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ABSTRACT. In this paper, a new kind of set called an a'-open set is introduced and investigated using
the y-operator due to Ogata. Such sets are used for studying new types of mappings, viz. a'-continuous,
aP-irresolute, etc. Finally, new separation axioms: o’-T, (i = 0, ¥, 1, 2), a’-D, (i = 0, 1, 2), and a new
notion of the graph of a function called an o'-closed graph.
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a'-aberto conjunto, a'-fungoes e alguns novos axiomas de separa¢ao

RESUMO. Neste artigo, um novo tipo de conjunto chamado o'-aberto conjunto ¢ introduzido e
investigado usando o y-operador devido a Ogata. Esses jogos sio usados para estudar novos tipos de
mapeamentos, viz. o'-continuo, aP_irresoluto, etc. Finalmente, novos axiomas de separagio: of-T; (i = 0,
¥, 1,2), oa'-D; (i = 0, 1, 2), e uma nova nogio do grifico de uma fun¢io chamado um a'-grifico fechado.

Palavras-chave: a'-aberto, (Xy—g fechado, o'-continuo, aw’ﬁ)—irresoluto, OLYD—conjunto, ay—gréﬁco fechado.

Introduction

In 1965 Njastad (1965) introduced a-open sets,
Kasahara (1979) defined an operation o on a
topological space to introduce a-closed graphs.
Following the same technique, Ogata (1991) defined
an operation on a topological space and introduced
y-open sets.

In this paper, we introduce the notion of o'-open
sets, o'-continuity and  o®P-irresoluteness  in
topological spaces. By utilizing these notions we
introduce some weak separation axioms. Also we show
that some basic properties o'-T; (i = 0, ¥4, 1, 2), a'-D; (i
= 0, 1, 2) spaces and we offer a new notion of the
graph of a function called an a'-closed graph and
investigate some of their fundamental properties.

Throughout the paper spaces X and Y mean
topological spaces. For a subset A of a space X, cl(A)
and int(A) represent the closure of A and the
interior of A, respectively.

Preliminaries

A subset A of X is called o-open if A C
int(cl(int(A))). The complement of o-open set is
called a-closed set. The family of all a-open sets of
X is denoted by aO(X). For a subset A of X, the
union of all a-open sets of X contained in A is called
the o-interior (in short aint(A)) of A, and the
intersection of all a-closed sets of X containing A is
called the a-closure (in short ocl(A)) of A. An
operation v (KASAHARA, 1979) on a topology T is a

mapping from 7 in to power set P(X) of X such that
V € (V) for each V € 1, where y(V) denotes the value
of at V. A subset A of X with an operation y on 7 is
called y-open (OGATA, 1991) if for each x € A,
there exists an open set U such that x € U and y(U)
€ A. Then, 1, denotes the set of all y-open set in X.
Clearly 1, € 1. Complements of y-open sets are
called y-closed. The y-closure (OGATA, 1991) of a
subset A of X with an operation y on 1 is denoted by
T,~cl(A) and is defined to be the intersection of all y-
closed sets containing A, and the y-interior
(OGATA, 1991) of A is denoted by t,-int(A) and
defined to be the union of all y-open sets of X
contained in A. A topological (X, t) with an
operation y on T is said to be y-regular (OGATA,
1991) if for each x € X and for each open
neighborhood V of x, there exists an open
neighborhood U of x such that y(U) contained in V.
It is also to be noted that T = 1, if and only if X is a
y-regular space (OGATA, 1991).

o’-open sets

Definition 3.1. Let (X, 1) be a topological space, ¥
an operation on t and A € X. Then A is called an o'-
open set if A € int(t,~cl(int(A))).

a'O(X) denotes the collection of all a'-open sets
of (X, 1), and o O(X, x) is the collection of all -
open sets containing the point x of X.

A subset A of X is called a'-closed if and only if
its complement is o'-open. Moreover, a'C(X)
denotes the collection of all a'-closed sets of (X, 1).
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It can be shown that a subset A of X is a'-closed
if and only if cl(t,-int(cl(A))) € A.

Remark 3.2.

(1) Every a-open set is o’-open, while in a y-
regular space these concepts are equivalent.

(2) Every y-open set is a'-open, but the converse
may not be true.

Example 3.3. Let X = {a, b, ¢} and © = {9, {a},
{b}, {a, b}, X}. Define an operation y on t by y(A)
= {a} if A = {a} and y(A) = AU {c} if A # {a}.
Clearly, T, = {0, {a}, X}.

(1) Then {a, c} is o’-open but not a-open.

(2) Also {a, c} is a’-open but not y-open.

Theorem 3.4. An arbitrary union of a'-open sets
is a’-open.

Proof. Let {A;: k € I} be a family of a'-open sets.
Then for each k,

A, € int(t,~cl(int(A;))) and so

Uy A, € Uy int(ty~cl(int(A,)))

€ int(Uy ty~cl(int(A,)))

€ int(t,~cl((Uy int(Ay)))

€ int(t,~cl(int(U, A,))).

Thus, U, A, is a'-open.

Remark 3.5.

(1) An arbitrary intersection of a'-closed sets is
a’-closed.

(2) The intersection of even two a'-open sets
may not be a'-open.

Example 3.6. Let X = {a, b, ¢} and © = {9, {a},
{b}, {a, b}, X}. Define an operation y on t by y(A)
= Aif A = {a, b} and y(A) = X otherwise. Clearly,
7, = {9, {a, b}, X} and 'OX) = {¢, {a}, {b}, {a,
b}, {a, c}, {b, c}, X}, take A = {a, c} and B = {b,
c}. Then AN B = {c}, which is not an a'-open set.

Definition 3.7. Let A be a subset of a topological
space (X, T) and y an operation on T.

(1) The union of all a'-open sets contained in
A is called the o'-interior of A and denoted by
a'int(A).

(2) The intersection of all o'-closed sets
containing A is called the o'-closure of A and
denoted by o'cl(A).

(3) The set denoted by a'D(A) and defined by
{x: for every o'-open set U containing x, U N
(A\{x}) # @} is called the o'-derived set of A.

(4) The o'-frontier of A, denoted by a'Fr(A) is
defined as a’cl(A) \ a’cl(X\ A).

We now state the following theorem without proof.

Theorem 3.8. Let (X, 1) be a topological space
and y an operation on t. For any subsets A, B of
X we have the following:

(1) Ais o'-open if and only if A = a'int(A).

(2) Ais o'-closed if and only if A = o'cl(A).

(3) If A € B then o'int(A) € o'int(B) and a'cl(A)
C o’cl(B).

Ibrahim

(4) o'int(A) U o'int(B) S a'int(AUB).
(5) o'int(AUB) S o’int(A) N o'int(B).
(6) o’cl(A) U o'cl(B) € a'cl(A U B).

(7) d’cl(A\B) € a'cl(A) N a’cl(B).

(8) o'int(X\A) = X\ do'cl(A).

(9) d'cl(X\A) = X\ a'int(A).

(10) a'int(A) = A\a'DX\A).

(11) o’cl(A) = AU o'D(A).

(12) 7,-int(A) € a'int(A).

(13) a’cl(A) € 1,~cl(A).

Theorem 3.9. Let A be a subset of a topological
space (X, 1) and y be an operation on t. Then x €
a’cl(A) if and only if for every a'-open set V of

X containing x, A N V# .

Proof. Let x €a'cl(A) and suppose that VN
A = @ for some a’-open set V which contains x.
Then (X \ V) is o'-closed and A € (X \ V), thus
a’cl(A) € (X\V). But this implies that x €X\V), a
contradition. Therefore VN A # .

Conversely, Let A € X and x €X such that for
each a’-open set U which contains x, U N A # . If
x & o'cl(A), there is an a'-closed set F such that A €
F and x ¢ F. Then (X\F) is an o'-open set with x €
(X\F), and thus X \ F) N A # ¢, which is a
contradiction.

Definition 3.10. A subset A of a topological space
(X, 1) with an operation y on 7 is called 1-a'-open
(resp. o'-y-open) if int(A) = o'int(A) (resp. T,-int(A)
= o'int(A)).

Definition 3.11. A subset A of a topological space
(X, 1) with an operation y on t is called an o'-
generalized closed set (o-g closed, for short) if

a’cl(A) € U whenever A € U and U is an o'-
open set in X.

The complement of an a'-g closed set is called an
a'-g open set. Clearly, A is o'-g open if and only if F
€ a'int(A) whenever F € A and F is a'-closed in X.

Theorem 3.12. Every o-closed set is o-g closed.

Proof. A set A € X is a'-closed if and only if
a’cl(A) = A. Thus o'cl(A) € U for every U €
a'O(X) containing A.

Theorem 3.13. A subset A of topological space
(X, 1) with an operation y on 1, is o'-g closed if and
only if o'cl({x}) N A # ¢, holds for every x €
a’cl(A).

Proof. Let A be an a'-g closed set in X and
suppose if possible there exists an x €a’cl(A) such
that a’cl({x}) N A # . Therefore A € X\ o'cl({x}),

and so o'cl(A) € X\o'cl({x}). Hence x €a’cl(A),
which is a contradiction.

Conversely, suppose that the condition of the
therem holds and let U be any a'-open set such that
A € U and let x € d'cl(A). By assumption, there
exists a z €a'cl({x}) and z € A € U. Thus by the
Theorem 3.9,
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UN{x}#@. Hence x €U, which implies a'cl(A)
cU.

Theorem 3.14. Let A be an o'-g closed set in a
topological space (X, 1) with operation y on 1. Then
a’cl(A)\A does not contain any nonempty a'-closed
set.

Proof. If possible, let F be an o'-closed set such
that F € o'cl(A)\A and F # @. Then F € X\A which
implies A € X\F. Since A is o'-g closed and X\F is
a’-open, therefore a'cl(A) € X\F, that is F C
X\a'cl(A).

Hence F € d'cl(A) N X\o'cl(A)) = . This
shows that, F = ¢ which is a contradiction.

Theorem 3.15. In a topological space (X, 1) with
an operation y on 1, either {x} is a'-closed or X\{x}
is a'-g closed.

Proof. Suppose that {x} is not a'-closed, then
X\{x} is not a’-open. Then X is the only a’-open
set such that X\{x}<S X. Hence X\{x} is a'-g closed
set.

o'-Functions

Definition 4.1. Let (X, 1) and (Y, o) be two
topological spaces and y an operation on t. Then a
function £ X, 1) — (Y, o) is said to be a'-
continuous at a point x €X if for each open set V of
Y containing f(x), there exists an a'-open set U of X
containing x such that f(U) € V.

If f is a’-continuous at each point x of X, then f'is
called a'-continuous on X.

Theorem 4.2. Let (X, 1) be a topological space
with an operation y on 1. For a function f: (X, 1) —
(Y, o), the following statements are equivalent:

(1) fis o'-continuous.

(2) f'(V) is a’-open set in X, for each open set V in
Y.

(3) £'(V) is a'closed set in X, for each closed set V
inY.

4) flo’cl(U)) € cl(f(U)), for each subset U of X.

(5) a'cl(f'(V)) € £(cl(V)), for each subset V of Y.

(6) f'(int(V)) Sa'int(f'(V)), for each subset V of Y .

(7) int(f(U)) € f(a'int(U)), for each subset U of X.

Proof. (1) = (2) = (3). Obvious.

(3) = (4). Let U be any subset of X. Then f(U)
C cl(f(U)) and cl(f(U)) is closed set in Y. Hence U
c fl(cl(f(U))). By (3), we have f'(cl(f(U))) is o'-
closed set in X. Therefore, o'cl(U) E £'(cl(f(U))).

Hence f(o'cl(U)) S cl(f(U)).

(4) = (5). Let V be any subset of Y. Then (V) is
a subset of X. By (4), we have f(a'cl(f'(V))) € cl(f(f
'(V))) = cl(V). Hence a’cl(f'(V)) € f'(cl(V)).

(5) © (6). Let V be any subset of Y. Then apply
(5) to Y\ 'V we obtain

dl(FI(YWV ) € £ YWV ) & alcl(X\ £1(V)) €
fiMint(V)) eX\a'int(f'(V)) € X\ f'(int(V)) ef
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Y(int(V)) € o'int(f'(V)). Therefore, f'(int(V)) S
a'int(f'(V)).

(6) = (7). Let U be any subset of X. Then f(U) is a
subset of Y. By (6), we have f'(int(f(U))) S o'int
(FIfU))=a"int(U).  Therefore, int(f(U)) €
f(a'int(U)).

(7) = (1). Let x € X and let V be any open set of
Y containing f(x). Then x € f'(V) and f'(V) is a
subset of X. By (7), we have int(f(f'(V))) € f(aint(f
'(V))). Then int(V) € f(a'int(f'(V))). Since V is an
open set. Then V € f(a'int(f'(V))) implies that f
'(V) € o’int(f'(V)). Therefore, £'(V) is o’-open set
in X which contains x and clearly f(f'(V)) € V.
Hence f'is o’-continuous.

Theorem 4.3. For a function f: (X, 1) — (Y, o)
with an operation y on 1, the following statements
are equivalent:

(1) £1(V) is a’-open set in X, for each open set V in
Y.

(2) d"Fr(f!(V)) € f(Fr(V)), for each subset Vin Y.

Proof. (1) = (2). Let V be any subset of Y. Then,
we have FY(Fr(V))=f"(cl(V\int(V))=f
AW\ (int(V))  =ocl(F(V)\F! (int(V)) 2o cl(f
'W)\a'intf ! (int(V)) 2 o'c(f'(V))\a'int(f'(V))=
o'Fr £1(V), and hence f!(Fr(V)) 2 o'Fr(f'(V)).

(2) = (1). Let Vbe open in Y and F = Y\V. Then
by (2), we obtain a'Fr(f'(F)) € f'(Fr(F)) € f'(cl(F))
= f'(F) and hence ocl(f'(F)) = o'int(f'(F)) U
o'Fr(f'(F)) € f'(F). Thus f'(F) is o'-closed and
hence (V) is o’-open in X.

Theorem 4.4. let (X, 1) be a topological space
with an operation y on T and let f: (X, 1) — (Y, 0) be
a function. Then

X\'C(H=U{a'Fr(f'(V)): VE o, f(x) € V,x €
X},

where a/C(f) denotes the set of points at which f
is a'-continuous.

Proof. Let x €X\o/C(f). Then there exists V € ¢
containing f(x) such that f{U) & V, for every o’-open
set U containing x. Hence U N [X\ f!(V)] # ¢ for
every o'-open set U containing x. Therefore, by

Theorem 3.9, x €d’cl(X\ f!(V)). Then x € f
VN aclXf'(V)) € o'Fr(f'(V). So, X\a'C(f) <
U{a'Fr(f'(V)):V € o, f(x) € V,x €X}

Conversely, let x € X\o'C(f). Then for each V € ¢
containing f(x), f'(V) is an a’-open set containing x.
Thus x €d'int(f'(V) and hence x ¢ o'Fr(f'(V)), for
every V €c containing f(x). Therefore,

X\a'C(f) 2 U{o'Fr(f'(V)):VE 6, f(x) € V,x €
X}.

Remark 4.5. Every y-continuous function is o'-
continuous, but the converse is not true.

Example 4.6. Let X = {a, b, c}, T = {¢, {a}, X} and
o = {0, {a}, {b}, {a, b}, X}. Define an operation y on
T by y(A) = Aif A={a} and y(A) = AU {b} if A #
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{a}. Define a function f: (X, 1) — (X, o) as follows: {(x)
=aifx=a,f(x) =aifx =band f(x) = cifx =c.

Then f is a'-continuous but not y-continuous at
b, because {a, b} is an open set in (X, 6) containing
f(b) = a, there exist no a'-open set U in (X, 1)
containing b such that f(U) € {a, b}.

Remark 4.7. Let y and B be operations on the

topological spaces (X, 1) and (Y, o), respectively. If
the functions f: (X, 1) — (Y, 6) and g: (Y, 0) — (Z,
v) are o'-continuous and continuous, respectively,
then gof is a'-continuous.

Definition 4.8. Let (X, 1) be a topological space
with an operation y on 1. A function f: (X, 1) — (Y,
o) is called t-a'-continuous (resp. o-y-continuous)
if for each open set V in'Y, f'(V) is t-o’-open (resp.
a’-y-open) in X.

Theorem 4.9. Let £: (X, 1) — (Y, ©) be a
mapping and y an operation on t. Then the
tollowing are equivalent:

(1) fis y-continuous.

(2) fis o’-continuous and a'~y-continuous.

Proof. (1) = (2). Let f be y-continuous. Then f'is
a'-continuous. Now, let G be any open set in Y,
then f'(G) is y-open in X. Then t,-int(f'(G)) = £
Y(G) = a'int(f(G)). Thus, f(G) is o’-y-open in X.
Therefore f'is o'~y-continuous.

(2) = (1). Let f be o'-continuous and o'-y-
continuous. Then for any open set G in Y, f!(G) is
both a'-open and o’-y-open in X. So

f1(G) = o'int(f(G)) = 1,-int(f(G)).

Thus f'(G) is y-open and hence f is Y-
continuous.

Theorem 4.10. Let 1 (X, 1) — (Y, o) be t-0'-
continuous, where y is an operation on . Then f is
continuous if and only if fis a'-continuous.

Proof. Let V € . Since f is continuous as well as
T-o'-continuous, f'(V) is open as well as 1-a'-open
in X and hence f'(V) = int(f'(V)) = o’int(f'(V)) €
a'O(X). Therefore, f'is a’-continuous.

Conversely, let V. € o. Then f'(V) is a’-open
and 1-a"-open. So (V) = a'int(f'(V)) = int(f'(V)).
Hence f'(V) is open in X. Therefore f'is continuous.

Definition 4.11. A function f: (X, 1) — (Y, o),
where y and f are operations on t ando, respectively,
is called a-g-closed if for every o’-closed set F in X,
f(F) is a’-g closed in Y.

Definition 4.12. Let (X, 1) and (Y, o) be two
topological spaces and vy, B operations on 1, o,
respectively. A mapping f: (X, 1) — (Y, o) is called
a™P_irresolute at x if and only if for each a-open set
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VinY containing f(x), there exists an o'-open set U
in X containing x such that f(U) € V.

If fis a™P-irresolute at each point x € X, then f'is
called aP-irresolute on X.

Theorem 4.13. let (X, 1), (Y, 6) be topological
spaces and vy,  operations on 1, o, respectively. If f:
X, 1) — (Y, o) is a”P-irresolute and of-g-closed,
and A is o’-g closed in X, then f(A) is o-g closed.

Proof. Suppose A is an a'-g closed set in X and
that U is an a’-open set in Y such that f(A) € U.
Then A € £'(U). Since fis a®P-irresolute, £'(U) is
a’-open set in X. Again A is an o'-g closed set,
therefore o’cl(A) € f'(U) and hence f(a'cl(A)) €
U. Since fis an of-g-closed map, f(a’cl(A)) is an of-g
closed set in Y. Therefore, a’cl(f(o’cl(A)) € U,
which implies a’cl(f(A)) € U.

We now state the following theorem without
proof.

Theorem 4.14. Let £ X, 1) — (Y, o) be a
mapping and vy, B operations on T, o, respectively.
Then the following are equivalent:

(1) fis oa™P-irresolute.

(2) The inverse image of each a’-open set in Y is
an of-open set in X.

(3) The inverse image of each o-closed set in
Y is an o'-closed set in X.

(4) ocl(fF'(V)) € F'(aPcl(V)), forall VY.

(5) fo’cl(U)) € o’cl(f(U)), forall U € X.

(6) ’Fr(F(V)) € F'( o’Fr(V)), forall VY.
(7) fla"D(U)) € o’cl(f(U)), for all U € X.
(8) f1(afint(V)) € oint(f1(V)), forall VCY.

a’-Separation Axioms

Definition 5.1. A topological space (X, 1) with an
operation y on 1 is said to be

(1) o'-T, if for each pair of distinct points x, y in
X, there exists an a'-open set U such that either x €
Uandy& UorxgU andy € U.

(2) of-T if for each pair of distinct points x, y in
X, there exist two a'-open sets U and V such that x

€UbutygUandy €VbutxgV.

(3) o'-T, if for each distinct points x, y in X,
there exist two disjoint a'-open sets U and V
containing x and y respectively.

(4) a'-Ty, if every a'-g closed set is a'-closed.

Theorem 5.2. A topological space (X, 1) with an
operation y on T is a'-T, if and only if for each pair
of distinct points x, y of X, a’cl({x}) # a’cl({y}).

Theorem 5.3. The following statements are
equivalent for a topological space (X, 1) with an
operation y on T:

(1) (X, 7) is o'~ Ty

Acta Scientiarum. Technology

Maringd, v. 35, n. 4, p. 725-731, Oct.-Dec., 2013



a'-open sets, a'-functions and some new separation axioms

(2) Each singleton {x} of X is either o'-closed or
a’-open.

Theorem 5.4. A topological space (X, 1) with an
operation y on 1 is o-T| if and only if the singletons
are a'-closed sets.

Theorem 5.5. The following statements are
equivalent for a topological space (X, t) with an
operation y on T

(1) X is a'-Ts.

(2) Let x € X. For each y # x, there exists an o'-
open set U containing x such thaty & o'cl(U).

(3) For each x €X, N{a'cl(U): U €a'OX) and
x € U}= {x}.

Corollary 5.6. If (X, 1) is a topological space and y
be an operation on 1, then the following statements are
hold:

(1) Every a'-T, space is o'-Th.

(2) Every a'-Ty, space is o-T,,.

Proof. (1) By deinition and Theorem 5.4 we
prove it.

(2) Let x and y be any two distinct points of X.
By Theorem 5.3, the singleton set {x} is a’-closed or
a’-open.

(a) If {x} is o’~closed, then X\{x} is a'-open. So
y € X\{x} and x € X\{x}. Therefore, we have X is
a’-T,.

(b) If {x} is a'-open. Then x €{x} and y & {x}.
Therefore, we have X is o'-T,,.

Definition 5.7. A subset A of a topological space X
is called an a'Difference set (in short o'D-set) if there
are U,V €d’O(X) such that U # Xand A = U\V.

It is true that every o’-open set U different from
X is an a'D-set if A = U and V = ¢. So, we can
observe the following.

Remark 5.8. Every proper a'-open set is a a'D-set.

Now we define another set of separation axioms
called @'-D;, i = 0, 1, 2 by using the o'D-sets.

Definition 5.9. A topological space (X, t) with an
operation y on 7 is said to be

(1) o-D, if for any pair of distinct points x and y
of X there exists an a'D-set of X containing x but
noty or an a'D-set of X containing y but not x.

(2) o-Dy if for any pair of distinct points x and y
of X there exists an a'D-set of X containing x but
noty and an a'D-set of X containing y but not x.

(3) o-D, if for any pair of distinct points x and y
of X there exist disjoint a'D-set G and E of X
containing x and y, respectively.

Remark 5.10. For a topological space (X, t) with
an operation y on 1, the following properties hold:

(1) If X, 1) is a'-T;, then it is o-T, 4, fori = 1, 2.

(2) If X, 1) is &'-T,, then it is a’-D,, fori = 0, 1, 2.

(3) If X, 1) is o'-D,, then it is a'-D, 4, fori = 1, 2.

Theorem 5.11. A space X is a'-D; if and only if it
is o/-D,.
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Proof. Necessity. Let x; y €X, x # y. Then there
exist a'D-sets Gy, G, in X such that x €G,,y € G,
and y €G,, x € G,. Let G;, = U\U, and G, =
U,\U,, where U, U,, U; and U, are o/-open sets in
X. From x & G,, it follows that either x € Uy or x €
U, and x €U,. We discuss the two cases separately.

(1) x € Us. By y € G, we have two subcases:

(a) v € U,. From x € U\U,, it follows that x €
U\U, U U,), and by y €U\U, we have y €U\(U,
U U,). Therefore (U \(U, U U;))N(U\(U,UU,)) = @.

(b) y € U, and y € U,. We have x €U\U,, and y

€U,. Therefore (U\U,) N U, = @.

(i1) x €U; and x €U,. We havey €U\U,and x €
U,. Hence (U,\U,) N U, = @. Therefore X is a’-D,.

Sufficiency. Follows from Remark 5.10 (3).

Theorem 5.12. A space is o'-D, if and only if it is
a'-T.

Proof. Suppose that X is a'-D,. Then for each
distinct pair x, y €X, at least one of x, y, say x,
belongs to an o'D-set G buty € G. Let G = U\U,
where U; # Xand U,, U, €a’O(X). Then x € U,,
and for y € G we have two cases: (a) y € U, (b) y €
U,andy €U,.

In case (a),x € U, buty & U,.

In case (b),y €U, butx ¢ U,.

Thus in both the cases, we obtain that X is a'-T|,.

Conversely, if X is a'-T,, by Remark 5.10 (2), X
is a’-D,,.

Corollary 5.13. If (X, 1) is o-D;, then it is o’-T,,.

Proof. Follows from Remark 5.10 (3) and
Theorem 5.12.

Definition 5.14. A point x €X which has only X
as the a’-neighborhood is called an a'-neat point.

Theorem 5.15. For an of-T topological space (X,
1) the following are equivalent:

(1) (X, 1) is o’-D,.

(2) (X, 1) has no a’-neat point.

Proof. (1) = (2). Since (X, 1) is a'-D;, then each
point x of X is contained in an o'D-set A = U\V and
thus in U. By definition U # X. This implies that x
is not an o'-neat point.

(2) = (1). If X is a'-T, then for each distinct pair
of points x, y € X, at least one of them, x (say) has an
a'-neighborhood U containing x and not y. Thus U
which is different from X is a a'D-set. If X has no
a'-neat point, then y is not an a'-neat point. This
means that there exists an a’-neighbourhood V of y
such that V # X. Thus y € VAU but not x and VAU is
an o' D-set. Hence X is a'-D.

Corollary 5.16. An o'-T, space X is not o'-D; if
and only if there is a unique a'-neat point in X.

Proof. We only prove the uniqueness of the o'-
neat point. If x and y are two o'-neat points in X,
then since X is o'-T,, at least one of x and vy, say x,
has an o'-neighborhood U containing x but not vy.
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Hence U # X. Therefore x is not an a'-neat point
which is a contradiction.

Definition 5.17. A topological space (X, 1) with
an operation y on T, is said to be a'-symmetric if for
xandyin X, x € a’cl({y}) implies y € o'cl({x}).

Theorem 5.18. If (X, 1) is a topological space with
an operation y on 1, then the following are equivalent:

(1) X, 1) is a’-symmetric space.

(2) Every singleton is a'-g closed, for each x €X.

Proof. (1) = (2). Assume that {x} € U €0’O(X),
but o’cl({x}) € U. Then a'cl({x}) N X\U # @. Now,
we take y €a’cl({x}) m X\U, then by hypothesis x €
a’cl({y}) € X\ U and x € U, which is a contradiction.
Therefore {x} is a'-g closed, for each x €X.

(2) = (1). Assume that x €a’cl({y}), but y &
a'cl({x}). Then {y} € X\'cl({x}) and hence
a'cl({y}) € X\'cl({x}). Therefore x eX\a’cl({x}),
which is a contradiction and hence y €acl({x}).

Corollary 5.19. If a topological space (X, t) with
an operation y on 1 is an o'-T| space, then it is a'-
symmetric.

Proof. In an a'-T; space, every singleton is o'-
closed (Theorem 5.4) and therefore is a'-g closed
(Theorem 3.12). Then by Theorem 5.18, (X, 1) is
a'-symmetric.

Corollary 5.20. For a topological space (X, 1)
with an operation y on 1, the following statements
are equivalent:

(1) X, 1) is a’-symmetric and o-T.

(2) X, 1)isa’-T,.

Proof. By Remark 5.10 and Corollary 5.19, it
suffices to prove only (1) = (2).

Let x # y and by o'-T\, we may assume that x €
U c X\{ytfor some U €a'OX). Then x ¢
a'cl({y}) and hence y & a'cl({x}). There exists an
a'-open set V such that y €V € X\{x} and thus
(X, 1) is an a'-T| space.

Corollary 5.21. For an o'-symmetric topological
space (X, 1) the following are equivalent:

(1) X, 1) is a'-T,.

(2) X, 1) isa’-D,.

(3) X, 1)isa’-T,.

Proof. (1) = (3). Corollary 5.20.

(3) = (2) = (1). Remark 5.10 (2) and Corollary
5.13.

Remark 5.22. If (X, 1) is an o'-symmetric space
with an operation y on 1, then the following
statements are equivalent:

(1) X, 1) is an o'-T|, space.

(2) X, 1) is an o'-T4, space.

(3) X, 1) is an o'-T space.

Definition 5.23. Let A be a subset of a topological
space (X, 1) and vy an operation on t. The a'-kernel
of A, denoted by a’ker(A) is defined to be the set
a’ker(A) = N{U €a’OX): A € U}.
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Theorem 5.24. Let (X, 1) be a topological space
with an operation y on T and x €X. Then y €
a'ker({x}) if and only if x €a’cl({y}).

Proof. Suppose that y € a'ker({x}). Then there
exists an o’-open set V containing x such thaty € V.
Therefore, we have x € a'cl({y}). The proof of the
converse case can be done similarly.

Theorem 5.25. Let (X, 1) be a topological space
with an operation y on T and A be a subset of X.
Then, a’ker(A) = {x € X: a’cl({x}) N A # @}.

Proof. Let x €a'ker(A) and suppose o’cl({x}) N
A # @. Hence x € X\a'cl({x}) which is an a'-open
set containing A. This is impossible, since x €
a'ker(A). Consequently, o'cl({x}) N A # @. Next,
let x € X such that a’cl({x}) N A # ¢ and suppose
that x € a'ker(A). Then, there exists an a'-open set
V containing A and x € V. Let y €d’cl({x}) N A.
Hence, V is an o'-neighborhood of y which does not
contain x. By this contradiction x € a'ker(A) and the
claim.

Theorem 5.26. If a singleton {x} is an a'D-set of
X, 1), then a'ker({x}) =X

Proof. Since {x} is an a'D-set of (X, 1), then there
exist two subsets U; €a’O(X) and U, €d’O(X) such
that {x} = U\U,, {x} € U, and U, # X. Thus, we
have that o’ker({x}) € U, # Xand so a'ker({x}) # X.

Theorem 5.27. If £ (X, 1) — (Y, o) is an a®P-
irresolute surjective function and A is an o’D-set in Y,
then the inverse image of A is an o/D-set in X.

Proof. Let A be an o”’D-set in Y. Then there are
(xﬁ—open sets O, and O, in Y such that A = O,\O,
and O, # Y. By the a"P-irresolute of f, f'(O,) and f
'(O,) are o’-open in X. Since O; # Y and f is
surjective, we have f'(O;) # X. Hence, f'(A) = }
FION(O,) is an o'D-set.

Theorem 5.28. If (Y, o) is a’-D, and f: (X, 1) —
(Y, o) is a"P-irresolute bijective, then (X, 1) is o’-D,.

Proof. Suppose that Y is an o-D; space. Let x
and y be any pair of distinct points in X. Since f is
injective and Y is of-D,, there exist a’D-set O, and
O, of Y containing f(x) and f(y) respectively, such
that f(x) € O, and f(y) € O,. By Theorem 5.27,
£'(O,) and £'(O,) are a'D-set in X containing x and
y, respectively, such that x & £'(O,) and y € £'(O,).
This implies that X is an o’-D;space.

Theorem 5.29. A topological space (X, 1) is o/-D;,
if for each pair of distinct points x, y €X, there exists
an oP-irresolute surjective function f: (X, 1) — (Y,
6), where Y is an a’-D, space such that f(x) and f(y)
are distinct.

Proof. Let x and y be any pair of distinct points
in X. By hypothesis, there exists an o™P-irresolute,
surjective function f of a space X onto an o’-D,
space Y such that f(x) # f(y). It follows from
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Theorem 5.11 that of-D, = of-D,. Hence, there
exist disjoint ofD-set O, and O, in Y such that f(x) €
O, and f(y) €O,. Since f is a”P-irresolute and
surjective, by Theorem 5.27, £'(O,) and £'(O,) are
disjoint o'D-sets in X containing x and vy,
respectively. So, the space (X, 1) is o/-D;.

Functions With o*-Closed Graphs

In this section, functions with a'-closed graphs
are introduced and studied, and some properties and
characterizations of a'-closed graphs are explained.

Definition 6.1. Let f: (X, 1) — (Y, o) be any
function, the graph of the function f is denoted by
G(f) and is said to be o'-closed if for each (x, y) €
G(f), there exist U € o’O(X, x) and an open set V of
Y containing y such that (U x V') N G(f) = ¢.

A useful characterisation of functions with a'-
closed graph is given below.

Lemma 6.2. The function f: (X, 1) — (Y, o) has
an a'-closed graph if and only if for each x € X and y
€ Y such that y # f(x), there exist an a'-open set U
and an open set V containing x and y respectively,
such that f(U) NV = .

Proof. It
definition.

Theorem 6.3. Suppose that a function f: (X, 7) — (Y,
o) has an o-closed graph, then the following are true:

(1) If f'is surjective, then Yis T).

(2) If fis injective, then X is o-T).

(3) If a function f is a'-continuous and injective,
then X is a'-T,.

(4) For each x € X, {f(x)} = N{f(cl(f(U)): U €
a'OX, x)}.

Proof. (1) Let y, and y, be two distinct points of

follows readily from the above

Y. Since f is surjective, there exists x in X such that
f(x) = y,, then (x, y;) & G(f). By Lemma 6.2, there
exist a'-open set U and open set V containing x and
y, respectively, such that f(U) N V = ¢. We obtain
an open set V containing y, which does not contain
y,. Similarly we can obtain an open set containing y,
but noty,. Hence, Yis T.

(2) Let x; and x, be two distinct points of X. The
injectivity of f implies f(x;) # f(x,) whence one
obtains that (x;, f(x;)) € (X x YN\G(f). The
a'-closedness of G(f), by Lemma 6.2, ensures the
existence of U € a'O(X, x;), V € O(Y, f(x,)) such
that f(U) NV = ¢. Therefore, f(x,) € f(U) and a
fortiori x, & U. Again
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(%, f(x7)) € X x Y\G(f) and a'-closedness of
G(f), as before gives A € ’O(X, x,), B € O(Y, f(x,))
with f(A) N B = ¢, which guarantees that f(x,) &
f(A) and so x; € A. Therefore, we obtain sets U and
A € 0'O(X) such that x; € U but x, €U while x, € A
but x; €A. Thus Xis o'-T.

(3) Let x, and x, be any distinct points of X.
Then f(x,) # f(x,), so (X, {(x)) € XX Y)\G(f). Since
the graph G(f) is a'-closed, there exist an o'-open set
U containing x; and open set V containing f(x,) such
that f(U) NV = ¢. Since f is a'-continuous, (V) is
an a'-open set containing x, such that U N f'(V) =
¢. Hence X is o/-T,.

(4) Suppose that y # f(x) and y €{cl(f(U)): U €
a'O(X, x)}. Then y € cl(f(U)) for each U € ’O(X,
x). This implies that for each open set V containing
y, VN {{U) # o. Since (x, y) € G(f) and G(f) is an
a'-closed graph, this is a contradiction.

Theorem 64. If f: X, 1) — (Y, o) is o'-
continuous and Y is T, space, then G(f) is a'-closed
graph.

Proof. Suppose that (x, y) € G(f), then f(x) = y.
By the fact that Y is T,, there exist open sets W and
V such that f(x) € W,y € Vand VN W = ¢. Since {
is a'-continuous, there exists U € o’O(X, x) such
that f(U) € W. Hence, we have f(U) NV = ¢. This
means that G(f) is a’-closed.

Conclusion

In this paper, we introduce the notion of o'-open
sets, o-continuity and  o®P-irresoluteness  in
topological spaces. By utilizing these notions we
introduce some weak separation axioms. Also we show
that some basic properties o'-T; (i = 0, 2, 1, 2), a'-D; (i
= 0, 1, 2) spaces and we offer a new notion of the
graph of a function called an a'-closed graph and
investigate some of their fundamental properties.

References

KASAHARA, S. Operation-compact spaces. Mathematica
Japonica, v. 24, n. 1, p. 97-105, 1979.

NJASTAD, O. On some classes of nearly open sets. Pacific
Journal of Mathematics, v. 15, n. 3, p. 961-970, 1965.

OGATA, H. Operation on topological spaces and
associated topology. Mathematica Japonica, v. 36, n. 1,
p- 175-184, 1991.

Received on January 11, 2012.
Accepted on_January 28, 2013.

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

Acta Scientiarum. Technology

Maringd, v. 35, n. 4, p. 725-731, Oct.-Dec., 2013



