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ABSTRACT. In this paper, a new kind of set called an αγ-open set is introduced and investigated using 
the γ-operator due to Ogata. Such sets are used for studying new types of mappings, viz. αγ-continuous, 
α(γ,β)-irresolute, etc. Finally, new separation axioms: αγ-Ti (i = 0, ½, 1, 2), αγ-Di (i = 0, 1, 2), and a new 
notion of the graph of a function called an αγ-closed graph. 
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αγ-aberto conjunto, αγ-funções e alguns novos axiomas de separação 

RESUMO. Neste artigo, um novo tipo de conjunto chamado αγ-aberto conjunto é introduzido e 
investigado usando o γ-operador devido a Ogata. Esses jogos são usados para estudar novos tipos de 
mapeamentos, viz. αγ-contínuo, α(γ,β)-irresoluto, etc. Finalmente, novos axiomas de separação: αγ-Ti (i = 0, 
½, 1, 2), αγ-Di (i = 0, 1, 2), e uma nova noção do gráfico de uma função chamado um αγ-gráfico fechado. 

Palavras-chave: αγ-aberto, αγ-g fechado, αγ-contínuo, α(γ,β)-irresoluto, αγD-conjunto, αγ-gráfico fechado. 

Introduction 

In 1965 Njastad (1965) introduced α-open sets, 
Kasahara (1979) defined an operation α on a 
topological space to introduce α-closed graphs. 
Following the same technique, Ogata (1991) defined 
an operation on a topological space and introduced 
γ-open sets. 

In this paper, we introduce the notion of αγ-open 
sets, αγ-continuity and α(γ,β)-irresoluteness in 
topological spaces. By utilizing these notions we 
introduce some weak separation axioms. Also we show 
that some basic properties αγ-Ti (i = 0, ½, 1, 2), αγ-Di (i 
= 0, 1, 2) spaces and we offer a new notion of the 
graph of a function called an αγ-closed graph and 
investigate some of their fundamental properties. 

Throughout the paper spaces X and Y mean 
topological spaces. For a subset A of a space X, cl(A) 
and int(A) represent the closure of A and the 
interior of A, respectively. 

Preliminaries 

A subset A of X is called α-open if A ⊆ 
int(cl(int(A))). The complement of α-open set is 
called α-closed set. The family of all α-open sets of 
X is denoted by αO(X). For a subset A of X, the 
union of all α-open sets of X contained in A is called 
the α-interior (in short αint(A)) of A, and the 
intersection of all α-closed sets of X containing A is 
called the α-closure (in short αcl(A)) of A. An 
operation γ (KASAHARA, 1979) on a topology τ is a 

mapping from τ in to power set P(X) of X such that 
V ⊆ (V) for each V ∈ τ, where γ(V) denotes the value 
of  at V. A subset A of X with an operation γ on τ is 
called γ-open (OGATA, 1991) if for each x ∈ A, 
there exists an open set U such that x ∈ U and γ(U) 
⊆ A. Then, τγ denotes the set of all γ-open set in X. 
Clearly τγ ⊆ τ. Complements of γ-open sets are 
called γ-closed. The γ-closure (OGATA, 1991) of a 
subset A of X with an operation γ on τ is denoted by 
τγ-cl(A) and is defined to be the intersection of all γ-
closed sets containing A, and the γ-interior 
(OGATA, 1991) of A is denoted by τγ-int(A) and 
defined to be the union of all γ-open sets of X 
contained in A. A topological (X, τ) with an 
operation γ on τ is said to be γ-regular (OGATA, 
1991) if for each x ∈ X and for each open 
neighborhood V of x, there exists an open 
neighborhood U of x such that γ(U) contained in V. 
It is also to be noted that τ = τγ if and only if X is a 
γ-regular space (OGATA, 1991). 

αγ-open sets 

Definition 3.1. Let (X, τ) be a topological space, γ 
an operation on τ and A	⊆ X. Then A is called an αγ-
open set if A	⊆ int(τγ-cl(int(A))). 

αγO(X) denotes the collection of all αγ-open sets 
of (X, τ), and αγO(X, x) is the collection of all αγ-
open sets containing the point x of X. 

A subset A of X is called αγ-closed if and only if 
its complement is αγ-open. Moreover, αγC(X) 
denotes the collection of all αγ-closed sets of (X, τ). 



726 Ibrahim 

Acta Scientiarum. Technology Maringá, v. 35, n. 4, p. 725-731, Oct.-Dec., 2013 

It can be shown that a subset A of X is αγ-closed 
if and only if cl(τγ-int(cl(A))) ⊆ A. 

Remark 3.2. 
(1) Every α-open set is αγ-open, while in a γ-

regular space these concepts are equivalent. 
(2) Every γ-open set is αγ-open, but the converse 

may not be true. 
Example 3.3. Let X = {a, b, c} and τ = {φ, {a}, 

{b}, {a, b}, X}. Define an operation γ on τ by γ(A) 
= {a} if A = {a} and γ(A) = A	∪	{c} if A ≠ {a}. 
Clearly, τγ = {φ, {a}, X}. 

(1) Then {a, c} is αγ-open but not α-open. 
(2) Also {a, c} is αγ-open but not γ-open. 
Theorem 3.4. An arbitrary union of αγ-open sets 

is αγ-open. 
Proof. Let {Ak: k ∈	І} be a family of αγ-open sets. 

Then for each k, 
Ak ⊆ int(τγ-cl(int(Ak))) and so 
∪k Ak ⊆	∪k int(τγ-cl(int(Ak))) 
⊆	int(∪k τγ-cl(int(Ak))) 
⊆	int(τγ-cl((∪k int(Ak))) 
⊆ int(τγ-cl(int(∪k Ak))). 
Thus, ∪k Ak is α

γ-open.  
Remark 3.5. 
(1) An arbitrary intersection of αγ-closed sets is 

αγ-closed. 
(2) The intersection of even two αγ-open sets 

may not be αγ-open. 
Example 3.6. Let X = {a, b, c} and τ = {φ, {a}, 

{b}, {a, b}, X}. Define an operation γ on τ by γ(A) 
= A if A = {a, b} and γ(A) = X otherwise. Clearly, 
τγ = {φ, {a, b}, X} and αγO(X) = {φ, {a}, {b}, {a, 
b}, {a, c}, {b, c}, X}, take A = {a, c} and B = {b, 
c}. Then A ∩ B = {c}, which is not an αγ-open set. 

Definition 3.7. Let A be a subset of a topological 
space (X, τ) and γ an operation on τ. 

(1) The union of all αγ-open sets contained in  
A is called the αγ-interior of A and denoted by 
αγint(A). 

(2) The intersection of all αγ-closed sets 
containing A is called the αγ-closure of A and 
denoted by αγcl(A). 

(3) The set denoted by αγD(A) and defined by 
{x: for every αγ-open set U containing x, U ∩ 
(A\{x}) ≠ φ} is called the αγ-derived set of A. 

(4) The αγ-frontier of A, denoted by αγFr(A) is 
defined as αγcl(A) \ αγcl(X \ A). 

We now state the following theorem without proof. 
Theorem 3.8. Let (X, τ) be a topological space 

and γ an operation on τ. For any subsets A, B of  
X we have the following: 

(1) A is αγ-open if and only if A = αγint(A). 
(2) A is αγ-closed if and only if A = αγcl(A). 
(3) If A ⊆ B then αγint(A) ⊆ αγint(B) and αγcl(A) 

⊆ αγcl(B). 

(4) αγint(A) ∪ αγint(B)	⊆ αγint(A∪B). 
(5) αγint(A∪B) ⊆ αγint(A) ∩ αγint(B). 
(6) αγcl(A) ∪ αγcl(B) ⊆ αγcl(A ∪ B). 
(7) αγcl(A \ B) ⊆ αγcl(A) ∩ αγcl(B). 
(8) αγint(X \ A) = X \ αγcl(A). 
(9) αγcl(X \ A) = X \ αγint(A). 
(10) αγint(A) = A \ αγD(X \ A). 
(11) αγcl(A) = A ∪ αγD(A). 
(12) τγ-int(A) ⊆ αγint(A). 
(13) αγcl(A) ⊆  τγ-cl(A). 
Theorem 3.9. Let A be a subset of a topological 

space (X, τ) and γ be an operation on τ. Then x ∈ 
αγcl(A) if and only if for every αγ-open set V of 

X containing x, A ∩ V≠	φ. 
Proof. Let x ∈ αγcl(A) and suppose that V∩  

A = φ for some αγ-open set V which contains x. 
Then (X \ V) is αγ-closed and A ⊆ (X \ V), thus 
αγcl(A) ⊆ (X \ V ). But this implies that x ∈ (X \ V), a 
contradition. Therefore V ∩ A ≠	φ. 

Conversely, Let A ⊆ X and x ∈ X such that for 
each αγ-open set U which contains x, U ∩ A ≠	φ. If 
x ∉ αγcl(A), there is an αγ-closed set F such that A ⊆ 
F and x	∉ F. Then (X\F) is an αγ-open set with x ∈ 
(X\F), and thus (X \ F) ∩ A ≠	 φ, which is a 
contradiction. 

Definition 3.10. A subset A of a topological space 
(X, τ) with an operation γ on τ is called τ-αγ-open 
(resp. αγ-γ-open) if int(A) = αγint(A) (resp. τγ-int(A) 
= αγint(A)). 

Definition 3.11. A subset A of a topological space 
(X, τ) with an operation γ on τ is called an αγ-
generalized closed set (αγ-g closed, for short) if 

αγcl(A) ⊆ U whenever A	⊆ U and U is an αγ-
open set in X. 

The complement of an αγ-g closed set is called an 
αγ-g open set. Clearly, A is αγ-g open if and only if F 
⊆ αγint(A) whenever F ⊆ A and F is αγ-closed in X. 

Theorem 3.12. Every αγ-closed set is αγ-g closed. 
Proof. A set A ⊆ X is αγ-closed if and only if 

αγcl(A) = A. Thus αγcl(A) ⊆ U for every U ∈ 
αγO(X) containing A.  

Theorem 3.13. A subset A of topological space 
(X, τ) with an operation γ on τ, is αγ-g closed if and 
only if αγcl({x}) ∩ A ≠ φ, holds for every x ∈ 
αγcl(A). 

Proof. Let A be an αγ-g closed set in X and 
suppose if possible there exists an x ∈ αγcl(A) such 
that αγcl({x}) ∩ A ≠ φ. Therefore A ⊆ X \ αγcl({x}), 

and so αγcl(A) ⊆ X\αγcl({x}). Hence x ∈ αγcl(A), 
which is a contradiction. 

Conversely, suppose that the condition of the 
therem holds and let U be any αγ-open set such that 
A ⊆ U and let x ∈  αγcl(A). By assumption, there 
exists a z ∈ αγcl({x}) and z ∈  A	 ⊆	U. Thus by the 
Theorem 3.9, 
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U∩{x}≠φ. Hence x ∈ U, which implies αγcl(A) 
⊆ U. 

Theorem 3.14. Let A be an αγ-g closed set in a 
topological space (X, τ) with operation γ on τ. Then 
αγcl(A)\A does not contain any nonempty αγ-closed 
set. 

Proof. If possible, let F be an αγ-closed set such 
that F ⊆ αγcl(A)\A and F ≠	φ. Then F ⊆ X\A which 
implies A ⊆ X\F. Since A is αγ-g closed and X\F is 
αγ-open, therefore αγcl(A) ⊆ X\F, that is F ⊆ 
X\αγcl(A). 

Hence F ⊆ αγcl(A) ∩ (X\αγcl(A)) =	 φ. This 
shows that, F = φ which is a contradiction. 

Theorem 3.15. In a topological space (X, τ) with 
an operation γ on τ, either {x} is αγ-closed or X\{x} 
is αγ-g closed. 

Proof. Suppose that {x} is not αγ-closed, then 
X\{x}  is not αγ-open. Then X is the only αγ-open 
set such that X\{x}⊆ X. Hence X\{x} is αγ-g closed 
set.  

αγ-Functions 

Definition 4.1. Let (X, τ) and (Y, σ) be two 
topological spaces and γ an operation on τ. Then a 
function f: (X, τ) → (Y, σ) is said to be αγ-
continuous at a point x ∈ X if for each open set V of 
Y containing f(x), there exists an αγ-open set U of X 
containing x such that f(U) ⊆ V. 

If f is αγ-continuous at each point x of X, then f is 
called αγ-continuous on X. 

Theorem 4.2. Let (X, τ) be a topological space 
with an operation γ on τ. For a function f: (X, τ) → 
(Y, σ), the following statements are equivalent: 

(1) f is αγ-continuous. 
(2) f-1(V) is αγ-open set in X, for each open set V in 

Y. 
(3) f-1(V) is αγ-closed set in X, for each closed set V 

in Y. 
(4) f(αγcl(U)) ⊆  cl(f(U)), for each subset U of X. 
(5) αγcl(f-1(V)) ⊆ f-1(cl(V)), for each subset V of Y. 
(6) f-1(int(V)) ⊆αγint(f-1(V)), for each subset V of Y . 
(7) int(f(U)) ⊆ f(αγint(U)), for each subset U of X. 
Proof. (1) ⇒ (2) ⇒ (3). Obvious. 
(3) ⇒ (4). Let U be any subset of X. Then f(U) 

⊆ cl(f(U)) and cl(f(U)) is closed set in Y. Hence U	
⊆ f-1(cl(f(U))). By (3), we have f-1(cl(f(U))) is αγ-
closed set in X. Therefore, αγcl(U) ⊆ f-1(cl(f(U))). 

Hence f(αγcl(U))	⊆	cl(f(U)). 
(4)	⇒ (5). Let V be any subset of Y. Then f-1(V) is 

a subset of X. By (4), we have f(αγcl(f-1(V))) ⊆ cl(f(f-

1(V))) = cl(V). Hence αγcl(f-1(V)) ⊆ f-1(cl(V)). 
(5)  ⇔ (6). Let V be any subset of Y. Then apply 

(5) to Y \ V we obtain 
αγcl(f-1(Y\V )) ⊆ f-1(cl(Y\V )) ⇔ αγcl(X\ f-1(V)) ⊆ 

f-1(Y\int(V)) ⇔X\αγint(f-1(V)) ⊆ X\ f-1(int(V)) ⇔f-

1(int(V)) ⊆ αγint(f-1(V)). Therefore, f-1(int(V)) ⊆ 
αγint(f-1(V)). 

(6) ⇒ (7). Let U be any subset of X. Then f(U) is a 
subset of Y. By (6), we have f-1(int(f(U))) ⊆ αγint 
(f-1(f(U)))=αγint(U). Therefore, int(f(U)) ⊆ 
f(αγint(U)). 

(7) ⇒ (1). Let x ∈	X and let V be any open set of 
Y containing f(x). Then x ∈ f-1(V) and f-1(V) is a 
subset of X. By (7), we have int(f(f-1(V))) ⊆ f(αγint(f-

1(V))). Then int(V) ⊆ f(αγint(f-1(V))). Since V is an 
open set. Then V ⊆ f(αγint(f-1(V))) implies that f-

1(V) ⊆ αγint(f-1(V)). Therefore, f-1(V) is αγ-open set 
in X which contains x and clearly f(f-1(V)) ⊆ V. 
Hence f is αγ-continuous. 

Theorem 4.3. For a function f: (X, τ) → (Y, σ) 
with an operation γ on τ, the following statements 
are equivalent: 

(1) f-1(V) is αγ-open set in X, for each open set V in 
Y. 

(2) αγFr(f-1(V)) ⊆ f-1(Fr(V)), for each subset V in Y. 
Proof. (1) ⇒ (2). Let V be any subset of Y. Then, 

we have f-1(Fr(V))=f-1(cl(V)\int(V))=f-

1(cl(V))\f1(int(V)) =αγcl(f-1(V))\f-1(int(V))⊇αγcl(f-

1(V))\αγintf-1(int(V))	 ⊇ αγcl(f-1(V))\αγint(f-1(V))= 
αγFr f-1(V), and hence f-1(Fr(V)) ⊇ αγFr(f-1(V)). 

(2) ⇒ (1). Let V be open in Y and F = Y\V. Then 
by (2), we obtain αγFr(f-1(F)) ⊆ f-1(Fr(F)) ⊆ f-1(cl(F)) 
= f-1(F) and hence αγcl(f-1(F)) = αγint(f-1(F)) ∪ 
αγFr(f-1(F)) ⊆ f-1(F). Thus f-1(F) is αγ-closed and 
hence f-1(V) is αγ-open in X. 

Theorem 4.4. let (X, τ) be a topological space 
with an operation γ on τ and let f: (X, τ) → (Y, σ) be 
a function. Then 

X\αγC(f)=∪{αγFr(f-1(V)): V  ∈ σ, f(x)  ∈  V, x ∈ 
Xሽ, 

where αγC(f) denotes the set of points at which f 
is αγ-continuous. 

Proof. Let x ∈ X\αγC(f). Then there exists V  ∈ σ 
containing f(x) such that f(U) ⊈	V, for every αγ-open 
set U containing x. Hence U ∩ [X \ f-1(V)] ≠	φ for 
every αγ-open set U containing x. Therefore, by 

Theorem 3.9, x ∈ αγcl(X\ f-1(V)). Then x ∈ f-

1(V)∩ αγcl(X\f-1(V)) ⊆ αγFr(f-1(V). So, X\αγC(f)	 ⊆	
∪{αγFr(f-1(V)):V  ∈ σ, f(x)  ∈ V, x ∈ Xሽ 

Conversely, let x ∉ X\αγC(f). Then for each V  ∈ σ 
containing f(x), f-1(V) is an αγ-open set containing x. 
Thus x ∈ αγint(f-1(V) and hence x ∉	 αγFr(f-1(V)), for 
every V ∈ σ containing f(x). Therefore, 

X\αγC(f)	⊇	∪{αγFr(f-1(V)):V  ∈ σ, f(x)  ∈  V, x ∈ 
Xሽ. 

Remark 4.5. Every γ-continuous function is αγ-
continuous, but the converse is not true. 

Example 4.6. Let X = {a, b, c}, τ = {φ, {a}, X} and 
σ = {φ, {a}, {b}, {a, b}, X}. Define an operation γ on 
τ by γ(A) = A if A={a} and γ(A) = A	∪	{b} if A ≠ 
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{a}. Define a function f: (X, τ) → (X, σ) as follows: f(x) 
= a if x = a, f(x) = a if x = b and f(x) = c if x = c. 

Then f is αγ-continuous but not γ-continuous at 
b, because {a, b} is an open set in (X, σ) containing 
f(b) = a, there exist no αγ-open set U in (X, τ) 
containing b such that f(U) ⊆ {a, b}. 

Remark 4.7. Let γ and β be operations on the 

topological spaces (X, τ) and (Y, σ), respectively. If 
the functions f: (X, τ) → (Y, σ) and g: (Y, σ) → (Z, 
υ) are αγ-continuous and continuous, respectively, 
then  gof is αγ-continuous. 

Definition 4.8. Let (X, τ) be a topological space 
with an operation γ on τ. A function f: (X, τ) → (Y, 
σ) is called τ-αγ-continuous (resp. αγ-γ-continuous) 
if for each open set V in Y, f-1(V) is τ-αγ-open (resp. 
αγ-γ-open) in X. 

Theorem 4.9. Let f: (X, τ) → (Y, σ) be a 
mapping and γ an operation on τ. Then the 
following are equivalent: 

(1) f is γ-continuous. 
(2) f is αγ-continuous and αγ-γ-continuous. 
Proof. (1) ⇒ (2). Let f be γ-continuous. Then f is 

αγ-continuous. Now, let G be any open set in Y, 
then f-1(G) is γ-open in X. Then τγ-int(f-1(G)) = f-

1(G) = αγint(f-1(G)). Thus, f-1(G) is αγ-γ-open in X. 
Therefore f is αγ-γ-continuous. 

(2) ⇒ (1). Let f be αγ-continuous and αγ-γ-
continuous. Then for any open set G in Y, f-1(G) is 
both αγ-open and αγ-γ-open in X. So 

f-1(G) = αγint(f-1(G)) = τγ-int(f-1(G)). 
Thus f-1(G) is γ-open and hence f is γ-

continuous.  
Theorem 4.10. Let f: (X, τ) → (Y, σ) be τ-αγ-

continuous, where γ is an operation on τ. Then f is 
continuous if and only if f is αγ-continuous. 

Proof. Let V ∈  σ. Since f is continuous as well as 
-αγ-continuous, f-1(V) is open as well as τ-αγ-open 

in X and hence f-1(V) = int(f-1(V)) = αγint(f-1(V)) ∈ 
αγO(X). Therefore, f is αγ-continuous. 

Conversely, let V ∈  σ. Then f-1(V) is αγ-open 
and τ-αγ-open. So f-1(V) = αγint(f-1(V)) = int(f-1(V)). 
Hence f-1(V) is open in X. Therefore f is continuous.  

Definition 4.11. A function f: (X, τ) → (Y, σ), 
where γ and β are operations on τ andσ, respectively, 
is called αβ-g-closed if for every αγ-closed set F in X, 
f(F) is αβ-g closed in Y. 

Definition 4.12. Let (X, τ) and (Y, σ) be two 
topological spaces and γ, β operations on τ, σ, 
respectively. A mapping f: (X, τ) → (Y, σ) is called 
α(γ,β)-irresolute at x if and only if for each αβ-open set 

V in Y containing f(x), there exists an αγ-open set U 

in X containing x such that f(U) ⊆  V. 

If f is α(γ,β)-irresolute at each point x ∈ X, then f is 
called α(γ,β)-irresolute on X. 

Theorem 4.13. let (X, τ), (Y, σ) be topological 
spaces and γ, β operations on τ, σ, respectively. If f: 
(X, τ) → (Y, σ) is α(γ,β)-irresolute and αβ-g-closed, 
and A is αγ-g closed in X, then f(A) is αβ-g closed. 

Proof. Suppose A is an αγ-g closed set in X and 
that U is an αβ-open set in Y such that f(A) ⊆  U. 
Then A ⊆  f-1(U). Since f is α(γ,β)-irresolute, f-1(U) is 
αγ-open set in X. Again A is an αγ-g closed set, 
therefore αγcl(A) ⊆  f-1(U) and hence f(αγcl(A)) ⊆  
U. Since f is an αβ-g-closed map, f(αγcl(A)) is an αβ-g 
closed set in Y. Therefore, αβcl(f(αγcl(A)) ⊆ U, 
which implies αβcl(f(A)) ⊆  U.  

We now state the following theorem without 
proof. 

Theorem 4.14. Let f: (X, τ) → (Y, σ) be a 
mapping and γ, β operations on τ, σ, respectively. 
Then the following are equivalent: 

(1) f is α(γ,β)-irresolute. 
(2) The inverse image of each αβ-open set in Y is 

an αγ-open set in X. 
(3) The inverse image of each αβ-closed set in  

Y is an αγ-closed set in X. 
(4) αγcl(f-1(V)) ⊆  f-1( αβcl(V)), for all V ⊆ Y. 
(5) f(αγcl(U)) ⊆ αβcl(f(U)), for all U ⊆ X. 
(6) αγFr(f-1(V)) ⊆ f-1( αβFr(V)), for all V ⊆	Y. 
(7) f(αγD(U)) ⊆ αβcl(f(U)), for all U ⊆ X. 
(8) f-1(αβint(V)) ⊆ αγint(f-1(V)), for all V ⊆ Y. 

αγ-Separation Axioms 

Definition 5.1. A topological space (X, τ) with an 
operation γ on τ is said to be 

(1) αγ-T0  if for each pair of distinct points x, y in 
X, there exists an αγ-open set U such that either x ∈  
U and y ∉ U or x ∉U and y ∈  U. 

(2) αγ-T1 if for each pair of distinct points x, y in 
X, there exist two αγ-open sets U and V such that x 
∈  U but y ∉ U and y ∈  V but x ∉ V. 

(3) αγ-T2 if for each distinct points x, y in X, 
there exist two disjoint αγ-open sets U and V 
containing x and y respectively. 

(4) αγ-T½ if every αγ-g closed set is αγ-closed. 
Theorem 5.2. A topological space (X, τ) with an 

operation γ on τ is αγ-T0 if and only if for each pair 
of distinct points x, y of X, αγcl({x}) ≠ αγcl({y}). 

Theorem 5.3. The following statements are 
equivalent for a topological space (X, τ) with an 
operation γ on τ: 

(1) (X, τ) is αγ-T½. 
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(2) Each singleton {x} of X is either αγ-closed or 
αγ-open. 

Theorem 5.4. A topological space (X, τ) with an 
operation γ on τ is αγ-T1 if and only if the singletons 
are αγ-closed sets. 

Theorem 5.5. The following statements are 
equivalent for a topological space (X, τ) with an 
operation γ on τ: 

(1) X is αγ-T2. 
(2) Let x ∈  X. For each y ≠ x, there exists an αγ-

open set U containing x such that y	∉ αγcl(U). 
(3) For each x ∈ X, ∩{αγcl(U): U ∈ αγO(X) and 

x ∈  U}= {x}. 
Corollary 5.6. If (X, τ) is a topological space and γ 

be an operation on τ, then the following statements are 
hold: 

(1) Every αγ-T1 space is αγ-T½. 
(2) Every αγ-T½	space is αγ-T0. 
Proof. (1) By deinition and Theorem 5.4 we 

prove it. 
(2) Let x and y be any two distinct points of X. 

By Theorem 5.3, the singleton set {x} is αγ-closed or 
αγ-open. 

(a) If {x} is αγ-closed, then X\{x} is αγ-open. So 
y ∈  X\{x} and x ∉ X\{x}. Therefore, we have X is 
αγ-T0. 

(b) If {x} is αγ-open. Then x ∈ {x} and y ∉ {x}. 
Therefore, we have X is αγ-T0. 

Definition 5.7. A subset A of a topological space X 
is called an αγDifference set (in short αγD-set) if there 
are U, V ∈ αγO(X) such that U ≠ X and A = U\V. 

It is true that every αγ-open set U different from 
X is an αγD-set if A = U and V =	 φ. So, we can 
observe the following. 

Remark 5.8. Every proper αγ-open set is a αγD-set. 
Now we define another set of separation axioms 

called αγ-Di, i = 0, 1, 2 by using the αγD-sets. 
Definition 5.9. A topological space (X, τ) with an 

operation γ on τ is said to be 
(1) αγ-D0 if for any pair of distinct points x and y 

of X there exists an αγD-set of X containing x but 
not y or an αγD-set of X containing y but not x. 

(2) αγ-D1 if for any pair of distinct points x and y 
of X there exists an αγD-set of X containing x but 
not y and an αγD-set of X containing y but not x. 

(3) αγ-D2 if for any pair of distinct points x and y 
of X there exist disjoint αγD-set G and E of X 
containing x and y, respectively. 

Remark 5.10. For a topological space (X, τ) with 
an operation γ on τ, the following properties hold: 

(1) If (X, τ) is αγ-Ti, then it is αγ-Ti-1, for i = 1, 2. 
(2) If (X, τ) is αγ-Ti, then it is αγ-Di, for i = 0, 1, 2. 
(3) If (X, τ) is αγ-Di, then it is αγ-Di-1, for i = 1, 2. 
Theorem 5.11. A space X is αγ-D1 if and only if it 

is αγ-D2. 

Proof. Necessity. Let x; y ∈ X, x ≠ y. Then there 
exist αγD-sets G1, G2 in X such that x ∈ G1, y ∉ G1 
and y ∈ G2, x ∉	 G2. Let G1 = U1\U2 and G2 = 
U3\U4, where U1, U2, U3 and U4 are αγ-open sets in 
X. From x ∉	G2, it follows that either x ∉	U3 or x ∈ 
U3 and x ∈ U4. We discuss the two cases separately. 

(i) x ∉	U3. By y ∉	G1 we have two subcases: 
(a) y ∉	U1. From x  ∈ U1\U2, it follows that x ∈ 

U1\(U2 U U3), and by y ∈ U3\U4 we have y ∈ U3\(U1	
∪ U4). Therefore (U1\(U2 ∪	U3))∩(U3\(U1∪U4)) =	φ. 

(b) y  ∈ U1 and y  ∈ U2. We have x ∈ U1\U2, and y 
∈ U2. Therefore (U1\U2) ∩ U2 = φ. 

(ii) x ∈ U3 and x ∈ U4. We have y ∈ U3\U4 and x ∈ 
U4. Hence (U3\U4) ∩ U4 = φ. Therefore X is αγ-D2. 

Sufficiency. Follows from Remark 5.10 (3). 
Theorem 5.12. A space is αγ-D0 if and only if it is 

αγ-T0. 
Proof. Suppose that X is αγ-D0. Then for each 

distinct pair x, y ∈ X, at least one of x, y, say x, 
belongs to an αγD-set G but y ∉	G. Let G = U1\U2 
where U1  ≠ X and U1, U2 ∈ αγO(X). Then x ∈  U1, 
and for y ∉ G we have two cases: (a) y ∉ U1, (b) y ∈ 
U1 and y ∈ U2. 

In case (a), x ∈  U1 but y ∉ U1. 
In case (b), y ∈ U2 but x ∉ U2. 
Thus in both the cases, we obtain that X is αγ-T0. 
Conversely, if X is αγ-T0, by Remark 5.10 (2), X 

is αγ-D0.  
Corollary 5.13. If (X, τ) is αγ-D1, then it is αγ-T0. 
Proof. Follows from Remark 5.10 (3) and 

Theorem 5.12. 
Definition 5.14. A point x ∈ X which has only X 

as the αγ-neighborhood is called an αγ-neat point. 
Theorem 5.15. For an αγ-T0 topological space (X, 

τ) the following are equivalent: 
(1) (X, τ) is αγ-D1. 
(2) (X, τ) has no αγ-neat point. 
Proof. (1) ⇒ (2). Since (X, τ) is αγ-D1, then each 

point x of X is contained in an αγD-set A = U\V and 
thus in U. By definition U ≠ X. This implies that x 
is not an αγ-neat point. 

(2) ⇒ (1). If X is αγ-T0, then for each distinct pair 
of points x, y ∈ X, at least one of them, x (say) has an 
αγ-neighborhood U containing x and not y. Thus U 
which is different from X is a αγD-set. If X has no 
αγ-neat point, then y is not an αγ-neat point. This 
means that there exists an αγ-neighbourhood V of y 
such that V ≠ X. Thus y  ∈ V\U but not x and V\U is 
an αγ D-set. Hence X is αγ-D1.  

Corollary 5.16. An αγ-T0 space X is not αγ-D1 if 
and only if there is a unique αγ-neat point in X. 

Proof. We only prove the uniqueness of the αγ-
neat point. If x and y are two αγ-neat points in X, 
then since X is αγ-T0, at least one of x and y, say x, 
has an αγ-neighborhood U containing x but not y. 
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Hence U ≠ X. Therefore x is not an αγ-neat point 
which is a contradiction. 

Definition 5.17. A topological space (X, τ) with 
an operation γ on τ, is said to be αγ-symmetric if for 
x and y in X, x  ∈ αγcl({y}) implies y ∈ αγcl({x}). 

Theorem 5.18. If (X, τ) is a topological space with 
an operation γ on τ, then the following are equivalent: 

(1) (X, τ) is αγ-symmetric space. 
(2) Every singleton is αγ-g closed, for each x ∈ X. 
Proof. (1) ⇒ (2). Assume that {x} ⊆ U ∈ αγO(X), 

but αγcl({x})	⊈ U. Then αγcl({x})	∩ X\U ≠	φ. Now, 
we take y ∈ αγcl({x})  X\U, then by hypothesis x ∈ 
αγcl({y})	⊆ X \ U and x ∉ U, which is a contradiction. 
Therefore {x} is αγ-g closed, for each x ∈ X. 

(2) ⇒ (1). Assume that x ∈ αγcl({y}), but y ∉	
αγcl({x}). Then {y} ⊆ X\αγcl({x}) and hence 
αγcl({y}) ∈ 	 X\αγcl({x}). Therefore x ∈ X\αγcl({x}), 
which is a contradiction and hence y ∈ αγcl({x}). 

Corollary 5.19. If a topological space (X, τ) with 
an operation γ on τ is an αγ-T1 space, then it is αγ-
symmetric.  

Proof. In an αγ-T1 space, every singleton is αγ-
closed (Theorem 5.4) and therefore is αγ-g closed 
(Theorem 3.12). Then by Theorem 5.18, (X, τ) is 
αγ-symmetric.  

Corollary 5.20. For a topological space (X, τ) 
with an operation γ on τ, the following statements 
are equivalent: 

(1) (X, τ) is αγ-symmetric and αγ-T0. 
(2) (X, τ) is αγ-T1. 
Proof. By Remark 5.10 and Corollary 5.19, it 

suffices to prove only (1) ⇒ (2). 
Let x ≠ y and by αγ-T0, we may assume that x ∈ 

U ⊆ X\{y}for some U ∈ αγO(X). Then x ∉ 
αγcl({y}) and hence y ∉ αγcl({x}). There exists an 
αγ-open set V such that y ∈ V ⊆ X\{x} and thus  
(X, τ) is an αγ-T1 space. 

Corollary 5.21. For an αγ-symmetric topological 
space (X, τ) the following are equivalent: 

(1) (X, τ) is αγ-T0. 
(2) (X, τ) is αγ-D1. 
(3) (X, τ) is αγ-T1. 
Proof. (1) ⇒ (3). Corollary 5.20. 
(3) ⇒ (2) ⇒ (1). Remark 5.10 (2) and Corollary 

5.13.  
Remark 5.22. If (X, τ) is an αγ-symmetric space 

with an operation γ on τ, then the following 
statements are equivalent: 

(1) (X, τ) is an αγ-T0 space. 
(2) (X, τ) is an αγ-T½ space. 
(3) (X, τ) is an αγ-T1 space. 
Definition 5.23. Let A be a subset of a topological 

space (X, τ) and γ an operation on τ. The αγ-kernel 
of A, denoted by αγker(A) is defined to be the set 
αγker(A) = ∩{U ∈ αγO(X): A ⊆ U}. 

Theorem 5.24. Let (X, τ) be a topological space 
with an operation γ on τ and x ∈ X. Then y ∈ 
αγker({x}) if and only if x ∈ αγcl({y}). 

Proof. Suppose that y ∉ αγker({x}). Then there 
exists an αγ-open set V containing x such that y ∉ V. 
Therefore, we have x ∉ αγcl({y}). The proof of the 
converse case can be done similarly. 

Theorem 5.25. Let (X, τ) be a topological space 
with an operation γ on τ and A be a subset of X. 
Then, αγker(A) = {x ∈  X: αγcl({x}) ∩ A ≠	φ}. 

Proof. Let x ∈ αγker(A) and suppose αγcl({x}) ∩ 
A ≠	φ. Hence x ∉ X\αγcl({x}) which is an αγ-open 
set containing A. This is impossible, since x ∈ 
αγker(A). Consequently, αγcl({x}) ∩ A ≠	φ. Next, 
let x ∈ X such that αγcl({x}) ∩ A ≠	φ and suppose 
that x ∉ αγker(A). Then, there exists an αγ-open set 
V containing A and x ∉ V. Let y ∈ αγcl({x}) ∩ A. 
Hence, V is an αγ-neighborhood of y which does not 
contain x. By this contradiction x ∈	αγker(A) and the 
claim.  

Theorem 5.26. If a singleton {x} is an αγD-set of 
(X, τ), then αγker({x})  ≠ X. 

Proof. Since {x} is an αγD-set of (X, τ), then there 
exist two subsets U1 ∈ αγO(X) and U2 ∈ αγO(X) such 
that {x} = U1\U2, {x}	⊆ U1 and U1 ≠ X. Thus, we 
have that αγker({x}) ⊆	U1 ≠  X and so αγker({x}) ≠ X. 

Theorem 5.27. If f: (X, τ) → (Y, σ) is an α(γ,β)-
irresolute surjective function and A is an αβD-set in Y, 
then the inverse image of A is an αγD-set in X. 

Proof. Let A be an αβD-set in Y. Then there are 
αβ-open sets O1 and O2 in Y such that A = O1\O2 
and O1 ≠ Y. By the α(γ,β)-irresolute of f, f-1(O1) and f-

1(O2) are αγ-open in X. Since O1 ≠ Y and f is 
surjective, we have f-1(O1) ≠ X. Hence, f-1(A) = } 
f-1(O1)\f-1(O2) is an αγD-set. 

Theorem 5.28. If (Y, σ) is αβ-D1 and f: (X, τ) → 
(Y, σ) is α(γ,β)-irresolute bijective, then (X, τ) is αγ-D1. 

Proof. Suppose that Y is an αβ-D1 space. Let x 
and y be any pair of distinct points in X. Since f is 
injective and Y is αβ-D1, there exist αβD-set Ox and 
Oy of Y containing f(x) and f(y) respectively, such 
that f(x) ∉	 Oy and f(y) ∉	 Ox. By Theorem 5.27,  
f-1(Ox) and f-1(Oy) are αγD-set in X containing x and 
y, respectively, such that x ∉ f-1(Oy) and y ∉ f-1(Ox). 
This implies that X is an αγ-D1space. 

Theorem 5.29. A topological space (X, τ) is αγ-D1 
if for each pair of distinct points x, y ∈ X, there exists 
an α(γ,β)-irresolute surjective function f: (X, τ) → (Y, 
σ), where Y is an αβ-D1 space such that f(x) and f(y) 
are distinct. 

Proof. Let x and y be any pair of distinct points 
in X. By hypothesis, there exists an α(γ,β)-irresolute, 
surjective function f of a space X onto an αβ-D1 
space Y such that f(x) ≠ f(y). It follows from 
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Theorem 5.11 that αβ-D1 = αβ-D2. Hence, there 
exist disjoint αβD-set Ox and Oy in Y such that f(x) ∈ 
Ox and f(y) ∈ Oy. Since f is α(γ,β)-irresolute and 
surjective, by Theorem 5.27, f-1(Ox) and f-1(Oy) are 
disjoint αγD-sets in X containing x and y, 
respectively. So, the space (X, τ) is αγ-D1. 

Functions With αγ-Closed Graphs 

In this section, functions with αγ-closed graphs 
are introduced and studied, and some properties and 
characterizations of αγ-closed graphs are explained. 

Definition 6.1. Let f: (X, τ) → (Y, σ) be any 
function, the graph of the function f is denoted by 
G(f) and is said to be αγ-closed if for each (x, y) ∉ 
G(f), there exist U ∈	αγO(X, x) and an open set V of 
Y containing y such that (U ਀ V ) ∩ G(f) = φ. 

 A useful characterisation of functions with αγ-
closed graph is given below. 

Lemma 6.2. The function f: (X, τ) → (Y, σ) has 
an αγ-closed graph if and only if for each x ∈ X and y 
∈ Y such that y ≠ f(x), there exist an αγ-open set U 
and an open set V containing x and y respectively, 
such that f(U) ∩V = φ. 

Proof. It follows readily from the above 
definition. 

Theorem 6.3. Suppose that a function f: (X, τ) → (Y, 
σ) has an αγ-closed graph, then the following are true: 

(1) If f is surjective, then Y is T1. 
(2) If f is injective, then X is αγ-T1. 
(3) If a function f is αγ-continuous and injective, 

then X is αγ-T2. 
(4) For each x ∈ X, {f(x)} = ∩{f(cl(f(U)): U ∈ 

αγO(X, x)}. 
Proof. (1) Let y1 and y2 be two distinct points of 

Y. Since f is surjective, there exists x in X such that 
f(x) = y2, then (x, y1) ∉	G(f). By Lemma 6.2, there 
exist αγ-open set U and open set V containing x and 
y1 respectively, such that f(U) ∩ V = φ. We obtain 
an open set V containing y1 which does not contain 
y2. Similarly we can obtain an open set containing y2 
but not y1. Hence, Y is T1. 

(2) Let x1 and x2 be two distinct points of X. The 
injectivity of f implies f(x1) ≠ f(x2) whence one 
obtains that (x1, f(x2)) ∈ (X ਀ Y)\G(f). The  
αγ-closedness of G(f), by Lemma 6.2, ensures the 
existence of U ∈ αγO(X, x1), V ∈	O(Y, f(x2)) such 
that f(U) ∩V = φ. Therefore, f(x2) ∉	 f(U) and a 
fortiori x2 ∉	U. Again 

(x2, f(x1))	 ∈ (X ਀ Y)\G(f) and αγ-closedness of 
G(f), as before gives A ∈ αγO(X, x2), B ∈ O(Y, f(x1)) 
with f(A) ∩ B = φ, which guarantees that f(x1) ∉	
f(A) and so x1 ∉ A. Therefore, we obtain sets U and 
A ∈ αγO(X) such that x1 ∈ U but x2 ∉U while x2 ∈ A 
but x1 ∉A. Thus X is αγ-T1. 

(3) Let x1 and x2 be any distinct points of X. 
Then f(x1) ≠ f(x2), so (x1, f(x2)) ∈ (X ਀ Y)\G(f). Since 
the graph G(f) is αγ-closed, there exist an αγ-open set 
U containing x1 and open set V containing f(x2) such 
that f(U) ∩V = φ. Since f is αγ-continuous, f-1(V) is 
an αγ-open set containing x2 such that U ∩ f-1(V) = 
φ. Hence X is αγ-T2. 

(4) Suppose that y ≠ f(x) and y ∈{cl(f(U)): U ∈ 
αγO(X, x)}. Then y ∈ cl(f(U)) for each U ∈ αγO(X, 
x). This implies that for each open set V containing 
y, V ∩ f(U) ≠ φ. Since (x, y) ∉	G(f) and G(f) is an 
αγ-closed graph, this is a contradiction. 

Theorem 6.4. If f: (X, τ) → (Y, σ) is αγ-
continuous and Y is T2 space, then G(f) is αγ-closed 
graph. 

Proof. Suppose that (x, y) ∉ G(f), then f(x) ≠ y. 
By the fact that Y is T2, there exist open sets W and 
V such that f(x) ∈ W, y ∈ V and V ∩ W = φ. Since f 
is αγ-continuous, there exists U ∈ αγO(X, x) such 
that f(U) ⊆	W. Hence, we have f(U) ∩ V = φ. This 
means that G(f) is αγ-closed. 

Conclusion 

In this paper, we introduce the notion of αγ-open 
sets, αγ-continuity and α(γ,β)-irresoluteness in 
topological spaces. By utilizing these notions we 
introduce some weak separation axioms. Also we show 
that some basic properties αγ-Ti (i = 0, ½, 1, 2), αγ-Di (i 
= 0, 1, 2) spaces and we offer a new notion of the 
graph of a function called an αγ-closed graph and 
investigate some of their fundamental properties. 
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