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ABSTRACT. In this paper we have introduced the notion of fuzzy real-valued p-bounded variation 

double sequence space p
Fbv2 (1 ≤ p < ∞). We have studied some important properties like completeness, 

convergence free, solid, symmetric. Some inclusion results are also established. 
Keywords: bounded variation, solid, symmetric, convergence free. 

Variação de fuzzy limitada a p de valor real de espaços de sequência duplo 

RESUMO. No presente trabalho apresentamos o conceito de variação de fuzzy limitada a p de valor real de 

espaços de sequência duplo p
Fbv2 (1 ≤ p < ∞). Foram estudadas algumas importantes propriedades como 

completude, convergência livre, solidez e simetria. Alguns resultados de inclusão também são estabelecidos.  
Palavras-chave: variação limitada, solidez, simetria, convergência livre.  

Introduction  

Fuzzy set is a mathematical model of vague 
qualitative or quantitative data, frequently generated 
by the means of natural language. It is based on the 
generalization of the classical concepts of set and its 
characteristic function. The theory of fuzzy set was 
given by Zadeh (1965), since then many major 
theoretical breakthroughs have been established and 
successfully applied to many industrial applications. 
Numerous research workers are involving to 
develop and extend it in different directions. The 
introduction of fuzzy number opened many new 
dimensions in the field of Mathematics. With the 
idea of fuzzy set theory and fuzzy real numbers, 
existing notions in different branches of 
mathematics are generalized. In the field of pure 
mathematics the use of fuzzy set and fuzzy real 
numbers are very remarkable. Specifically, we may 
mention that these notions are used extensively in 
studying properties of sequence spaces. Since our 
work is based on fuzzy real numbers, we begin with 
some basic ideas on it for easy understanding of the 
work. 

A fuzzy real number X is a fuzzy set on R, more 
precisely a mapping X: R → I (= [0, 1]), which 
associate each real number t, with its grade of 
membership X(t). 

The α-level set of a fuzzy real number X is 
defined by 

[X]α = 
_____________________

{ : ( ) },  for 0 1

{ : ( ) }, for 0.

t R X t

t R X t

α α

α α

∈  ≥ < ≤


∈  > =

 

 
A fuzzy real number X is said to be upper-semi-

continuous if for each ε > 0, X-1([0, a+ε)), for all 
a∈I is open in the usual topology of R. 

If there exists t∈R such that X(t) = 1, then the 
fuzzy real number X is called normal. 

A fuzzy real number X is said to be convex,  
if X(t) ≥ X(s)∧X(r) = min(X (s), X (r)), where  
s < t < r. 

We denote the class of all upper-semi-
continuous, normal and convex fuzzy real numbers 
by R(I) and that of all positive fuzzy real numbers by 
R*(I).  

For X, Y∈R(I), X ≤ Y if and only if Xα ≤ Yα for 
α∈[0,1] and “≤” is a partial order in R(I). 

The absolute value of X∈R(I) is defined by  
 

|X|(t) = 
_

max { ( ), (- ) }, for 0

0  ,                   otherwise. 

X t X t t ≥



 

 
The set of real numbers R can be embedded into 

R(I), for r∈R, r ∈R(I) is defined by 
 

r (t) = 
.

1, for ,
0, for

t r
t r

=
 ≠
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The additive identity and multiplicative identity 
of R(I) are denoted by 0  and 1  respectively. 

For any X, Y, Z∈ R(I), the linear structure of 
R(I) induces addition X + Y and scalar 
multiplication λX, λ∈R in terms of α-level set, 
defined as [X + Y]α = [X]α + [Y]α and [λX]α = 
λ[X]α, for each α∈[0, 1]. A subset E of R(I) is said 
to be bounded above if there exist a fuzzy real 
number μ such that X ≤ μ for every X∈E. We called 
μ as the upper bound of E and it is called least upper 
bound if μ ≤ μ* for all upper bound μ* of E. A lower 
bound and greatest is defined similarly. The set E is 
said to be bounded if it is both bounded above and 
bounded below. 

Let D be the set of all closed bounded intervals  
X = [XL, XR], Y = [YL, YR]. Then X ≤ Y implies that 
XL ≤ YL and XR ≤ YR. We write 

 
d(X, Y) = max{ | XL-YL | , | XR -Y R| }. 

 
It is straight forward that (D, d) is a complete 

metric space. 
We consider the function d : R(I) × R(I) → R 

defined by 
 

d (X, Y) = 
10

sup
≤≤α

d(Xα, Yα), for X, Y∈R(I). 

 

It is well established that (R(I), d ) is a complete 
metric space. 

Preliminaries and background  

In this section we discuss some fundamental 
concepts and properties related to the subject matter 
of the article. 

A sequence X = (Xk) of fuzzy real number is a 
function X from the set of positive integer into R(I). 
The fuzzy number Xk is called the kth term of the 
sequence. 

The set EF of sequences taken from R(I) is said 
to be a sequence space of fuzzy real number if, for 
(Xk), (Yk)∈EF, r∈R i.e. Xk, Yk ∈ R(I), and for all k∈N, 

 
(Xk) + (Yk) = (Xk + Yk)∈EF and r(Xk) = (rXk)∈EF  

 
where: 

 
1

_

( ),  0
( )

0,          0.

k

k

X r t if r
rX t

if r

− ≠= 
 =

 

 
Works on double sequence started in the early 

nineties. Initially it was studied by Hardy (1917), 

Bromwich (1965) and some others. In recent years 
the theory was further developed by Moričz (1991), 
Basarir and Solancan (1999), Savas (2007), Savas 
(1996), Savas and Mursaleen (2004), Tripathy and 
Dutta (2007, 2008, 2010), Tripathy and Sarma 
(2008a and b, 2009, 2011), and some others. 

The notion of difference sequence in complex 
terms was introduced by Kizmaz (1981) and defined 
by 

 

 Z(Δ) = {(xk): (Δxk)∈Z}, for Z = ∞ , c, 0c  where 

Δxk = xk - xk+1, for all k∈N.   
 
Tripathy and Sarma (2008a) studied it for double 

sequence spaces. In terms of fuzzy real numbers it 
was studied by Basarir and Mursaleen (2003), 
Tripathy and Dutta (2008), Tripathy and Borgohain 
(2010, 2011), and others. 

Hardy (1917) introduced the notions of regular 
convergence of double sequences and the notion of 
bounded variation of double sequences as follows: 

Definition 2.1. A double sequence >< nka  is 
said to converge regularly if it converges in 
Pringsheim’s sense and in addition the following 
limits holds: 

 
(i) nnk

k
La =

∞→
lim (n∈N ) exist,       

(ii) knk
n

Ja =
∞→

lim (k∈N ) exist. 

 
Definition 2.2. The sequence <xnk> is of 

bounded variation in (n, k), if  
(i) xnk is for every fixed value of n and k, of 

bounded variation in n or k.              
(ii) the series  Δ

n k
nkx ||  is convergent. 

A fuzzy real-valued double sequence is a double 
infinite array of fuzzy real numbers. We denote a 
fuzzy real-valued double sequence by <Xnk>, where 
Xnk are fuzzy real numbers for each n, k∈N. 

Definition 2.3. A fuzzy real-valued double 
sequence <Xnk> is said to be convergent in 
Pringsheim’s sense to the fuzzy real number X, if for 
every ε > 0, there exists n1 = n1(ε), k1 = k1(ε), such 

that 
_

d (Xnk, X) < ε, for all n ≥ n1 and k ≥ k1. 
Definition 2.4. A fuzzy real-valued double 

sequence <Xnk> is said to be bounded if
kn,

sup
_

d (Xnk,  

0 ) < ∞, equivalently, if there exists μ∈R*(I), such 
that |Xnk| ≤ μ for all n, k∈N.  

Definition 2.5. A fuzzy real-valued double 
sequence <Xnk> is said to be regularly convergent if 
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it is convergent in Pringsheim’s sense and the 
followings hold:  

For a given ε>0, there exists n0 = n0(ε, k) and  
k0 = k0 (ε, n) such that  

_

d (Xnk, Lk)< ε, for all n ≥ n0, for some Lk∈R(I) for 
each k∈N, and  

_

d (Xnk, Mn)< ε, for all k ≥ k0, for some Mn∈R(I) 
for each n∈N.  

Definition 2.6. A fuzzy real-valued double 
sequence space EF is said to be normal (or solid) if 
<Ynk>∈EF, whenever |Ynk| ≤ |Xnk| for all n, k∈N 
and <Xnk>∈EF. 

Definition 2.7. A fuzzy real-valued double 
sequence space EF is said to be symmetric if 
<Xπ(n,k)>∈EF, whenever <Xnk>∈EF, where π is a 
permutation of N.  

Definition 2.8. A fuzzy real-valued double 
sequence space EF is said to be convergence free if 
<Xnk>∈EF whenever <Ynk>∈EF and Ynk = 0  
implies Xnk = 0 . 

The notion of double difference sequences of 
fuzzy real numbers was introduced by Tripathy and 
Dutta (2008) as follows: 

 
Z(Δ) = {<Xnk> : <ΔXnk>∈Z}, for Z = 2( )F∞ , 

2( )Fc , 2 0( )Fc .  

 
where ΔXnk = Xnk  - Xn+1,k  - X,n k+1 + Xn+1,k+1, for all 
n, k∈N. 
 

The class of fuzzy real-valued bounded variation 
double sequences 2 Fbv  was introduced by Tripathy 

and Dutta (2010) as follows:  
 

( )
__ _

2
1 1

: ( ,0)F nk nk
n k

bv X d X
∞ ∞

= =

 = Δ < ∞ 
 

  , where        

ΔXnk = Xnk - Xn+1,k  - Xn, k+1 + Xn+1,k+1, for all n, k∈N. 
 
The class of sequence bvp(F) was introduced and 

studied by Talo and Basar (2008). In this article we 
introduce the class of p-bounded variation fuzzy 
real-valued double sequence p

Fbv2  as follows:  

 













∞<









Δ= 

∞

=

∞

=1 1

__
2 )0,(:)(

n k

p

nknk
p
F XdXbv , (1 ≤ p < ∞). 

 
Where ΔXnk = Xnk - Xn+1,k  - Xn, k+1 + Xn+1,k+1, for 

all n, k∈N. 

We use the following inequality throughout the 
article, wherever it is applicable. 

Let p = (pk) be a positive sequence of real 
numbers with 0<pk<sup pk = H and D = max(1, 
2H-1). Then for all ak, bk∈C;  

 
( )kkk p

k
p

k
p

kk baDba |||||| +≤+ , for all k∈N. 

Results and discussion 

Theorem 3.1. The class of double 
sequence p

Fbv2  (1 ≤ p < ∞) is a complete metric 
space with respect to the metric ρ defined by 

 
ρ (X, Y)  = ( ) ( )kk

k
nn

n
YXdYXd 1111 ,sup,sup +  

( )( ) p

n k

p
nknk YXd

1

1 1

,












ΔΔ+ 
∞

=

∞

=

, where X = (Xnk), Y = 

(Ynk) are in p
Fbv2 .  -  -  -  -  (1) 

 
Proof: It is easily to verify that ρ , defined by (1) 

is a metric on p
Fbv2 . Let <Xi> be a Cauchy sequence 

in p
Fbv2 . Then for a given ε > 0, ∃ n0∈I+ such that  

 
ρ (Xi, Xj) = d

n
sup 1 1( , )i j

n nX X + d
k

sup 1 1( , )i j
k kX X  +      

p

n k

p
j
nk

i
nk YXd

1

1 1

_
),(



















 ΔΔ

∞

=

∞

=

 < ε, for all i, j ≥ n0 - - - 

- - (2) 
 
This imply that 
 

d
n

sup  
1 1( , )i j
n nX X < ε and 

p

n k

p
j
nk

i
nk YXd

1

1 1

_
),(



















 ΔΔ

∞

=

∞

=

 

< ε, for all i,  j ≥ n0 
 

First we suppose that d
n

sup 1 1( , )i j
n nX X < ε,  for 

all i,  j ≥ n0  


_
d 1 1( ,  )i j

n nX X < ε, for all i, j ≥ n0 

 )( 1
i
nX  is a Cauchy sequence in R(I), for all 

n∈N. 
Since R(I) is a complete metric space by the 

metric 
_
d , so ∞

=11)( i
i
nX  converges for each n∈N. Let 

11lim n
i
n

i
XX =

∞→
, for each n∈N.  
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Similarly from (2) we have ( i
kX1 ) is a Cauchy 

sequence and hence convergent, so 

k
i
k

j
XX 11lim =

∞→
(say) for each k∈N. 

Now consider that
p

n k

p
j
nk

i
nk YXd

1

1 1

_
),(























ΔΔ

∞

=

∞

=

< ∞.  

This implies ),(
_

j
nk

i
nk YXd ΔΔ < ∞. 

Thus ∞
=Δ 1)( i

i
nkX  is a Cauchy sequence for each n, 

k∈N. Hence )( i
nkXΔ  converges for each n, k∈N. 

Let us consider )( 11
iXΔ , then )( 11

iX , )( 12
iX and 

)( 21
iX are convergent and hence )( 22

iX converges. 

Next let 2222lim XX i
i

=
∞→

 and consider )( 12
iXΔ , then 

)( 12
iX , )( 22

iX  and )( 13
iX are convergent. Thus 

)( 23
iX converges.  

Proceeding in this way, we get, )( i
nkX converges 

for each n, k∈N. Suppose nk
i
nk

i
XX =

∞→
lim , for all n, 

k∈N. Now taking limit as j → ∞ in (2), we have 
ρ (Xi

, X)< ε for all i ≥ n0. Thus for all i ≥ n0, we have  
ρ (X, 0 ) = ρ (X, Xi) + ρ (Xi, 0 )  
               < ε + K  < ∞. 
Hence we conclude that p

Fbv2  is a complete 
metric space.  

Theorem 3.2. The class of double sequence 
p
Fbv2  is not symmetric in general. 
Proof: The proof follows from the following 

example: 
Example 3.1. Let p>1. Consider the double 

sequence <Xnk> defined as follows: 
For all n odd,  
 

Xnn(t) = 














≤≤−

≤≤−+

otherwise.                

  

   

,0

;10),1(

;01),1(

n
tfornt

t
n

fornt

  

X1k = 
_
1 , for all k ≥ 2. 

Xnk = 
_
0 , otherwise. 

The matrix representation of the <Xnk> is given by  
 

<Xnk> = 

_ _ _

11
_ _ _ _

_ _ _

33

1 1 1 -  -  -  -

0 0 0 0  -  -  -  -

0 0 0  -  -  -  -
 -  -  -  -

X

X

 
 
 
 
 
 
 − − − − 

. 

Then <ΔXnk> is represented by  
 

<ΔXnk> = 

_ _ _ _

11
_ _

33 33
_

33 33 44 44

1 0 0 0  -  -  -  -

0 0  -  -  -  -

0 - -  -  - 
   -  -  -  -

X

X X

X X X X

 − 
 

− 
 
 − + −
 − − − − 

. 

 
Thus we have  
 

p

n k
nkXd 











Δ )0,(
__

≤  











+
+

n
pp nn )1(

11 < ∞ 

 

Hence <Xnk>∈ p
Fbv2 . 

Consider the rearrangement <Ynk> of <Xnk> 
defined by  

 
Ynn = Xnn.  
Ynk = 0 , for n ≠ k and n even. 

For n ≠ k and n odd, 
 

Ynk = 
_

_

1,  for  odd,

0,  otherwise.

k




 

 
Thus <Ynk> is represented by  
 

<Ynk> = 

_ _ _

11
_ _ _ _

_ _ _

33

0 1 0  -  -  -  -

0 0 0 0  -  -  -  -

1 0 0  -  -  -  -
-  -  -  -

X

X

 
 
 
 
 
 
 − − − − 

. 

 
Then <ΔYnk> is represented by  
 

<ΔYnk> = 

_ _ _

11
_ _

33 33
_ _

33 33

1 1 1 -  -  -  -

1 1 -  -  -  -

1 1 -  -  -  -
 -  -  -  -

X

X X

X X

 − − 
 

− − 
 
 − −
 − − − − 

 

 

Clearly 
p

n k
nkYd 











Δ )0,(
__

→ ∞. 

Hence <Ynk>∉ p
Fbv2 .  

Thus we conclude that p
Fbv2  is not symmetric. 

Theorem 3.3. The class of double 
sequence p

Fbv2  is not convergence free in general.     
Proof: The result follows from the following 

example. 
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Example 3.2. Consider the double sequence 
(Xnk) defined as follows: 

 

 Xnn(t) = 














≤≤−

≤≤−+

otherwise.                  ,0

;10for  ),1(

;01for  ),1(

2
2

2
2

n
ttn

t
n

tn
 

 

    Xnk = 0 , for n ≠k. 
Then <ΔXnk> is defined as follows 
For n = k, 
 

ΔXnn(t) =

















+
++≤≤











++
+−

≤≤
+
++−










+

++
+

otherwise.                                                 ,

 for ,

 for ,

0

;
)1(
)1(0

)1(
)1(1

;0
)1(
)1(1

)1(
)1(

22

22

22

22

22

22

22

nn
nntt

nn
nn

t
nn
nnt

nn
nn

  

 
for n + 1 = k and for n - 1 = k, 

 

    ΔXnk = Xnn, 
 

and  
 

    ΔXnk = 0 , otherwise. 
 

Therefore we have 
 

p

n k
nkXd 











Δ )0,(
__

≤  











+
+

n
pp nn 22 )1(

11 < ∞ 

 

Hence <Xnk>∈ p
Fbv2 .  

Now we consider the double sequence <Ynk> 
defined by 

 

Ynn(t) = 














≤≤−

≤≤−+

otherwise.                 ,

 for ,

 for ,

0

;0)11(

;0)11(

ntt
n

tnt
n

 and Ynk = 
_
0 , for n ≠k. 

 

Then <ΔYnk> is defined as follows 
 

ΔYnn(t) = 
















++≤≤







++

−

≤≤++







+

++

otherwise.                                              ,

 for ,

{- for ,

0

)};1({0
)1(

11

;0)}1(1
)1(

1

nntt
nn

tnnt
nn

 

ΔYnk = Ynn, for all n +1 = k and n -1 = k, 

and  
ΔYnk = 0 , otherwise. 
Thus we have 
 

p

n k
nkYd 











Δ )0,(
__

≤ { } ++
n

pp nn )1(   →  ∞. 

 

This implies that <Ynk>∉ p
Fbv2 .  

This completes the proof of the theorem. 
Theorem 3.4. The class of double 

sequence p
Fbv2  is not solid in general.         

Proof: The result follows from the following 
example. 

Example 3.3. Let p>1. Consider the double 
sequence <Xnk> defined by, 

 

Xnn(t) = 

( )

( )















+
≤≤+−

≤≤
+

−++

otherwise.                                 ,

 for 

 for 

0

;
)1(

10,)1(1

;0
)1(

1,1)1(

n
ttn

t
n

tn

 

 
X1k = 1 , for all k ≥ 2. 
Xn1 = 1− , for n ≥ 2 and Xnk = 0 , otherwise. 
The matrix representation of <Xnk> is given by  
 

<Xnk > = 
_ _ _

11
___ _ _

22
___ _ _

33

1 1 1 -  -  -  -

1 0 0  -  -  -  -

1 0 0- -  -  - 
   -  -  -  -

X

X

X

 
 
 

− 
 
 −
 − − − − 

 

 
The matrix determined by <ΔXnk> is 

represented as 
 

<ΔXnk > = 
_ _

11 22 22
_

22 22 33 33
_

33 33 44 44

0 0 -  -  -  -

0  -  -  -  -
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Thus we have 
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Thus <Xnk>∈ p
Fbv2 . 

Now consider the double sequence <Ynk> 
defined by,  

     Y1k = 1 , all k, even, 
     Yn1 = 1− , for all n even and Ynk = 0 , 

otherwise. 
Then we have the following matrix 

representations. 
 

<Ynk> = 
















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−−−−

−

-  -  -  -  
-  -  -  -  0000
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-  -  -  -  1010

____

_____

____

 

and   <ΔYnk> = 
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
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Direct calculation gives 
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This shows that <Ynk>∉ p

Fbv2  and also it is 

observed that |Ynk⏐≤ ⏐Xnk⏐. 
This completes the proof of the theorem.  
Theorem 3.5. (a) p

F2  ⊂ p
Fbv2 , for 1 < p < ∞  

and the inclusion is strict. 
(b) q

Fbv2 ⊂ p
Fbv2 , for 1 ≤ q < p < ∞  and the 

inclusion is strict. 
Proof: (a) Let us consider the double sequence 

<Xnk>∈ p
F2 .  
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It is easy to verify that the inclusion is strict. 

This completes the proof of the theorem.  

(b) Let <Xnk> be an element of p
Fbv2 , then 
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We choose n0 and k0 such that
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Δ , for n ≥ n0, k ≥ k0 
and p>q. 

For (n, k)∈K = N × N – {(n, k): n ≤ n0, k ≤ k0} 
and for 0 < q < p < ∞, we have  
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, 1 ≤ q < ∞. 

Thus <Xnk>∈ q
Fbv2 . 

It is easy to verify that the inclusion is strict.  
Hence we conclude that q

Fbv2 ⊂ p
Fbv2 . 

Conclusion 

The concept of double sequence in terms of 
fuzzy real numbers is a very recent development. 
Soon after it many researchers have introduced 
different classes of double sequences and studied 
some algebraic and topological properties. The 
class of sequence introduced here has its 
importance from the point of view of its structure 
and norm. We have verified some important 
properties for the class of double sequence with 
some concrete examples.   
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