

http://www.uem.br/acta ISSN printed: 1806-2563 ISSN on-line: 1807-8664

Doi: 10.4025/actascitechnol.v35i4.15728

α^{γ} -open sets, α^{γ} -functions and some new separation axioms

Hariwan Zikri Ibrahim

Department of Mathematics, Faculty of Science, University of Zakho, Duhok, Kurdistan-Region, Iraq. E-mail: hariwan_math@yahoo.com

ABSTRACT. In this paper, a new kind of set called an α^{γ} -open set is introduced and investigated using the γ -operator due to Ogata. Such sets are used for studying new types of mappings, viz. α^{γ} -continuous, $\alpha^{(\gamma,\beta)}$ -irresolute, etc. Finally, new separation axioms: α^{γ} -T_i (i = 0, ½, 1, 2), α^{γ} -D_i (i = 0, 1, 2), and a new notion of the graph of a function called an α^{γ} -closed graph.

Keywords: α^{γ} -open, α^{γ} -g closed, α^{γ} -continuous, $\alpha^{(\gamma,\beta)}$ -irresolute, α^{γ} D-set, α^{γ} -closed graph.

α^{γ} -aberto conjunto, α^{γ} -funções e alguns novos axiomas de separação

RESUMO. Neste artigo, um novo tipo de conjunto chamado α^{γ} -aberto conjunto é introduzido e investigado usando o γ -operador devido a Ogata. Esses jogos são usados para estudar novos tipos de mapeamentos, viz. α^{γ} -contínuo, $\alpha^{(\gamma,\beta)}$ -irresoluto, etc. Finalmente, novos axiomas de separação: α^{γ} - Γ_i (i=0,1,2), e uma nova noção do gráfico de uma função chamado um α^{γ} -gráfico fechado.

Palavras-chave: α^{γ} -aberto, α^{γ} -g fechado, α^{γ} -contínuo, $\alpha^{(\gamma,\beta)}$ -irresoluto, α^{γ} D-conjunto, α^{γ} -gráfico fechado.

Introduction

In 1965 Njastad (1965) introduced α -open sets, Kasahara (1979) defined an operation α on a topological space to introduce α -closed graphs. Following the same technique, Ogata (1991) defined an operation on a topological space and introduced γ -open sets.

In this paper, we introduce the notion of α^{γ} -open sets, α^{γ} -continuity and $\alpha^{(\gamma,\beta)}$ -irresoluteness in topological spaces. By utilizing these notions we introduce some weak separation axioms. Also we show that some basic properties α^{γ} -T_i (i = 0, ½, 1, 2), α^{γ} -D_i (i = 0, 1, 2) spaces and we offer a new notion of the graph of a function called an α^{γ} -closed graph and investigate some of their fundamental properties.

Throughout the paper spaces X and Y mean topological spaces. For a subset A of a space X, cl(A) and int(A) represent the closure of A and the interior of A, respectively.

Preliminaries

A subset A of X is called α -open if A \subseteq int(cl(int(A))). The complement of α -open set is called α -closed set. The family of all α -open sets of X is denoted by α O(X). For a subset A of X, the union of all α -open sets of X contained in A is called the α -interior (in short α int(A)) of A, and the intersection of all α -closed sets of X containing A is called the α -closure (in short α cl(A)) of A. An operation γ (KASAHARA, 1979) on a topology τ is a

mapping from τ in to power set P(X) of X such that $V \subseteq (V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of at V. A subset A of X with an operation γ on τ is called γ -open (OGATA, 1991) if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U)$ \subseteq A. Then, τ_{γ} denotes the set of all γ -open set in X. Clearly $\tau_{\nu} \subseteq \tau$. Complements of γ -open sets are called γ -closed. The γ -closure (OGATA, 1991) of a subset A of X with an operation γ on τ is denoted by τ_{γ} -cl(A) and is defined to be the intersection of all γ closed sets containing A, and the γ-interior (OGATA, 1991) of A is denoted by τ_{γ} -int(A) and defined to be the union of all y-open sets of X contained in A. A topological (X, τ) with an operation γ on τ is said to be γ -regular (OGATA, 1991) if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U)$ contained in V. It is also to be noted that $\tau = \tau_{\gamma}$ if and only if X is a γ-regular space (OGATA, 1991).

α^{γ} -open sets

Definition 3.1. Let (X, τ) be a topological space, γ an operation on τ and $A \subseteq X$. Then A is called an α^{γ} -open set if $A \subseteq \text{int}(\tau_{\gamma}\text{-cl}(\text{int}(A)))$.

 $\alpha^{\gamma}O(X)$ denotes the collection of all α^{γ} -open sets of (X, τ) , and $\alpha^{\gamma}O(X, x)$ is the collection of all α^{γ} -open sets containing the point x of X.

A subset A of X is called α^{γ} -closed if and only if its complement is α^{γ} -open. Moreover, $\alpha^{\gamma}C(X)$ denotes the collection of all α^{γ} -closed sets of (X, τ) .

Ibrahim 726

It can be shown that a subset A of X is α^{γ} -closed if and only if $cl(\tau_{\gamma}-int(cl(A))) \subseteq A$.

Remark 3.2.

- (1) Every α -open set is α^{γ} -open, while in a γ regular space these concepts are equivalent.
- (2) Every γ -open set is α^{γ} -open, but the converse may not be true.

{b}, {a, b}, X}. Define an operation γ on τ by γ (A) = $\{a\}$ if $A = \{a\}$ and $\gamma(A) = A \cup \{c\}$ if $A \neq \{a\}$. Clearly, $\tau_{\gamma} = \{\phi, \{a\}, X\}.$

- (1) Then $\{a, c\}$ is α^{γ} -open but not α -open.
- (2) Also $\{a, c\}$ is α^{γ} -open but not γ -open.

Theorem 3.4. An arbitrary union of α^{γ} -open sets is α^{γ} -open.

Proof. Let $\{A_k: k \in I\}$ be a family of α^{γ} -open sets. Then for each k,

 $A_k \subseteq int(\tau_{\gamma}\text{-}cl(int(A_k)))$ and so

 $\bigcup_k A_k \subseteq \bigcup_k \operatorname{int}(\tau_{\gamma} \operatorname{-cl}(\operatorname{int}(A_k)))$

 $\subseteq \operatorname{int}(\bigcup_k \tau_{\gamma} \operatorname{-cl}(\operatorname{int}(A_k)))$

 $\subseteq \operatorname{int}(\tau_{\gamma}\text{-}\operatorname{cl}((\cup_{k}\operatorname{int}(A_{k})))$

 $\subseteq \operatorname{int}(\tau_{\gamma}\text{-}\operatorname{cl}(\operatorname{int}(\cup_{k} A_{k}))).$

Thus, $\bigcup_k A_k$ is α^{γ} -open.

Remark 3.5.

- (1) An arbitrary intersection of α^{γ} -closed sets is α^{γ} -closed.
- (2) The intersection of even two α^{γ} -open sets may not be α^{γ} -open.

{b}, {a, b}, X}. Define an operation γ on τ by γ (A) = A if A = $\{a, b\}$ and $\gamma(A)$ = X otherwise. Clearly, $\tau_{v} = \{ \varphi, \{a, b\}, X \} \text{ and } \alpha^{\gamma} O(X) = \{ \varphi, \{a\}, \{b\}, \{a, b\}, \{a, b\}$ b}, $\{a, c\}$, $\{b, c\}$, $X\}$, take $A = \{a, c\}$ and $B = \{b, c\}$ c}. Then $A \cap B = \{c\}$, which is not an α^{γ} -open set.

Definition 3.7. Let A be a subset of a topological space (X, τ) and γ an operation on τ .

- (1) The union of all α^{γ} -open sets contained in A is called the α^{γ} -interior of A and denoted by α^{γ} int(A).
- (2) The intersection of all α^{γ} -closed sets containing A is called the α^{γ} -closure of A and denoted by α^{γ} cl(A).
- (3) The set denoted by $\alpha^{\gamma}D(A)$ and defined by {x: for every α^{γ} -open set U containing x, U \cap $(A\setminus\{x\})\neq \emptyset$ is called the α^{γ} -derived set of A.
- (4) The α^{γ} -frontier of A, denoted by α^{γ} Fr(A) is defined as α^{γ} cl(A) \ α^{γ} cl(X \ A).

We now state the following theorem without proof. Theorem 3.8. Let (X, τ) be a topological space and γ an operation on τ . For any subsets A, B of X we have the following:

- (1) A is α^{γ} -open if and only if $A = \alpha^{\gamma}$ int(A).
- (2) A is α^{γ} -closed if and only if $A = \alpha^{\gamma} cl(A)$.
- (3) If $A \subseteq B$ then α^{γ} int(A) $\subseteq \alpha^{\gamma}$ int(B) and α^{γ} cl(A) $\subseteq \alpha^{\gamma} cl(B)$.

- (4) α^{γ} int(A) $\cup \alpha^{\gamma}$ int(B) $\subseteq \alpha^{\gamma}$ int(A \cup B).
- (5) α^{γ} int(AUB) $\subseteq \alpha^{\gamma}$ int(A) $\cap \alpha^{\gamma}$ int(B).
- (6) $\alpha^{\gamma} cl(A) \cup \alpha^{\gamma} cl(B) \subseteq \alpha^{\gamma} cl(A \cup B)$.
- $(7) \alpha^{\gamma} cl(A \setminus B) \subseteq \alpha^{\gamma} cl(A) \cap \alpha^{\gamma} cl(B).$
- (8) α^{γ} int(X \ A) = X \ α^{γ} cl(A).
- (9) $\alpha^{\gamma} \operatorname{cl}(X \setminus A) = X \setminus \alpha^{\gamma} \operatorname{int}(A)$.
- (10) α^{γ} int(A) = A \ α^{γ} D(X \ A).
- $(11) \alpha^{\gamma} cl(A) = A \cup \alpha^{\gamma} D(A).$
- (12) τ_{γ} -int(A) $\subseteq \alpha^{\gamma}$ int(A).
- (13) $\alpha^{\gamma} cl(A) \subseteq \tau_{\gamma} cl(A)$.

Theorem 3.9. Let A be a subset of a topological space (X, τ) and γ be an operation on τ . Then $x \in$ α^{γ} cl(A) if and only if for every α^{γ} -open set V of

X containing x, $A \cap V \neq \phi$.

Proof. Let $x \in \alpha^{\gamma} cl(A)$ and suppose that $V \cap$ $A = \varphi$ for some α^{γ} -open set V which contains x. Then $(X \setminus V)$ is α^{γ} -closed and $A \subseteq (X \setminus V)$, thus α^{γ} cl(A) \subseteq (X \ V). But this implies that x \in (X \ V), a contradition. Therefore $V \cap A \neq \varphi$.

Conversely, Let $A \subseteq X$ and $x \in X$ such that for each α^{γ} -open set U which contains x, U \cap A \neq \phi. If $x \notin \alpha^{\gamma} cl(A)$, there is an α^{γ} -closed set F such that $A \subseteq$ F and $x \notin F$. Then $(X\F)$ is an α^{γ} -open set with $x \in$ $(X\F)$, and thus $(X \ F) \cap A \neq \varphi$, which is a contradiction.

Definition 3.10. A subset A of a topological space (X, τ) with an operation γ on τ is called τ - α^{γ} -open (resp. α^{γ} - γ -open) if int(A) = α^{γ} int(A) (resp. τ_{γ} -int(A) $= \alpha^{\gamma} int(A)$).

Definition 3.11. A subset A of a topological space (X, τ) with an operation γ on τ is called an α^{γ} generalized closed set (α^{γ} -g closed, for short) if

 α^{γ} cl(A) \subseteq U whenever A \subseteq U and U is an α^{γ} open set in X.

The complement of an α^{γ} -g closed set is called an α^{γ} -g open set. Clearly, A is α^{γ} -g open if and only if F $\subseteq \alpha^{\gamma}$ int(A) whenever $F \subseteq A$ and F is α^{γ} -closed in X.

Theorem 3.12. Every α^{γ} -closed set is α^{γ} -g closed. Proof. A set $A \subseteq X$ is α^{γ} -closed if and only if $\alpha^{\gamma} cl(A) = A$. Thus $\alpha^{\gamma} cl(A) \subseteq U$ for every $U \in$

 $\alpha^{\gamma}O(X)$ containing A. Theorem 3.13. A subset A of topological space (X, τ) with an operation γ on τ , is α^{γ} -g closed if and only if $\alpha^{\gamma} cl(\{x\}) \cap A \neq \emptyset$, holds for every $x \in$ α^{γ} cl(A).

Proof. Let A be an α^{γ} -g closed set in X and suppose if possible there exists an $x \in \alpha^{\gamma} cl(A)$ such that $\alpha^{\gamma} cl(\{x\}) \cap A \neq \varphi$. Therefore $A \subseteq X \setminus \alpha^{\gamma} cl(\{x\})$,

and so $\alpha^{\gamma} cl(A) \subseteq X \setminus \alpha^{\gamma} cl(\{x\})$. Hence $x \in \alpha^{\gamma} cl(A)$, which is a contradiction.

Conversely, suppose that the condition of the therem holds and let U be any α^{γ} -open set such that $A \subseteq U$ and let $x \in \alpha^{\gamma} cl(A)$. By assumption, there exists a $z \in \alpha^{\gamma} cl(\{x\})$ and $z \in A \subseteq U$. Thus by the Theorem 3.9,

 $U \cap \{x\} \neq \phi$. Hence $x \in U$, which implies $\alpha^{\gamma} cl(A) \subseteq U$.

Theorem 3.14. Let A be an α^{γ} -g closed set in a topological space (X, τ) with operation γ on τ . Then α^{γ} -cl(A)\A does not contain any nonempty α^{γ} -closed set.

Proof. If possible, let F be an α^{γ} -closed set such that $F \subseteq \alpha^{\gamma} \operatorname{cl}(A) \setminus A$ and $F \neq \varphi$. Then $F \subseteq X \setminus A$ which implies $A \subseteq X \setminus F$. Since A is α^{γ} -g closed and $X \setminus F$ is α^{γ} -open, therefore $\alpha^{\gamma} \operatorname{cl}(A) \subseteq X \setminus F$, that is $F \subseteq X \setminus \alpha^{\gamma} \operatorname{cl}(A)$.

Hence $F \subseteq \alpha^{\gamma} cl(A) \cap (X \setminus \alpha^{\gamma} cl(A)) = \varphi$. This shows that, $F = \varphi$ which is a contradiction.

Theorem 3.15. In a topological space (X, τ) with an operation γ on τ , either $\{x\}$ is α^{γ} -closed or $X\setminus\{x\}$ is α^{γ} -g closed.

Proof. Suppose that $\{x\}$ is not α^{γ} -closed, then $X\setminus\{x\}$ is not α^{γ} -open. Then X is the only α^{γ} -open set such that $X\setminus\{x\}\subseteq X$. Hence $X\setminus\{x\}$ is α^{γ} -g closed set.

α^{γ} -Functions

Definition 4.1. Let (X, τ) and (Y, σ) be two topological spaces and γ an operation on τ . Then a function $f: (X, \tau) \to (Y, \sigma)$ is said to be α^{γ} -continuous at a point $x \in X$ if for each open set V of Y containing f(x), there exists an α^{γ} -open set U of X containing X such that X such that X the X containing X such that X the X containing X such that X the X the X containing X such that X the X containing X that X containing X the X

If f is α^{γ} -continuous at each point x of X, then f is called α^{γ} -continuous on X.

Theorem 4.2. Let (X, τ) be a topological space with an operation γ on τ . For a function $f: (X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- (1) f is α^{γ} -continuous.
- (2) $f^{-1}(V)$ is α^{γ} -open set in X, for each open set V in Y.
- (3) $f^{-1}(V)$ is α^{γ} -closed set in X, for each closed set V in Y.
 - (4) $f(\alpha^{\gamma}cl(U)) \subseteq cl(f(U))$, for each subset U of X.
 - (5) $\alpha^{\gamma} \operatorname{cl}(f^{-1}(V)) \subseteq f^{-1}(\operatorname{cl}(V))$, for each subset V of Y.
 - (6) $f^{-1}(int(V)) \subseteq \alpha^{\gamma}int(f^{-1}(V))$, for each subset V of Y.
 - (7) $\operatorname{int}(f(U)) \subseteq f(\alpha^{\gamma} \operatorname{int}(U))$, for each subset U of X. Proof. (1) \Rightarrow (2) \Rightarrow (3). Obvious.
- (3) ⇒ (4). Let U be any subset of X. Then f(U) ⊆ cl(f(U)) and cl(f(U)) is closed set in Y. Hence U ⊆ $f^{-1}(cl(f(U)))$. By (3), we have $f^{-1}(cl(f(U)))$ is α^{γ} -closed set in X. Therefore, $\alpha^{\gamma}cl(U) \subseteq f^{-1}(cl(f(U)))$.

Hence $f(\alpha^{\gamma}cl(U)) \subseteq cl(f(U))$.

- $(4) \Rightarrow (5)$. Let V be any subset of Y. Then $f^1(V)$ is a subset of X. By (4), we have $f(\alpha^{\gamma} \operatorname{cl}(f^1(V))) \subseteq \operatorname{cl}(f(f^1(V))) = \operatorname{cl}(V)$. Hence $\alpha^{\gamma} \operatorname{cl}(f^1(V)) \subseteq f^1(\operatorname{cl}(V))$.
- (5) \Leftrightarrow (6). Let V be any subset of Y. Then apply (5) to Y\V we obtain
- $\alpha^{\gamma} \operatorname{cl}(f^{\text{-}1}(Y \setminus V)) \subseteq f^{\text{-}1}(\operatorname{cl}(Y \setminus V)) \Leftrightarrow \alpha^{\gamma} \operatorname{cl}(X \setminus f^{\text{-}1}(V)) \subseteq f^{\text{-}1}(Y \setminus V)) \Leftrightarrow X \setminus \alpha^{\gamma} \operatorname{int}(f^{\text{-}1}(V)) \subseteq X \setminus f^{\text{-}1}(\operatorname{int}(V)) \Leftrightarrow f^{\text{-}1}(\operatorname{cl}(Y \setminus V)) \Leftrightarrow X \setminus f^{\text{-}1}(\operatorname{cl}(Y \setminus V)) \Leftrightarrow f^{\text{-}1}(\operatorname{cl}(Y \setminus V))$

- $^{1}(\text{int}(V)) \subseteq \alpha^{\gamma} \text{int}(f^{-1}(V))$. Therefore, $f^{-1}(\text{int}(V)) \subseteq \alpha^{\gamma} \text{int}(f^{-1}(V))$.
- $(6) \Rightarrow (7)$. Let U be any subset of X. Then f(U) is a subset of Y. By (6), we have $f^1(\text{int}(f(U))) \subseteq \alpha^{\gamma}$ int $(f^1(f(U))) = \alpha^{\gamma}$ int (U). Therefore, $\text{int}(f(U)) \subseteq f(\alpha^{\gamma}$ int (U).
- $(7) \Rightarrow (1)$. Let $x \in X$ and let V be any open set of Y containing f(x). Then $x \in f^1(V)$ and $f^1(V)$ is a subset of X. By (7), we have $\operatorname{int}(f(f^1(V))) \subseteq f(\alpha^{\gamma}\operatorname{int}(f^1(V)))$. Then $\operatorname{int}(V) \subseteq f(\alpha^{\gamma}\operatorname{int}(f^1(V)))$. Since V is an open set. Then $V \subseteq f(\alpha^{\gamma}\operatorname{int}(f^1(V)))$ implies that $f^1(V) \subseteq \alpha^{\gamma}\operatorname{int}(f^1(V))$. Therefore, $f^1(V)$ is α^{γ} -open set in X which contains X and clearly $f(f^1(V)) \subseteq V$. Hence f is α^{γ} -continuous.

Theorem 4.3. For a function $f: (X, \tau) \to (Y, \sigma)$ with an operation γ on τ , the following statements are equivalent:

- (1) $f^{-1}(V)$ is α^{γ} -open set in X, for each open set V in Y.
- (2) $\alpha^{\gamma} \operatorname{Fr}(f^{-1}(V)) \subseteq f^{-1}(\operatorname{Fr}(V))$, for each subset V in Y. Proof. (1) \Rightarrow (2). Let V be any subset of Y. Then, we have $f^{-1}(\operatorname{Fr}(V)) = f^{-1}(\operatorname{cl}(V) \setminus \operatorname{int}(V)) = f^{-1}(\operatorname{cl}(V)) \setminus f^{-1}(\operatorname{int}(V)) = \alpha^{\gamma} \operatorname{cl}(f^{-1}(V)) \setminus f^{-1}(\operatorname{int}(V)) \supseteq \alpha^{\gamma} \operatorname{cl}(f^{-1}(V)) \setminus \alpha^{\gamma} \operatorname{int}(f^{-1}(V)) = \alpha^{\gamma} \operatorname{Fr}(f^{-1}(V))$, and hence $f^{-1}(\operatorname{Fr}(V)) \supseteq \alpha^{\gamma} \operatorname{Fr}(f^{-1}(V))$.
- (2) \Rightarrow (1). Let V be open in Y and F = Y\V. Then by (2), we obtain $\alpha^{\gamma} Fr(f^{-1}(F)) \subseteq f^{-1}(Fr(F)) \subseteq f^{-1}(cl(F))$ = $f^{-1}(F)$ and hence $\alpha^{\gamma} cl(f^{-1}(F)) = \alpha^{\gamma} int(f^{-1}(F)) \cup \alpha^{\gamma} Fr(f^{-1}(F)) \subseteq f^{-1}(F)$. Thus $f^{-1}(F)$ is α^{γ} -closed and hence $f^{-1}(V)$ is α^{γ} -open in X.

Theorem 4.4. let (X, τ) be a topological space with an operation γ on τ and let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then

 $X \setminus \alpha^{\gamma} C(f) = \bigcup \{\alpha^{\gamma} Fr(f^{-1}(V)) : V \in \sigma, f(x) \in V, x \in X\},$

where $\alpha^{\gamma}C(f)$ denotes the set of points at which f is α^{γ} -continuous.

Proof. Let $x \in X \setminus \alpha^{\gamma}C(f)$. Then there exists $V \in \sigma$ containing f(x) such that $f(U) \nsubseteq V$, for every α^{γ} -open set U containing x. Hence $U \cap [X \setminus f^{-1}(V)] \neq \phi$ for every α^{γ} -open set U containing x. Therefore, by

Theorem 3.9, $x \in \alpha^{\gamma} \operatorname{cl}(X \setminus f^{-1}(V))$. Then $x \in f^{-1}(V) \cap \alpha^{\gamma} \operatorname{cl}(X \setminus f^{-1}(V)) \subseteq \alpha^{\gamma} \operatorname{Fr}(f^{-1}(V))$. So, $X \setminus \alpha^{\gamma} C(f) \subseteq \bigcup \{\alpha^{\gamma} \operatorname{Fr}(f^{-1}(V)) : V \in \sigma, f(x) \in V, x \in X\}$

Conversely, let $x \notin X \setminus \alpha^{\gamma}C(f)$. Then for each $V \in \sigma$ containing f(x), $f^{-1}(V)$ is an α^{γ} -open set containing x. Thus $x \in \alpha^{\gamma}int(f^{-1}(V))$ and hence $x \notin \alpha^{\gamma}Fr(f^{-1}(V))$, for every $V \in \sigma$ containing f(x). Therefore,

 $X \setminus \alpha^{\gamma} C(f) \supseteq \bigcup \{\alpha^{\gamma} Fr(f^{-1}(V)) : V \in \sigma, f(x) \in V, x \in X\}.$

Remark 4.5. Every γ -continuous function is α^{γ} -continuous, but the converse is not true.

Example 4.6. Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Define an operation γ on τ by $\gamma(A) = A$ if $A = \{a\}$ and $\gamma(A) = A \cup \{b\}$ if $A \neq \{a\}$

728 Ibrahim

{a}. Define a function f: $(X, \tau) \to (X, \sigma)$ as follows: f(x) = a if x = a, f(x) = a if x = b and f(x) = c if x = c.

Then f is α^{γ} -continuous but not γ -continuous at b, because $\{a, b\}$ is an open set in (X, σ) containing f(b) = a, there exist no α^{γ} -open set U in (X, τ) containing b such that $f(U) \subseteq \{a, b\}$.

Remark 4.7. Let γ and β be operations on the

topological spaces (X, τ) and (Y, σ) , respectively. If the functions $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \upsilon)$ are α^{γ} -continuous and continuous, respectively, then gof is α^{γ} -continuous.

Definition 4.8. Let (X, τ) be a topological space with an operation γ on τ . A function $f: (X, \tau) \to (Y, \sigma)$ is called τ - α^{γ} -continuous (resp. α^{γ} - γ -continuous) if for each open set V in Y, $f^{-1}(V)$ is τ - α^{γ} -open (resp. α^{γ} - γ -open) in X.

Theorem 4.9. Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping and γ an operation on τ . Then the following are equivalent:

- (1) f is γ -continuous.
- (2) f is α^{γ} -continuous and α^{γ} - γ -continuous.

Proof. (1) \Rightarrow (2). Let f be γ -continuous. Then f is α^{γ} -continuous. Now, let G be any open set in Y, then $f^1(G)$ is γ -open in X. Then τ_{γ} -int($f^1(G)$) = $f^1(G) = \alpha^{\gamma}$ int($f^1(G)$). Thus, $f^1(G)$ is α^{γ} - γ -open in X. Therefore f is α^{γ} - γ -continuous.

(2) \Rightarrow (1). Let f be α^{γ} -continuous and α^{γ} - γ -continuous. Then for any open set G in Y, f⁻¹(G) is both α^{γ} -open and α^{γ} - γ -open in X. So

 $f^{-1}(G) = \alpha^{\gamma} int(f^{-1}(G)) = \tau_{\gamma} - int(f^{-1}(G)).$

Thus $f^{-1}(G)$ is γ -open and hence f is γ -continuous.

Theorem 4.10. Let $f: (X, \tau) \to (Y, \sigma)$ be $\tau - \alpha^{\gamma}$ -continuous, where γ is an operation on τ . Then f is continuous if and only if f is α^{γ} -continuous.

Proof. Let $V \in \sigma$. Since f is continuous as well as τ - α^{γ} -continuous, $f^{-1}(V)$ is open as well as τ - α^{γ} -open in X and hence $f^{-1}(V) = \operatorname{int}(f^{-1}(V)) = \alpha^{\gamma}\operatorname{int}(f^{-1}(V)) \in \alpha^{\gamma}\operatorname{O}(X)$. Therefore, f is α^{γ} -continuous.

Conversely, let $V \in \sigma$. Then $f^{-1}(V)$ is α^{γ} -open and τ - α^{γ} -open. So $f^{-1}(V) = \alpha^{\gamma} \mathrm{int}(f^{-1}(V)) = \mathrm{int}(f^{-1}(V))$. Hence $f^{-1}(V)$ is open in X. Therefore f is continuous.

Definition 4.11. A function f: $(X, \tau) \rightarrow (Y, \sigma)$, where γ and β are operations on τ and σ , respectively, is called α^{β} -g-closed if for every α^{γ} -closed set F in X, f(F) is α^{β} -g closed in Y.

Definition 4.12. Let (X, τ) and (Y, σ) be two topological spaces and γ , β operations on τ , σ , respectively. A mapping $f: (X, \tau) \to (Y, \sigma)$ is called $\alpha^{(\gamma,\beta)}$ -irresolute at x if and only if for each α^{β} -open set

V in Y containing f(x), there exists an α^{γ} -open set U

in X containing x such that $f(U) \subseteq V$.

If f is $\alpha^{(\gamma,\beta)}$ -irresolute at each point $x \in X$, then f is called $\alpha^{(\gamma,\beta)}$ -irresolute on X.

Theorem 4.13. let (X, τ) , (Y, σ) be topological spaces and γ , β operations on τ , σ , respectively. If $f: (X, \tau) \to (Y, \sigma)$ is $\alpha^{(\gamma,\beta)}$ -irresolute and α^{β} -g-closed, and A is α^{γ} -g closed in X, then f(A) is α^{β} -g closed.

Proof. Suppose A is an α^{γ} -g closed set in X and that U is an α^{β} -open set in Y such that $f(A) \subseteq U$. Then $A \subseteq f^{-1}(U)$. Since f is $\alpha^{(\gamma,\beta)}$ -irresolute, $f^{-1}(U)$ is α^{γ} -open set in X. Again A is an α^{γ} -g closed set, therefore $\alpha^{\gamma}cl(A) \subseteq f^{-1}(U)$ and hence $f(\alpha^{\gamma}cl(A)) \subseteq U$. Since f is an α^{β} -g-closed map, $f(\alpha^{\gamma}cl(A))$ is an α^{β} -g closed set in Y. Therefore, $\alpha^{\beta}cl(f(\alpha^{\gamma}cl(A)) \subseteq U$, which implies $\alpha^{\beta}cl(f(A)) \subseteq U$.

We now state the following theorem without proof.

Theorem 4.14. Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping and γ , β operations on τ , σ , respectively. Then the following are equivalent:

- (1) f is $\alpha^{(\gamma,\beta)}$ -irresolute.
- (2) The inverse image of each α^{β} -open set in Y is an α^{γ} -open set in X.
- (3) The inverse image of each α^{β} -closed set in Y is an α^{γ} -closed set in X.
 - (4) $\alpha^{\gamma} \operatorname{cl}(f^{-1}(V)) \subseteq f^{-1}(\alpha^{\beta} \operatorname{cl}(V))$, for all $V \subseteq Y$.
 - (5) $f(\alpha^{\gamma}cl(U)) \subseteq \alpha^{\beta}cl(f(U))$, for all $U \subseteq X$.
 - (6) $\alpha^{\gamma} Fr(f^{-1}(V)) \subseteq f^{-1}(\alpha^{\beta} Fr(V))$, for all $V \subseteq Y$.
 - (7) $f(\alpha^{\gamma}D(U)) \subseteq \alpha^{\beta}cl(f(U))$, for all $U \subseteq X$.
 - (8) $f^{-1}(\alpha^{\beta}int(V)) \subseteq \alpha^{\gamma}int(f^{-1}(V))$, for all $V \subseteq Y$.

α^{γ} -Separation Axioms

Definition 5.1. A topological space (X, τ) with an operation γ on τ is said to be

- (1) α^{γ} -T₀ if for each pair of distinct points x, y in X, there exists an α^{γ} -open set U such that either x \in U and y \notin U or x \notin U and y \in U.
- (2) α^{γ} -T₁ if for each pair of distinct points x, y in X, there exist two α^{γ} -open sets U and V such that x \in U but y \notin U and y \in V but x \notin V.
- (3) α^{γ} -T₂ if for each distinct points x, y in X, there exist two disjoint α^{γ} -open sets U and V containing x and y respectively.
 - (4) α^{γ} -T_{1/2} if every α^{γ} -g closed set is α^{γ} -closed.

Theorem 5.2. A topological space (X, τ) with an operation γ on τ is α^{γ} - T_0 if and only if for each pair of distinct points x, y of X, α^{γ} cl $(\{x\}) \neq \alpha^{\gamma}$ cl $(\{y\})$.

Theorem 5.3. The following statements are equivalent for a topological space (X, τ) with an operation γ on τ :

(1) (X, τ) is α^{γ} -T_{1/2}.

(2) Each singleton $\{x\}$ of X is either α^{γ} -closed or α^{γ} -open.

Theorem 5.4. A topological space (X, τ) with an operation γ on τ is α^{γ} - T_1 if and only if the singletons are α^{γ} -closed sets.

Theorem 5.5. The following statements are equivalent for a topological space (X, τ) with an operation γ on τ :

- (1) X is α^{γ} -T₂.
- (2) Let $x \in X$. For each $y \neq x$, there exists an α^{γ} open set U containing x such that $y \notin \alpha^{\gamma} cl(U)$.
- (3) For each $x \in X$, $\bigcap \{\alpha^{\gamma} cl(U): U \in \alpha^{\gamma} O(X) \text{ and } x \in U\} = \{x\}.$

Corollary 5.6. If (X, τ) is a topological space and γ be an operation on τ , then the following statements are hold:

- (1) Every α^{γ} -T₁ space is α^{γ} -T_{1/2}.
- (2) Every α^{γ} -T_{1/2} space is α^{γ} -T₀.

Proof. (1) By deinition and Theorem 5.4 we prove it.

- (2) Let x and y be any two distinct points of X. By Theorem 5.3, the singleton set $\{x\}$ is α^{γ} -closed or α^{γ} -open.
- (a) If $\{x\}$ is α^{γ} -closed, then $X\setminus \{x\}$ is α^{γ} -open. So $y \in X\setminus \{x\}$ and $x \notin X\setminus \{x\}$. Therefore, we have X is α^{γ} - T_0 .
- (b) If $\{x\}$ is α^{γ} -open. Then $x \in \{x\}$ and $y \notin \{x\}$. Therefore, we have X is α^{γ} - T_0 .

Definition 5.7. A subset A of a topological space X is called an α^{γ} Difference set (in short α^{γ} D-set) if there are U, V $\in \alpha^{\gamma}$ O(X) such that U \neq X and A = U\V.

It is true that every α^{γ} -open set U different from X is an $\alpha^{\gamma}D$ -set if A=U and $V=\phi$. So, we can observe the following.

Remark 5.8. Every proper α^{γ} -open set is a $\alpha^{\gamma}D$ -set. Now we define another set of separation axioms called α^{γ} -D_i, i=0,1,2 by using the $\alpha^{\gamma}D$ -sets.

Definition 5.9. A topological space (X, τ) with an operation γ on τ is said to be

- (1) α^{γ} -D₀ if for any pair of distinct points x and y of X there exists an α^{γ} D-set of X containing x but not y or an α^{γ} D-set of X containing y but not x.
- (2) α^{γ} -D₁ if for any pair of distinct points x and y of X there exists an α^{γ} D-set of X containing x but not y and an α^{γ} D-set of X containing y but not x.
- (3) α^{γ} -D₂ if for any pair of distinct points x and y of X there exist disjoint α^{γ} D-set G and E of X containing x and y, respectively.

Remark 5.10. For a topological space (X, τ) with an operation γ on τ , the following properties hold:

- (1) If (X, τ) is α^{γ} - T_i , then it is α^{γ} - T_{i-1} , for i = 1, 2.
- (2) If (X, τ) is α^{γ} -T_i, then it is α^{γ} -D_i, for i = 0, 1, 2.
- (3) If (X, τ) is α^{γ} -D_i, then it is α^{γ} -D_{i-1}, for i = 1, 2.

Theorem 5.11. A space X is α^{γ} -D₁ if and only if it is α^{γ} -D₂.

Proof. Necessity. Let $x; y \in X$, $x \neq y$. Then there exist $\alpha^{\gamma}D$ -sets G_1 , G_2 in X such that $x \in G_1$, $y \notin G_1$ and $y \in G_2$, $x \notin G_2$. Let $G_1 = U_1 \setminus U_2$ and $G_2 = U_3 \setminus U_4$, where U_1 , U_2 , U_3 and U_4 are α^{γ} -open sets in X. From $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately.

- (i) $x \notin U_3$. By $y \notin G_1$ we have two subcases:
- (a) $y \notin U_1$. From $x \in U_1 \backslash U_2$, it follows that $x \in U_1 \backslash (U_2 \cup U_3)$, and by $y \in U_3 \backslash U_4$ we have $y \in U_3 \backslash (U_1 \cup U_4)$. Therefore $(U_1 \backslash (U_2 \cup U_3)) \cap (U_3 \backslash (U_1 \cup U_4)) = \varphi$.
- (b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2$, and $y \in U_2$. Therefore $(U_1 \setminus U_2) \cap U_2 = \varphi$.
- (ii) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$ and $x \in U_4$. Hence $(U_3 \setminus U_4) \cap U_4 = \varphi$. Therefore X is α^{γ} -D₂. Sufficiency. Follows from Remark 5.10 (3).

Theorem 5.12. A space is $\alpha^{\gamma}\text{-}D_0$ if and only if it is $\alpha^{\gamma}\text{-}T_0.$

Proof. Suppose that X is α^{γ} -D₀. Then for each distinct pair x, y \in X, at least one of x, y, say x, belongs to an α^{γ} D-set G but y \notin G. Let G = U₁\U₂ where U₁ \neq X and U₁, U₂ \in α^{γ} O(X). Then x \in U₁, and for y \notin G we have two cases: (a) y \notin U₁, (b) y \in U₁ and y \in U₂.

In case (a), $x \in U_1$ but $y \notin U_1$.

In case (b), $y \in U_2$ but $x \notin U_2$.

Thus in both the cases, we obtain that X is α^{γ} -T₀. Conversely, if X is α^{γ} -T₀, by Remark 5.10 (2), X is α^{γ} -D₀.

Corollary 5.13. If (X, τ) is α^{γ} -D₁, then it is α^{γ} -T₀. Proof. Follows from Remark 5.10 (3) and Theorem 5.12.

Definition 5.14. A point $x \in X$ which has only X as the α^{γ} -neighborhood is called an α^{γ} -neat point.

Theorem 5.15. For an α^{γ} -T₀ topological space (X, τ) the following are equivalent:

- (1) (X, τ) is α^{γ} -D₁.
- (2) (X, τ) has no α^{γ} -neat point.

Proof. (1) \Rightarrow (2). Since (X, τ) is α^{γ} -D₁, then each point x of X is contained in an α^{γ} D-set A = U\V and thus in U. By definition U \neq X. This implies that x is not an α^{γ} -neat point.

(2) \Rightarrow (1). If X is α^{γ} -T₀, then for each distinct pair of points x, y \in X, at least one of them, x (say) has an α^{γ} -neighborhood U containing x and not y. Thus U which is different from X is a α^{γ} D-set. If X has no α^{γ} -neat point, then y is not an α^{γ} -neat point. This means that there exists an α^{γ} -neighbourhood V of y such that V \neq X. Thus y \in V\U but not x and V\U is an α^{γ} D-set. Hence X is α^{γ} -D₁.

Corollary 5.16. An α^{γ} -T₀ space X is not α^{γ} -D₁ if and only if there is a unique α^{γ} -neat point in X.

Proof. We only prove the uniqueness of the α^{γ} -neat point. If x and y are two α^{γ} -neat points in X, then since X is α^{γ} -T₀, at least one of x and y, say x, has an α^{γ} -neighborhood U containing x but not y.

730 Ibrahim

Hence $U \neq X$. Therefore x is not an α^{γ} -neat point which is a contradiction.

Definition 5.17. A topological space (X, τ) with an operation γ on τ , is said to be α^{γ} -symmetric if for x and y in X, $x \in \alpha^{\gamma} cl(\{y\})$ implies $y \in \alpha^{\gamma} cl(\{x\})$.

Theorem 5.18. If (X, τ) is a topological space with an operation γ on τ , then the following are equivalent:

- (1) (X, τ) is α^{γ} -symmetric space.
- (2) Every singleton is α^{γ} -g closed, for each $x \in X$. Proof. (1) \Rightarrow (2). Assume that $\{x\} \subseteq U \in \alpha^{\gamma}O(X)$, but $\alpha^{\gamma}cl(\{x\}) \nsubseteq U$. Then $\alpha^{\gamma}cl(\{x\}) \cap X \setminus U \neq \varphi$. Now, we take $y \in \alpha^{\gamma}cl(\{x\}) \cap X \setminus U$, then by hypothesis $x \in \alpha^{\gamma}cl(\{y\}) \subseteq X \setminus U$ and $x \notin U$, which is a contradiction. Therefore $\{x\}$ is α^{γ} -g closed, for each $x \in X$.
- (2) \Rightarrow (1). Assume that $x \in \alpha^{\gamma} cl(\{y\})$, but $y \notin \alpha^{\gamma} cl(\{x\})$. Then $\{y\} \subseteq X \setminus \alpha^{\gamma} cl(\{x\})$ and hence $\alpha^{\gamma} cl(\{y\}) \in X \setminus \alpha^{\gamma} cl(\{x\})$. Therefore $x \in X \setminus \alpha^{\gamma} cl(\{x\})$, which is a contradiction and hence $y \in \alpha^{\gamma} cl(\{x\})$.

Corollary 5.19. If a topological space (X, τ) with an operation γ on τ is an α^{γ} - T_1 space, then it is α^{γ} -symmetric.

Proof. In an α^{γ} -T₁ space, every singleton is α^{γ} -closed (Theorem 5.4) and therefore is α^{γ} -g closed (Theorem 3.12). Then by Theorem 5.18, (X, τ) is α^{γ} -symmetric.

Corollary 5.20. For a topological space (X, τ) with an operation γ on τ , the following statements are equivalent:

- (1) (X, τ) is α^{γ} -symmetric and α^{γ} -T₀.
- (2) (X, τ) is α^{γ} - T_1 .

Proof. By Remark 5.10 and Corollary 5.19, it suffices to prove only $(1) \Rightarrow (2)$.

Let $x \neq y$ and by $\alpha^{\gamma}-T_0$, we may assume that $x \in U \subseteq X \setminus \{y\}$ for some $U \in \alpha^{\gamma}O(X)$. Then $x \notin \alpha^{\gamma}cl(\{y\})$ and hence $y \notin \alpha^{\gamma}cl(\{x\})$. There exists an α^{γ} -open set V such that $y \in V \subseteq X \setminus \{x\}$ and thus (X, τ) is an $\alpha^{\gamma}-T_1$ space.

Corollary 5.21. For an α^{γ} -symmetric topological space (X, τ) the following are equivalent:

- (1) (X, τ) is α^{γ} -T₀.
- (2) (X, τ) is α^{γ} -D₁.
- (3) (X, τ) is α^{γ} - T_1 .

Proof. (1) \Rightarrow (3). Corollary 5.20.

 $(3) \Rightarrow (2) \Rightarrow (1)$. Remark 5.10 (2) and Corollary 5.13

Remark 5.22. If (X, τ) is an α^{γ} -symmetric space with an operation γ on τ , then the following statements are equivalent:

- (1) (X, τ) is an α^{γ} - T_0 space.
- (2) (X, τ) is an α^{γ} -T_{1/2} space.
- (3) (X, τ) is an α^{γ} -T₁ space.

Definition 5.23. Let A be a subset of a topological space (X, τ) and γ an operation on τ . The α^{γ} -kernel of A, denoted by $\alpha^{\gamma} \ker(A)$ is defined to be the set $\alpha^{\gamma} \ker(A) = \bigcap \{U \in \alpha^{\gamma} O(X) : A \subseteq U\}$.

Theorem 5.24. Let (X, τ) be a topological space with an operation γ on τ and $x \in X$. Then $y \in \alpha^{\gamma} \ker(\{x\})$ if and only if $x \in \alpha^{\gamma} \operatorname{cl}(\{y\})$.

Proof. Suppose that $y \notin \alpha^{\gamma} \ker(\{x\})$. Then there exists an α^{γ} -open set V containing x such that $y \notin V$. Therefore, we have $x \notin \alpha^{\gamma} \operatorname{cl}(\{y\})$. The proof of the converse case can be done similarly.

Theorem 5.25. Let (X, τ) be a topological space with an operation γ on τ and A be a subset of X. Then, $\alpha^{\gamma} \ker(A) = \{x \in X: \alpha^{\gamma} \operatorname{cl}(\{x\}) \cap A \neq \varphi\}.$

Proof. Let $x \in \alpha^{\gamma} \ker(A)$ and suppose $\alpha^{\gamma} \operatorname{cl}(\{x\}) \cap A \neq \varphi$. Hence $x \notin X \setminus \alpha^{\gamma} \operatorname{cl}(\{x\})$ which is an α^{γ} -open set containing A. This is impossible, since $x \in \alpha^{\gamma} \ker(A)$. Consequently, $\alpha^{\gamma} \operatorname{cl}(\{x\}) \cap A \neq \varphi$. Next, let $x \in X$ such that $\alpha^{\gamma} \operatorname{cl}(\{x\}) \cap A \neq \varphi$ and suppose that $x \notin \alpha^{\gamma} \ker(A)$. Then, there exists an α^{γ} -open set V containing A and $x \notin V$. Let $y \in \alpha^{\gamma} \operatorname{cl}(\{x\}) \cap A$. Hence, V is an α^{γ} -neighborhood of y which does not contain x. By this contradiction $x \in \alpha^{\gamma} \ker(A)$ and the claim.

Theorem 5.26. If a singleton $\{x\}$ is an α' D-set of (X, τ) , then α' ker $(\{x\}) \neq X$.

Proof. Since $\{x\}$ is an $\alpha^{\gamma}D$ -set of (X, τ) , then there exist two subsets $U_1 \in \alpha^{\gamma}O(X)$ and $U_2 \in \alpha^{\gamma}O(X)$ such that $\{x\} = U_1 \setminus U_2$, $\{x\} \subseteq U_1$ and $U_1 \neq X$. Thus, we have that $\alpha^{\gamma}\ker(\{x\}) \subseteq U_1 \neq X$ and so $\alpha^{\gamma}\ker(\{x\}) \neq X$.

Theorem 5.27. If f: $(X, \tau) \to (Y, \sigma)$ is an $\alpha^{(\gamma,\beta)}$ -irresolute surjective function and A is an $\alpha^{\beta}D$ -set in Y, then the inverse image of A is an $\alpha^{\gamma}D$ -set in X.

Proof. Let A be an $\alpha^{\beta}D$ -set in Y. Then there are α^{β} -open sets O_1 and O_2 in Y such that $A = O_1 \setminus O_2$ and $O_1 \neq Y$. By the $\alpha^{(\gamma,\beta)}$ -irresolute of f, $f^1(O_1)$ and $f^1(O_2)$ are α^{γ} -open in X. Since $O_1 \neq Y$ and f is surjective, we have $f^1(O_1) \neq X$. Hence, $f^1(A) = \{f^1(O_1) \setminus f^1(O_2) \text{ is an } \alpha^{\gamma}D$ -set.

Theorem 5.28. If (Y, σ) is α^{β} -D₁ and f: $(X, \tau) \rightarrow (Y, \sigma)$ is $\alpha^{(\gamma,\beta)}$ -irresolute bijective, then (X, τ) is α^{γ} -D₁.

Proof. Suppose that Y is an α^{β} -D₁ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is α^{β} -D₁, there exist α^{β} D-set O_x and O_y of Y containing f(x) and f(y) respectively, such that f(x) \notin O_y and f(y) \notin O_x. By Theorem 5.27, f⁻¹(O_x) and f⁻¹(O_y) are α^{γ} D-set in X containing x and y, respectively, such that $x \notin f^{-1}(O_y)$ and $y \notin f^{-1}(O_x)$. This implies that X is an α^{γ} -D₁space.

Theorem 5.29. A topological space (X, τ) is α^{γ} -D₁ if for each pair of distinct points $x, y \in X$, there exists an $\alpha^{(\gamma,\beta)}$ -irresolute surjective function $f: (X, \tau) \to (Y, \sigma)$, where Y is an α^{β} -D₁ space such that f(x) and f(y) are distinct.

Proof. Let x and y be any pair of distinct points in X. By hypothesis, there exists an $\alpha^{(\gamma,\beta)}$ -irresolute, surjective function f of a space X onto an α^{β} -D₁ space Y such that $f(x) \neq f(y)$. It follows from

Theorem 5.11 that α^{β} -D₁ = α^{β} -D₂. Hence, there exist disjoint α^{β} D-set O_x and O_y in Y such that $f(x) \in$ O_x and $f(y) \in$ O_y. Since f is $\alpha^{(\gamma,\beta)}$ -irresolute and surjective, by Theorem 5.27, $f^{-1}(O_x)$ and $f^{-1}(O_y)$ are disjoint α^{γ} D-sets in X containing x and y, respectively. So, the space (X, τ) is α^{γ} -D₁.

Functions With α^{γ} -Closed Graphs

In this section, functions with α^{γ} -closed graphs are introduced and studied, and some properties and characterizations of α^{γ} -closed graphs are explained.

Definition 6.1. Let $f: (X, \tau) \to (Y, \sigma)$ be any function, the graph of the function f is denoted by G(f) and is said to be α^{γ} -closed if for each $(x, y) \notin G(f)$, there exist $U \in \alpha^{\gamma}O(X, x)$ and an open set V of Y containing y such that $(U \times V) \cap G(f) = \varphi$.

A useful characterisation of functions with α^{γ} -closed graph is given below.

Lemma 6.2. The function $f: (X, \tau) \to (Y, \sigma)$ has an α^{γ} -closed graph if and only if for each $x \in X$ and $y \in Y$ such that $y \neq f(x)$, there exist an α^{γ} -open set U and an open set V containing x and y respectively, such that $f(U) \cap V = \varphi$.

Proof. It follows readily from the above definition.

Theorem 6.3. Suppose that a function $f: (X, \tau) \to (Y, \sigma)$ has an α^{γ} -closed graph, then the following are true:

- (1) If f is surjective, then Y is T_1 .
- (2) If f is injective, then X is α^{γ} -T₁.
- (3) If a function f is α^{γ} -continuous and injective, then X is α^{γ} -T₂.
- (4) For each $x \in X$, $\{f(x)\} = \bigcap \{f(cl(f(U)): U \in \alpha^{\gamma}O(X, x)\}.$

Proof. (1) Let y_1 and y_2 be two distinct points of Y. Since f is surjective, there exists x in X such that $f(x) = y_2$, then $(x, y_1) \notin G(f)$. By Lemma 6.2, there exist α^{γ} -open set U and open set V containing x and y_1 respectively, such that $f(U) \cap V = \varphi$. We obtain an open set V containing y_1 which does not contain y_2 . Similarly we can obtain an open set containing y_2 but not y_1 . Hence, Y is T_1 .

(2) Let x_1 and x_2 be two distinct points of X. The injectivity of f implies $f(x_1) \neq f(x_2)$ whence one obtains that $(x_1, f(x_2)) \in (X \times Y) \setminus G(f)$. The α^{γ} -closedness of G(f), by Lemma 6.2, ensures the existence of $U \in \alpha^{\gamma}O(X, x_1)$, $V \in O(Y, f(x_2))$ such that $f(U) \cap V = \varphi$. Therefore, $f(x_2) \notin f(U)$ and a fortior $x_2 \notin U$. Again

 $(x_2, f(x_1)) \in (X \times Y) \setminus G(f)$ and α^{γ} -closedness of G(f), as before gives $A \in \alpha^{\gamma}O(X, x_2)$, $B \in O(Y, f(x_1))$ with $f(A) \cap B = \varphi$, which guarantees that $f(x_1) \notin f(A)$ and so $x_1 \notin A$. Therefore, we obtain sets U and $A \in \alpha^{\gamma}O(X)$ such that $x_1 \in U$ but $x_2 \notin U$ while $x_2 \in A$ but $x_1 \notin A$. Thus X is $\alpha^{\gamma}-T_1$.

- (3) Let x_1 and x_2 be any distinct points of X. Then $f(x_1) \neq f(x_2)$, so $(x_1, f(x_2)) \in (X \times Y) \setminus G(f)$. Since the graph G(f) is α^{γ} -closed, there exist an α^{γ} -open set U containing x_1 and open set V containing $f(x_2)$ such that $f(U) \cap V = \varphi$. Since f is α^{γ} -continuous, $f^{-1}(V)$ is an α^{γ} -open set containing x_2 such that $U \cap f^{-1}(V) = \varphi$. Hence X is α^{γ} - T_2 .
- (4) Suppose that $y \neq f(x)$ and $y \in \{cl(f(U)): U \in \alpha^{\gamma}O(X, x)\}$. Then $y \in cl(f(U))$ for each $U \in \alpha^{\gamma}O(X, x)$. This implies that for each open set V containing $y, V \cap f(U) \neq \phi$. Since $(x, y) \notin G(f)$ and G(f) is an α^{γ} -closed graph, this is a contradiction.

Theorem 6.4. If f: $(X, \tau) \to (Y, \sigma)$ is α^{γ} -continuous and Y is T_2 space, then G(f) is α^{γ} -closed graph.

Proof. Suppose that $(x, y) \notin G(f)$, then $f(x) \neq y$. By the fact that Y is T_2 , there exist open sets W and V such that $f(x) \in W$, $y \in V$ and $V \cap W = \varphi$. Since f is α^{γ} -continuous, there exists $U \in \alpha^{\gamma}O(X, x)$ such that $f(U) \subseteq W$. Hence, we have $f(U) \cap V = \varphi$. This means that G(f) is α^{γ} -closed.

Conclusion

In this paper, we introduce the notion of α^{γ} -open sets, α^{γ} -continuity and $\alpha^{(\gamma,\beta)}$ -irresoluteness in topological spaces. By utilizing these notions we introduce some weak separation axioms. Also we show that some basic properties α^{γ} -T_i (i = 0, ½, 1, 2), α^{γ} -D_i (i = 0, 1, 2) spaces and we offer a new notion of the graph of a function called an α^{γ} -closed graph and investigate some of their fundamental properties.

References

KASAHARA, S. Operation-compact spaces. **Mathematica Japonica**, v. 24, n. 1, p. 97-105, 1979.

NJASTAD, O. On some classes of nearly open sets. **Pacific Journal of Mathematics**, v. 15, n. 3, p. 961-970, 1965.

OGATA, H. Operation on topological spaces and associated topology. **Mathematica Japonica**, v. 36, n. 1, p. 175-184, 1991.

Received on January 11, 2012. Accepted on January 28, 2013.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.