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ABSTRACT. Embedded software development approaches used models of computation 

such as dataflow, discrete events, synchronous/reactive, among others. Due to the 
specialization of the existing models, each one can be better applied to a specific application 
domain. Nevertheless, when there is no solution for applications in a specific domain, 
heterogeneous models have been used. In this context, this paper discusses a heterogeneous 
model called Extended Dataflow. It is an extension of the dataflow model with support to 
event handling. This paper also addresses how software can be synthesized from extended 
dataflow specifications and discusses the development of a code generation tool prototype. 
This takes into account the possibility of component reuse for developing digital signal 
processing applications. A case study of adaptative applications using digital filters is used to 
illustrate our approach. 
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RESUMO. Síntese de Software Adaptativo baseada em Especificações Extended 

Dataflow. As abordagens de desenvolvimento de software embutido têm feito o uso de 

modelos de computação, tais como fluxo de dados, eventos discretos, síncrono/reativo, 
dentre outros. A especialização desses modelos faz com que sejam apropriados a um 
domínio específico de aplicações. Entretanto, quando não existe uma solução adequada para 
determinada aplicação, os modelos heterogêneos têm sido utilizados. Neste contexto, este 
artigo discute um modelo heterogêneo, chamado Extended Dataflow, que é uma extensão 
do modelo de fluxo de dados com suporte ao tratamento de eventos. O artigo mostra ainda 
como um software pode ser obtido a partir de especificações usando Extended Dataflow e 
discute o desenvolvimento de um protótipo de ferramenta de geração de código. Isso leva 
em consideração a possibilidade de reuso de componentes em aplicações de processamento 
digital de sinais. Um estudo de caso sobre aplicações adaptativas envolvendo filtros digitais é 
utilizado para ilustrar o trabalho. 

Palavras-chave: modelos computacionais, sistemas embutidos, fluxo de dados, componentes, eventos. 

IntroductionIntroductionIntroductionIntroduction    

Software development has been supported by 
several methodologies along the last decades. Most 
of these methodologies assume that computation is 
accomplished as a result of mathematical functions, 
expressed as procedures or methods. Henceforth, 
these functions basically transform input data into 
output data. However, it is not every software works 
like that. Consider, e.g., embedded software. Its 
main role is not data transformation, but the 
interaction with the physical world. Usually, it is not 
executed in traditional computers but within 
telephones, robots, cars, airplanes, and others. 

During the development of embedded software, 
a special attention is given to their main 
characteristics. Concurrency and performance are 
important characteristics that should be 
appropriately taken into account during software 

design. Other constraints such as development time 
and resources required must also be satisfied. 
Development time should also be addressed to 
satisfy, e.g., time to market requirement.  

According to Lee (2002), characteristics such as 
timeliness, concurrency, interfaces, heterogeneity, 
and reactivity are considered intrinsic to embedded 
software. These characteristics involve interaction 
with the physical world. Embedded software takes 
into account time, resources consumption and an 
endless life cycle. Another important factor being 
considered in embedded software is heterogeneity. 
Their interaction with real world systems may be 
accomplished in several ways, causing that software 
uses several models of computation and 
implementation technologies. 

As a result of many constraints and 
characteristics that could be met, traditional 
methodologies have provided little support for 
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developing this kind of software. The existing 
models of computation have been trying to fill in 
this existing gap within embedded software 
development. They can be considered as a set of 
rules that govern the interactions between the model 
components. Most of these models of computation 
have been developed over the last two decades, each 
one giving support to specific application domain. 
When two or more domains are involved, a solution 
has been the creation of heterogeneous models. 

Within this context, this paper presents a 

heterogeneous model of computation called 
Extended Dataflow (XDF) (Polato, 2004), which 
is an extension of the original dataflow model 
(Dennis, 1974; Davis and Keller, 1982; Ackerman, 
1982) with additional support to event handling. 
This model has been applied to digital signal 
processing (DSP) applications. Specially, we have 
been using the XDF model to support the 
development of adaptative DSP applications 
involving digital filters. These applications can 
modify its initial configuration as long as events of 
either performance or quality degradations take 
place. This model of computation aims at 
satisfying system requirements when developing 
embedded software. 

Given the preceding, a set of models of 
computation related to ours are discussed in the 
following section. The XDF model of 
computation and the use of components within 
the model are presented in Sections 3 and 4, 
respectively. Section 5 presents our code 
generation tool and explains how software can be 
synthesized from an XDF specification. A case 
study applying the XDF model to an adaptative 
DSP application is made in Section 6. Finally, 
concluding remarks are given in Section 7. 

Models of Models of Models of Models of computationcomputationcomputationcomputation    

Models of computation have been used within 
embedded software design providing it with a set of 
rules that define how interactions between 
components can occur. It may also be viewed as a 
conceptual framework in which a design is made 
from the composition of components. Each model 
has its advantages and limitations, being better 
suitable to an application domain due to its specific 
requirements. The most prominent models of 
computation are discussed next. 

Dataflow (DF)Dataflow (DF)Dataflow (DF)Dataflow (DF)    

In the dataflow (DF) model, actors are 
considered atomic entities, carrying out indivisible 
computations. These actors only start computing 

when all the input data needed for a computation is 
available. It is a powerful model to support parallel 
computation. This model appeared as one of the 
first attempts for exploring parallelism in programs 
(Dennis, 1974; Davis e Keller, 1982; Ackerman, 
1982).  

The DF model is widely used in digital signal 
processing applications. Usually, the DF model uses 
block diagrams as a mechanism to describe and 
explain graphically the algorithms of signal 
processing. The use of block diagrams is based on a 

metaphor of circuits as well it establishes a 
connection with the origins of digital signal 
processing. It also facilitates the visualization of 
complex systems. Such characteristics have made the 
DF model to be largely used in the community of 
digital signal processing. 

Two important issues of the DF model are the 
support for concurrency and the lack of 
synchronism. These characteristics are present 
because the DF model depends upon the data 
availability. As a result, several components can be 
ready for execution simultaneously, giving support 
to concurrency. DF model can be mapped to 
software specifications and, specifically, embedded 
software. However, the original dataflow model is 
not suitable for mapping hardware specifications 
because of the lack of synchronism. This weakness 
was solved with special cases by using synchronous 
dataflow and dynamic dataflow models. In addition, 
control-oriented systems cannot be suitably 
supported by DF model. 

The concurrency supported in the DF model is 
also kept in the XDF model. However, the lack of 
synchronism has been removed in XDF using the 
synchronism approach existing in the SDF model, 
where the data consumed and produced by each 
component are specified in advance. 

Synchronous/Reactive (SR)Synchronous/Reactive (SR)Synchronous/Reactive (SR)Synchronous/Reactive (SR)    

The SR model (Benveniste and Berry, 1991) 
deals efficiently with concurrent models using 
irregular events. In this model, connections 
between components contain values associated 
with system global time. Due to this characteristic, 
all components have the same notion of time 
within the system. Components represent the 
relationship between inputs and outputs of a 
system at each time unit. The SR model is 
appropriate to applications that have concurrent 
and complex logical control as, for instance, 
critical systems. Examples of languages using SR 
model are Esterel (Berry and Gonthier, 1992) and 
Signal (Gautier and Le Guernic, 1987). 
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Discrete Discrete Discrete Discrete events events events events (DE)(DE)(DE)(DE)    

The DE model provides a useful abstraction 
for real-time systems. Milner (1980) and Hoare 
(1985) proposed the first studies in this area. 
Later, Lee (1999) proposed a model for studying 
and handling discrete events. In this model, 
connections represent a group of atomic events 
along a timeline. Each event receives a pair (value, 
time) where time is used for determining the 
occurrence of an event. Events with the same time 
are ordered based on data precedence. Similarly to 
the SR model, a solid notion of global time exists. 
However, the main difference is the importance 
given to the time between events within a system. 

The DE model is largely used for hardware 
specification and telecommunications systems 
simulation. The DE model has been applied in 
several environments, simulation languages, and 
hardware description languages, such as VHDL 
(Lipsett et al., 1989) and Verilog (Thomas et al., 
2002). However, the DE model has a high 
implementation cost in terms of software due to 
the need to support a global time and an event 
manager. 

Finite Finite Finite Finite state machine state machine state machine state machine (FSM)(FSM)(FSM)(FSM)    

The FSM (Gill, 1962) model differs from others 
because it is a strictly sequential model. In this 
model, a state can be considered a component. 
During the execution of the model only one state 
can be active at a time. Connections between 
components are represented as transitions. The 
execution of this model can be viewed as navigation 
between system states as transitions get fired. 

The FSM model is appropriate to describe the 
control logic in embedded software and, more 
specifically, in critical systems. It can be used to 
predict the behavior of a system provided that a 
formal analysis can be made. It can also be easily 
mapped to hardware and software implementations. 

However, the FSM model has limitations. It is 
not sufficiently complete to describe all the existing 
recursive functions of a system. Other limitation is 
the number of states can rapidly grow even when 
dealing with a minimum complexity. This happens 
because the number of states can become large as 
the system complexity increases, making difficult 
the management of the states. Despite that the FSM 
model is highly used to compose heterogeneous 
models because of the predictable behavior it 
provides to a system.  

HeterogenHeterogenHeterogenHeterogeneous eous eous eous modelsmodelsmodelsmodels    

Heterogeneous models have been used to 

overcome existing limitations in the previous 
models. In general, they combine two or more 
models of computation, involving different 
application domains. However, a problem when 
creating a heterogeneous model is the semantics 
resulting of the new model. Two options are 
commonly taken into consideration: the use of 
original semantics model or the creation of a new 
operational semantics model for the heterogeneous 
model.  

For instance, consider the FSM model, it has 

been combined with different models in two 
different ways. The first one combines the FSM 
model with the SR model. As a result, Statecharts 
(Harel, 1987) has been obtained. In Statecharts, 
three elements are presented: hierarchy, 
concurrency and broadcasting. These three elements 
turn the behavior of complex systems into simplified 
diagrams. It can also be used to specify systems 
behavior.  

In addition, FSM has been combined with three 
other models: DE, SR and DF models (Girault et al., 
1999), which has been called *charts (pronounced 
“starcharts”). Note that a concurrent model can be 
chosen independently of the use of an FSM model. 
The main difference between these two ways of 
creating heterogeneous models lies on the 
semantics. While in Statecharts the semantics of the 
FSM model is strongly coupled with the 
concurrency model semantics, *charts decouples the 
semantics of the concurrency model from the FSM. 

DF model has also been combined with DE 
model resulting in other heterogeneous model 
(Chang et al., 1997). This new model maintains the 
main characteristics of the DE model concerning the 
event handling. 

Besides the heterogeneous models, there are 
other specific models. The DF model is widely 
used in DSP applications. However, this model 
does not support synchronism, essential for DSP 
applications. To overcome this limitation, models 
such as Synchronous Dataflow (SDF) (Lee e 
Messerschmitt, 1987) and the Dynamic Dataflow 
(DDF) (Buck, 1993) have been proposed. These 
models have new characteristics not supported by 
the DF model. For example, the SDF model 
solves the synchronism problem, by defining in 
advance the amount of data consumed and 
produced by each component. Henceforth, it is 
possible to generate schedules that run 
synchronously. Nevertheless, no support has been 
given to real-time event handling within dataflow 
models. To fill in this existing gap, the XDF 
model has been developed. 
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Extended Extended Extended Extended dataflowdataflowdataflowdataflow    

This section presents a heterogeneous model 
called Extended Dataflow (XDF) (Polato and Silva 
Filho, 2003, 2005) which has been applied to 
embedded software. The reader is referred to 
(Polato, 2004; Silva Filho, 2004) for further details. 
This model is an extension of the DF model 
(Dennis, 1974; Davis and Keller, 1982; Ackerman, 
1982). The main characteristics of the DF model as 
well as a subset of characteristics of the SDF model 
have been kept. They include: 

XDF can work synchronously or 
asynchronously, based on a set of parameters, 
defined at compile time, when creating a model 
specification to an application. 

The firing conditions of XDF components are 
data dependent, i.e., its execution depends upon data 
availability. 

The amounts of data being produced and 
consumed by each component are known in 
advance. Nevertheless, this is only possible when 
using the model in a synchronous manner. 

In XDF, event handling is done in real-time. As 
well, events have a priority used to solve conflicts 
between two or more events occurring 
simultaneously. Chang proposed a similar model 
(Chang et al., 1997) by combining the DF model 
with the DE model. However, two characteristics 
make Chang´s model different from XDF: 

The used dataflow model can be viewed as a 
generic model supporting a weak synchronism. 

Event handling is done according to the time 

associated to the event, i.e., in agreement with a 
global timeline within the system. 

XDF has been used in embedded software 
development, mainly in adaptative DSP applications 
involving digital filters and speech compression (Polato 
and Silva Filho, 2003; Polato, 2004). To support 
specifications of software using the XDF model, a model 
specification has been developed. The XDF model spec 
can be viewed as a description language for the software 
being designed, where components, connections 
between them, inputs, outputs, and system events are 
specified. A generic XDF model spec is shown in Listing 
1. Due to its flexibility and extensibility, XML language 
has been chosen to describe XDF model spec (Silva 
Filho, 2004). XML also provides means to support the 
XDF syntax through schemas. Although XML model 
spec has been proposed to meet requirements of a 
specific application domain (DSP), an extension of it can 
be thought of to meet new requirements in other 
application domain, but this issue is out of scope of this 
paper. Note that in Listing 1, only the main XML 
closing tags are shown. 

<modelSpec> 

  <systemName> 

  <systemHeader> 

    <componentName> 

    ... 

    <port> 

      <portName> 

      <portType> 

      <portCapacity> 

    ... 

    <connector> 

      <connectorName> 

      <sourceComponentPort> 

      <targetComponentPort> 

    ... 

    <event> 

      <eventName> 

      <eventPriority> 

    ... 

  </systemHeader> 

  <systemBody> 

    <component> 

      <componentName> 

      <interface> 

        <in_port> 

          <portName> 

          <tokensConsumed> 

          <minimumToFire> 

          <connectorName> 

        ... 

        <out_port> 

          <portName> 

          <tokensProduced> 

          <connectorName> 

        ... 

        <configurable_parameter> 

          <paramName> 

          <paramType> 

          <paramSize> 

          <paramValue> 

        ... 

        <accept_event> 

          <eventName> 

          <componentName> 

          ... 

        <raise_event> 

          <eventName> 

          <componentName> 

          ... 

      </interface> 

    </component> 

  </systemBody> 

</modelSpec> 

Listing 1. Generic XDF model specification 

In a second abstraction level of the XDF model 
spec, components are individually specified. At this 
level, inputs and outputs of each component are 
specified. In addition, events being raised or 
accepted by components are also specified at this 
level. In this model, only registered events in a 
component specification can be raised or accepted 
by a component. Possible exceptions occurring 
during the execution of a system are handled as 
events with maximum priority. 

XDF model supports the specification of systems 
that requires either synchronous or asynchronous 
mode. XDF model works synchronously by defining 
the parameters tokensConsumed, minimumToFire 
and tokensProduced. If these parameters are not 
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specified in a model specification, XDF model will 
work asynchronously. These parameters are located 
in the component interface and are child nodes of 
inPort and outPort elements. Besides the 
specification of system components, the XDF model 
spec also defines how event handling is carried out. 
For events raised by the system, there are specified 
conditions that should be satisfied to raise a specific 
event. Events accepted by a system have specified 
actions that should be carried out when an event 
occurs. Every specified event likely to be raised by a 

system should have an equivalent specification with 
actions to be carried out for handling that event. 

The XDF approach goes beyond the proposition 
of the XDF model spec. To assure the correctness of 
the specification, both syntax and semantics of the 
model have been formally defined. XDF syntax uses 
XML. In addition, an operational semantics has been 
developed avoiding inconsistency during the 
execution of the model. Further details can be found 
in (Polato, 2004). 

XDF XDF XDF XDF componentscomponentscomponentscomponents    

Our approach used components to compose new 
applications. Thus, XDF can take advantage of 
component-based development (CBD), once XDF 
allows a designer to compose system by instantiating 
and combining existing components. CBD 
approaches have been widely studied and can benefit 
software development process. Even so, CBD faces 
limitations. First one is component retrieval. 
Components must be retrieved to match the desired 
functionality. Components must be chosen to 

correctly meet non-functional requirements, being a 
key issue when developing embedded software. 

Note that research involving component 
selection from a repository which aims at matching 
non-functional requirements is currently in 
development (Yen et al., 2002). Therein, an approach 
to cope with the problem of component retrieval is 
discussed. An integrated mechanism for 
component-based development of embedded 
software is further discussed in (Yen et al., 2002). In 
this work, a repository has been created to provide 
mechanisms of component retrieval according to 
non-functional requirements. For this purpose, they 
assume that the components selected are the most 
suitable to compose an application. 

Although CBD faces the limitations before 
mentioned, it also provides benefits to the software 
development. The major one is the reuse of software 
components. Reuse may both improve quality of 
software and reduce development time. By using 
XDF model, a reduction in terms of development 

effort is expected, provided that the developer can 
reuse software in two ways. First, the component 
itself can be reused in several applications. Second, 
the specification of this component within the 
model can be reused to create new applications 
using the same component. Note that quality 
improvement of an application may indirectly come 
from using components being already tested and 
used.  

It is worth observing that the motivation to use 
components is not only related to software reuse, 

but also to time-to-market requirements where 
products must be released as soon as possible. 
Another benefit from using components when 
developing applications is the ease of maintenance 
and update of such applications. Components can be 
more easily upgraded or replaced.  

Furthermore, to create an application using 
XDF, one could assume that a black box approach 
for component is used. In addition, we consider that 
a component must have a life cycle as defined in the 
operational semantics of the model, as well as the 
interfaces of a component must also be well known. 
This is discussed next. 

Components Components Components Components life cyclelife cyclelife cyclelife cycle    

XDF component life cycle has been developed to 
provide a base to XDF operational semantics (Polato, 
2004). Within this life cycle, components can initially 
assume two states: inactive or active. Components 
assume the active state when executing. The active 
state has four sub states: waiting, ready, running and 
suspended. The waiting state is reached by a 

component only when using the model 
synchronously. It makes a component to wait until all 
the input data needed to accomplish its computation is 
available. When this condition is satisfied, a system 
event called trigger will change the state of a 
component to ready. The ready state is assumed by a 
component when all conditions to start an execution of 
a component are satisfied. A component in the ready 
state waits to start its execution. 

When using the model synchronously, a 
component with one or more input ports will be 
initially in the waiting state. Once its firing conditions 
are satisfied, it will go to the ready state. An exception 
occurs when a component does not need input data to 
accomplish its computation. These components 
without input ports, when selected, go directly from 
the inactive to the ready state. This transition occurs 
because these components do not have to meet any fire 
conditions and can be requested to execute at any time. 

The execution of a system is directed by an entity 
called system coordinator. This entity is responsible for 
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holding the schedules for the system, to select which 
components will be running using the XDF life cycle, 
and to solve possible problems of memory usage. The 
system coordinator is also responsible for handling the 
events within a system. By dealing with system events, 
the system coordinator controls the state transitions of 
a component. By dealing with component events, it 
can control the events generated by components 
during the system execution. 

When requested by the system coordinator, a 
component in the ready state can execute. This takes 

place through a system event called start, which makes 
the component enter the running state, as shown in 
Figure 1. When in the running state, there are two 
possibilities of state change for a component: 

The suspend event changes the state of a 
component from the running to the suspended state. 

The stop event changes the component state to two 
target states: waiting or ready. The transition is made 
based upon the number of input ports. If the 
component does not have input ports, it returns to the 
ready state, where it will be able to be invoked again. If 
there is any input port, components return to the 
waiting state, where should wait the fire conditions to 
be satisfied again. 

Finally, when a component is in the suspended 
state, it awaits the resolution of events or related actions 
that caused its entrance in this state as, for instance, 
exceptions. When these are solved, the component 
returns to the running state. This state change is caused 
by the resume event. The complete XDF components 
life cycle is shown in Figure 1. 

 

 

Figure 1. XDF Components life cycle. 

Code Code Code Code generation toolgeneration toolgeneration toolgeneration tool    

This paper also addresses the development of a 
prototype of code generation tool. The main 
purpose of this tool is to help the development of 
applications that used the XDF model. Its main 
functionality is the partial code generation from 
XDF specifications. 

Using this tool, C code is generated from the 
XDF model spec. The tool also allows the edition of 
a model spec for an application. The C language has 
been chosen in part because it is widely used within 
the DSP area. Other reason for using C language is 
the performance it can provide. 

The prototype can be divided into two major 
parts: code generation module and GUI module. 
Figure 2 shows the architecture of the prototype. 
The code generation module is responsible to 
generate the C code, having an XDF model spec as 
input. The specification is read and stored in 
memory. Each part of a specification has a table to 
hold the related data located in the model spec. For 
example, there are tables to keep information about 
components, connectors, events, and ports of a 
system. The reader is referred to Figure 3. 

 

 

Figure 2. Code generation tool prototype architecture. 

To generate the code from the XDF specification, 
a mapping procedure is used. Components, ports, 
connectors, and other entities of the model 
specification have been mapped. Once all the 
information has been read from the specification and 
stored in the memory, the mapping algorithm is 
called to generate the code. Firstly, a default header 
for C programs is generated. This header contains the 
basic libraries used in a C program. Once the header 
is generated, prototypes of the components are 
generated. The component table is read and the 
prototype of each entry from this table is generated. 

In addition, the declaration of the ports of a 
system is generated. In this case, the semantics 
considers that all communication is made through 
buffers. So, at this point, declarations of the 
connectors are generated. This generation is 
illustrated in Figure 3. Note that the code generator 
accesses both connector and port tables to create a 
buffer declaration in the C code. 
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Figure 3. Example of buffer code generation. 

After the generation of the headers of an 
application, involving libraries and buffers, the main 
program is generated. In this case, a single schedule is 
generated, according to the specification. The 
schedule generated contains at least one entry of each 
component in a system.  

It is worth highlighting that we can use either our 
components or third party components in the XDF 
model specification and generate C code from this 
specification. Note that a component in this case can 
be seen under the ‘black box’ approach, where by 

knowing the functionalities and interfaces, we can use 
a component to compose an application using the 
XDF model. A benefit of this approach is that 
components can be reused, which results in less 
development effort. Figure 4 shows a screenshot of 
our code generation tool.  

 

 
Figure 4. Code generation tool screenshot 

The GUI module allows the user to develop 
applications using component diagrams. Components 
and connectors can be instantiated and specified 

graphically. Once a system has been completely 
specified using components diagrams, the XDF 
model spec can be automatically generated by the 
tool. With the model spec at hand, the code generator 
module is called and generates the partial code for the 
system. A complete example is given next. 

A A A A case studycase studycase studycase study    

To illustrate the use of the XDF model, a case 
study of an application involving digital filters is 
discussed. Digital filtering is one of the most 
important functions within the DSP area, being 
widely used. Applications including speech, image, 
and video processing are just a few examples which 
digital filters can be applied to. 

Generally, digital filters are used with two main 
purposes: signal restoration and signal separation. The 
first case is used when the signal has been distorted 
some way. The second one is applied when the signal 
has been contaminated with interference, noise, or 
even other signals.  

A digital filter works as follow: the analog input 
signal must first be sampled and digitized using an 
ADC (analog-to-digital converter). The resulting 
binary numbers, representing successive sampled 
values of the input signal, are transferred to the 
processor, which carries out numerical calculations 
on them. These calculations typically involve 
multiplying the input values by constants (these 
constants are called coefficients) and adding the 
products altogether. In addition, the results of these 
calculations, which now represent sampled values of 
the filtered signal, can be output to a DAC (digital-to-
analog converter) to convert the signal back to analog 

form. Note that in a digital filter the signal is 
represented by a sequence of numbers rather than a 
voltage or current, generally, used in an analog filter. 
The whole process is shown in Figure 5. 
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Figure 5. Signal conversion and filtering. 

The process of recording a song using 
instruments (bass, guitar, drums, piano, etc) could 
illustrate the transformation of the analog signal 
through an ADC to a digital signal. To play the 
recorded song on a CD player could represent the 
opposite process where the digital signal is 
converted back to an analog signal through a 
DAC. 

In addition, digital filters can be classified as 
being recursive or non-recursive filters. A 
recursive filter is one, which, in addition to input 
values, also uses previous output values. These, 
like the previous input values, are stored in the 
processor memory. A non-recursive filter is also 
known as an FIR (Finite Impulse Response) filter 
while a recursive filter as an IIR (Infinite Impulse 
Response) filter. An FIR filter is one whose 
impulse response is of finite duration. An IIR 
filter is one whose impulse response theoretically 
continues forever because the recursive (previous 
output) terms feed back energy into the filter 
input and keeps it working.  

Besides an impulse response, digital filters also 
have a step response and a frequency response. 
Each of these three responses provides complete 
information about the filter, but in different 
forms. If one out of three is specified, the other 
two can be directly obtained. All these three 
representations are important because they 
describe how a filter will react under different 
circumstances. 

Another important characteristic of digital 
filters is the filter length. The length of a 
recursive filter is the largest number of previous 
input or output values required to compute the 
current output. Since the non-recursive (FIR) 
filters uses only the current and previous inputs 
to compute the current output, the order of a FIR 
filter is the number of previous inputs (stored in 
the processor memory) used to calculate the 
current output. Moreover, filters may be of any 
order from zero upwards.  

Other characteristic of digital filters comprises 
the coefficients. The values of these coefficients 
determine the characteristics of a particular filter. 
Both FIR and IIR filters need these coefficients in 
order to do their job. There are several ways to 

calculate the coefficients of a filter. However, this 
is out of scope of this paper. 

The example system illustrated here is one 
designed to improve the signal-to-noise ratio 
(SNR) of an input signal. A noise often causes 
degradation in terms of speech quality and 
intelligibility. So noise reduction is an important 
feature to improve the quality of a signal in DSP 
applications.  

In the example shown in Figure 6, a system 
receives an input signal and one out of three 

filters is selected according to the needs of the 
system. These filters comprise two FIR lowpass 
filters and one LMS adaptative filter. A fourth 
component appears in the model, and it is called 
SNR. This component is in charge of selecting 
one out of three digital filters. The system is 
presented in terms of its components. Note that 
the system can adapt itself to the environment, 
according to the system needs. This is made by 
the component SNR, which selects the 
appropriate filter to the input signal. 

SNR is the component that selects one filter 
out of three that will be applied to the input 
signal. A filter will be used according to the 
conditions detected by the SNR component. 
Herein the need for improving the ratio signal-to-
noise is considered. These filters are usually used 
to remove Gaussian white noise present in the 
signal. In this case, noise causes degradation of the 
desired signal quality. This noise source is also 
represented in Figure 6. Note that, even, one out 
of three digital filters is in use. Another can 
become active if the SNR component detects 
degradation in signal quality, which depends on 
signal-to-noise ratio among other parameters. 

 

 
Figure 6. Digital filtering system. 

The FIR filter components in this example are 
all lowpass filters. The fir_lpf_parks component is 
a filter that uses coefficients generated by the 
Parks-McClellan method. Figure 7.a shows the 
frequency response of this component when using 
35 coefficients. Consider the following analysis: by 
increasing the length of the filter a better result can 
be achieved, according to the 70-point and the 128-
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point filter frequency responses shown in Figure 8a 
and 8b, respectively. Note the larger, the filter, the 
better, and the results achieved. 

The second filter, the fir_lpf_kaiser, uses 
coefficients developed using the Kaiser Window 
method. It has a 0.19 cutoff. Figure 7.b shows the 
frequency response of the fir_lpf_kaiser 

component when using 37 coefficients. The same 
analysis carried out with the previous component is 
made again. The larger, the filter, the better, and 
the results achieved. Figure 9a and 9b shows the 
frequency responses for the 70-point and the 128-
point filters using coefficients generated by Kaiser 
Window method. 
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Figure 7. (a). Frequency response of fir_lpf_parks component using 35 coefficients. (b). Frequency response of fir_lpf_kaiser 

component using 37 coefficients. 
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Figure 8. (a). Frequency response of fir_lpf_parks component using 70 coefficients. (b). Frequency response of fir_lpf_parks component 

using 128 coefficients. 
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Figure 9. (a). Frequency response of fir_lpf_kaiser component using 70 coefficients. (b). Frequency response of fir_lpf_kaiser 
component using 128 coefficients.  
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Experiments were made using both FIR filters 
mentioned above to set standards that are used by 
the SNR component. The first simulation has 
analyzed the filter attenuation against the filter 
length. The filters were applied to an input signal, 
and the results are shown on Figure 10. Note that 
the filter using coefficients generated with the 
Parks-McClellan method has a better attenuation as 
the filter length increases. The other filter has 
attenuation almost constant, even when using a 
larger filter length. 
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Figure 10. Filter length x signal Attenuation graph. 

Other simulations have been made to test the 
performance of both filters. The results have shown 
that regardless the method used to generate 
coefficients – in this case Parks-McClellan and 
Kaiser Window – the performance of both has 
shown to be almost the same. The results are 
illustrated in Figure 11. 
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Figure 11. Filter Length x execution time graph. 

A third set of simulations has been carried out to 
check the improvement on the signal-to-noise ratio 
caused by each filter. The results can be used by the 
SNR component to select an appropriate filter 
according to the system needs, as shown in Figure 
12. 

Although the Figure 12 shows that both filters 
have almost the same improvement with same 
amount of coefficients, the difference can be set 
when selecting a filter that have, for example, a 
better attenuation. If we select an FIR filter using 

128 coefficients generated by the Parks-McClellan 
method, it will have the same signal-to-noise 
improvement that a FIR filter using 128 Kaiser 
Window coefficients. But, the first one will have a 
better attenuation than the second one. 

A third filter appears in Figure 6. It is an 
adaptative filter that uses the LMS algorithm. The 
main difference between this filter and the two 
previously analyzed is that it does not need a method 
to generate coefficients. An adaptative filter has, 
initially, all coefficients equal to zero. Using the 

input signal and the desired response, the filter 
adapts itself and alters its coefficients to achieve the 
expected result. 

The only parameter that must be set to this 

particular component is the mu parameter. This is 

the parameter that determines the convergence of 
the filter to the designed response. Although studies 
have been made trying to achieve an optimal value 

for mu, this could not be determined. 
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Figure 12. Filter length x signal-to-noise improvement. 

Simulations have also been carried out with 
the LMS Adaptative Filter component. In this 

case, the mu parameter and the number of 

coefficients used by the filter were changed. The 

values of mu used were: 0.0001, 0.001, 0.01, 0.1, 

0.2 and 0.3. The filter used 10, 20, 30 and 40 
coefficients.  

When using 10 coefficients and ranging over 

the mu values, the filter could not adapt to the 

desired response and remove the noise from the 
input signal. The output signal almost matched 
the input signal, showing that the filter could not 
remove the noise. The filter using 30 and 40 
coefficients could not also adapt to the response 
signal. But in this case, the output signal was 
corrupted, distorting the signal. 

The filter using 20 coefficients had the best 

results. Using different values of mu, the filter 

had different improvements in the signal-to-noise 
ratio. Table 1 shows the results of these 
simulations. 
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Table 1. Signal-to-noise improvement. 

mu Signal-to-noise Improvement  (dB) 

0.0001 4.14 

0.001 2.00 

0.01 0.96 

0.1 0.51 

0.2 0.36 

 

20 coefficient LMS 

adaptative filter 

0.3 - 4.82 

 
The SNR component is in charge of using all these 

information to provide support for system adaptation. 
To do so, events are used. The main functionality of the 
SNR is to choose the most suitable filter according to a 
specific condition. The SNR component could select a 
filter according to the parameters set to a system during 
the development. 

The system illustrated in Figure 6 was developed 
using the XDF model. The model specification was 
generated and is shown in Listing 2.  

 
<modelSpec> 
  <systemName>digital_filters</systemName> 
  <systemHeader> 
    <componentName>snr 
    <componentName>lpf_parks 
    <componentName>lpf_kaiser 
    <componentName>lms_adaptative 
    <port> 
      <portName>in_snr 
      <portType>int 
      <portCapacity/> 
    </port> 
    … 
    <connector> 
      <connectorName>connector_1 
      <sourceComponentPort>out_snr_1 
      <targetComponentPort>in_lpf_parks 
    </connector> 
    … 
    <event> 
    <eventName>select_lpf_parks 
    <eventPriority>0 
    </event> 
    … 
  </systemHeader> 
  <systemBody> 
    … 
    <component> 
      <componentName>lpf_parks 
      <interface> 
        <inPort> 
          <portName>in_lpf_parks 
          <tokensConsumed>1 
          <minimumToFire>1 
          <connectorName>connector_1 
        </inPort> 
        <outPort> 
          <portName>out_lpf_parks 
          <tokensProduced>1 
          <connectorName>connector_3 
        </outPort> 
        <acceptEvent> 
          <eventName>select_lpf_parks 
          <componentName>snr 
        </acceptEvent> 
      </interface> 
      <acceptableEvents> 
        <on>select_lpf_parks 
        <doAccept>start(lpf_parks) 
      </acceptableEvents> 
    </component> 
    … 
  </systemBody> 
</modelSpec> 

Listing 2. XDF model spec for the example system. 

To compose this example, third party 
components implemented in C language have been 
used. The prototype of code generation was used to 
generate code of the DSP application and 
successfully generated partial code for the 
application. 

Final RemarksFinal RemarksFinal RemarksFinal Remarks    

This paper presents an approach of embedded 
software synthesis from Extended Dataflow 
specifications. It has been applied to DSP 
applications, such as those using digital filtering, 
which may be able to adapt itself during execution, 
by choosing the filter that better adapts to specific 
conditions. XDF model has shown to be suitable to 
the examples it has been applied to. At present, 
examples involving digital filters and speech 
compression have been applied to this model. The 
code generation tool has successfully generated 
partial C code for the applications which it has been 
applied to. 

It is worth highlighting that we can use third 
party components and generate C code from XDF 
specification provided that the interfaces of these 
components and their functionality are known in 
advance. A further step in our research work is 
currently focused on exploring other niche of 
applications for this approach. 
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