
main difference between this filter and the two
previously analyzed is that it does not need a method
to generate coefficients. An adaptative filter has,
initially, all coefficients equal to zero. Using the

input signal and the desired response, the filter
adapts itself and alters its coefficients to achieve the
expected result.

The only parameter that must be set to this

particular component is the mu parameter. This is

the parameter that determines the convergence of
the filter to the designed response. Although studies
have been made trying to achieve an optimal value

for mu, this could not be determined.

Filter Length X Signal-toNoise Improvment

0

0,5

1

1,5

2

10 20 30 40 50 60 70 80 90 100 128 256 512

Filter Length

S
ig

n
al

-t
o

-N
o

is
e

Im
p

ro
vm

en
t

(d
B

)

Parks-McClellan Kaiser Window

Figure 12. Filter length x signal-to-noise improvement.

Simulations have also been carried out with
the LMS Adaptative Filter component. In this

case, the mu parameter and the number of

coefficients used by the filter were changed. The

values of mu used were: 0.0001, 0.001, 0.01, 0.1,

0.2 and 0.3. The filter used 10, 20, 30 and 40
coefficients.

When using 10 coefficients and ranging over

the mu values, the filter could not adapt to the

desired response and remove the noise from the
input signal. The output signal almost matched
the input signal, showing that the filter could not
remove the noise. The filter using 30 and 40
coefficients could not also adapt to the response
signal. But in this case, the output signal was
corrupted, distorting the signal.

The filter using 20 coefficients had the best

results. Using different values of mu, the filter

had different improvements in the signal-to-noise
ratio. Table 1 shows the results of these
simulations.

Adaptive software synthesis 153

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

Table 1. Signal-to-noise improvement.

mu Signal-to-noise Improvement (dB)

0.0001 4.14

0.001 2.00

0.01 0.96

0.1 0.51

0.2 0.36

20 coefficient LMS

adaptative filter

0.3 - 4.82

The SNR component is in charge of using all these

information to provide support for system adaptation.
To do so, events are used. The main functionality of the
SNR is to choose the most suitable filter according to a
specific condition. The SNR component could select a
filter according to the parameters set to a system during
the development.

The system illustrated in Figure 6 was developed
using the XDF model. The model specification was
generated and is shown in Listing 2.

<modelSpec>
 <systemName>digital_filters</systemName>
 <systemHeader>
 <componentName>snr
 <componentName>lpf_parks
 <componentName>lpf_kaiser
 <componentName>lms_adaptative
 <port>
 <portName>in_snr
 <portType>int
 <portCapacity/>
 </port>
 …
 <connector>
 <connectorName>connector_1
 <sourceComponentPort>out_snr_1
 <targetComponentPort>in_lpf_parks
 </connector>
 …
 <event>
 <eventName>select_lpf_parks
 <eventPriority>0
 </event>
 …
 </systemHeader>
 <systemBody>
 …
 <component>
 <componentName>lpf_parks
 <interface>
 <inPort>
 <portName>in_lpf_parks
 <tokensConsumed>1
 <minimumToFire>1
 <connectorName>connector_1
 </inPort>
 <outPort>
 <portName>out_lpf_parks
 <tokensProduced>1
 <connectorName>connector_3
 </outPort>
 <acceptEvent>
 <eventName>select_lpf_parks
 <componentName>snr
 </acceptEvent>
 </interface>
 <acceptableEvents>
 <on>select_lpf_parks
 <doAccept>start(lpf_parks)
 </acceptableEvents>
 </component>
 …
 </systemBody>
</modelSpec>

Listing 2. XDF model spec for the example system.

To compose this example, third party
components implemented in C language have been
used. The prototype of code generation was used to
generate code of the DSP application and
successfully generated partial code for the
application.

Final RemarksFinal RemarksFinal RemarksFinal Remarks

This paper presents an approach of embedded
software synthesis from Extended Dataflow
specifications. It has been applied to DSP
applications, such as those using digital filtering,
which may be able to adapt itself during execution,
by choosing the filter that better adapts to specific
conditions. XDF model has shown to be suitable to
the examples it has been applied to. At present,
examples involving digital filters and speech
compression have been applied to this model. The
code generation tool has successfully generated
partial C code for the applications which it has been
applied to.

It is worth highlighting that we can use third
party components and generate C code from XDF
specification provided that the interfaces of these
components and their functionality are known in
advance. A further step in our research work is
currently focused on exploring other niche of
applications for this approach.

ReferencesReferencesReferencesReferences

ACKERMAN, W.B. Data Flow Languages. Computer,
Long Beach, v. 15, n. 2, p. 15-25, 1982.

BENVENISTE, A.; BERRY, G. The synchronous
approach to reactive and real-time systems. Proc. IEEE,
New York, v. 79, n. 9, p. 1270-1282, 1991.

BERRY, G.; GONTHIER, G. The Esterel synchronous

programming language: Design, semantics,
implementation. Sci. Comput. Program., Amsterdam, v. 19,
n. 2, p. 87-152, 1992.

BUCK, J.T. Scheduling Dynamic Dataflow Graphs with

Bounded Memory Using the token Flow Model. 1993.
Dissertation (Ph.D)-Dept. of EECS, University of
California, Berkeley, CA, 1993.

CHANG, W. et al. Heterogeneous Simulation - Mixing
Discrete Event Models with Dataflow. J. VLSI Signal
Proc., v. 13, n. 1, 1997.

DAVIS, A.L.; KELLER, R.M. Data flow program graphs.

Computer, Long Beach, v. 15, n. 2, p. 26-41, 1982.

DENNIS, J.B. First version of a data-flow procedure

language. Proceedings of the Colloque sur la Programmation,
Lecture Notes in Computer Science, Paris, v. 19, p. 362-376,
1974.

GAUTIER, T.; LE GUERNIC, P. Signal: A declarative

language for synchronous programming of real-time
systems. Functional Programming Languages and

154 Polato e Silva Filho

Acta Sci. Technol. Maringá, v. 27, n. 2, p. 143-154, July/Dec., 2005

Portland: Computer Architecture, 1987.

GILL, A. Introduction to the theory of Finite-State Machines.

Mc Graw-Hill Book Company, Inc, 1962.

GIRAULT, A. et al. Hierarchical Finite State Machines

with Multiple Concurrency Models. IEEE Transactions On
Comput.-sided Des. Integr. Circuits Syst., New York, v. 18,
n. 6, 1999.

HAREL, D. Statecharts: A Visual Formalism for Complex
Systems. Science Computer Programming, v. 8, p.231-274,
1987.

HOARE, C.A.R. Communicating Sequential Processes.

International Series in Computer science. Prentice Hall, 1985.

LEE, E.A. Modeling Concurrent Real-Time Processes

Using Discrete Events. In: ANNALS OF SOFTWARE
ENGINEERING, Special Volume on Real-Time
Software Engineering, v. 7, 1999.

LEE, E.A. Embedded Software. Advances in Computers,

London: Academic Press, v. 56, 2002.

LEE, E.A.; MESSERSCHMITT, D.G. Synchronous Data
Flow. Proc. IEEE, New York, v. 75, n. 9, 1987.

LIPSETT, R. et al. Vhdl: Hardware Description and Design.

Kluwer Academic Publishers, 1989.

MILNER, R.A. Calculus for Communicating Systems.

Lecture Notes in Computer Science, n. 92, Springer Verlag,
1980.

POLATO, I. XDF–Extendend Dataflow: Uma Extensão do

Modelo de Fluxo de Dados com Suporte a Tratamento de

Eventos. 2004. Dissertação (Mestrado)-Departamento de
Informática, Universidade Estadual de Maringá, Maringá,
2004.

POLATO, I.; SILVA FILHO, A.M. A Component-based

Approach to Embedded Software Design using Extended
Dataflow Specifications. In: 1. WET – Workshop on
Engineering and Technology. 2005.

POLATO, I.; SILVA FILHO, A.M. XDF–Extended

Dataflow. In: COMPONENT-BASED
DEVELOPMENT WORKSHOP, 3., 2003, São Carlos.
Proceedings… São Carlos, 2003.

SILVA FILHO, A.M. Programando com XML. Editora
Elsevier/Campus, 2004.

THOMAS, D.E. et al. The Verilog Hardware Description

Language. 5. ed. Kluwer: Academic Publishers, 2002.

YEN, I.L. et al. Component-based Approach for

Embedded Software Development. In: IEEE
INTERNATIONAL SYMPOSIUM ON OBJECT-
ORIENTED REAL-TIME DISTRIBUTED
COMPUTING. 5., 2002. Washington, D.C. Proceedings…
Washington, D.C. p. 402-412. 2002.

Received on December 08, 2004.

Accepted on October 25, 2005.

