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ABSTRACT. In this paper we introduce the strongly generalized difference sequence spaces of modulus

function and 4, —a'"" s a non-negative four dimensional matrix of complex numbers and (p;,,,) is a

i(k.I)
sequence of positive real numbers. We also give natural relationship between strongly generalized
difference summable sequences with respect of modulus. We examine some topological properties of the
above spaces and investigate some inclusion relations between these spaces.
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A diferenca dupla fortemente generalizada de espacos sequenciais de X determinados por

modulo

RESUMO. Os espagos sequenciais diferenciais fortemente generalizados da func¢io modulus sio
i(m,n)
i(k.0)
uma sequéncia de ndmero reais positivos. Proporciona-se o relacionamento natural entre sequéncias
somdveis diferenciais fortemente generalizadas referente ao modulus. Analisam-se algumas caracteristicas
topoldgicas dos espagos mencionados acima e investigam-se as relagdes includentes entre esses espagos.

apresentados. 4 =a ¢ uma matriz nio negativa de quatro dimensdes de ndmero complexos € (p;,.,)) €

Palavras-chave: medianas de Valle-Poussin, sequéncias diferenciais, sequéncia de Gai, sequéncia analitica, fun¢io de

médulo, sequéncia dupla.

Introduction

Throughout the paper w, x and JI denote the
classes of all, gai and analytic scalar valued single
sequences, respectively. We write 1w for the set of all
complex sequences (x,,,), where m,n € X the set of
positive integers. Then, 1’ is a linear space under the
coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces
are found in Bromwich (1965). Later on these were
investigated by Hardy (1917), Moricz (1991),
Moricz and Rhoades (1988), Basarir and Solancan
(1999), Tripathy (2003), Turkmenoglu (1999) and
many others. Quite recently Zeltser (2001) in her
Ph.D. thesis, had essentially studied both the theory
of topological double sequence spaces and the
theory of summability of double sequences.
Mursaleen and Edely (2004) recently
introduced the statistical convergence and Cauchy
for double sequences and given the relation between
statistical ~ convergent and strongly Ces"aro
summable  double sequences.  Subsequently

have

Mursaleen (2004) and Mursaleen and Edely (2004),
have defined the almost strong regularity of
matrices for double sequences and applied these
matrices to establish a core theorem and introduced
the M-core for double sequences.

They have determined four dimensional matrices
transforming every bounded double sequences x =
(x,,,) Into one whose core is a subset of the M-core of
x. Recently, Altay and Basar (2005), have defined the
spaces BS, BS (t) CSp» CSs CS- and BV of double
sequences consisting of all double series whose
sequence of partial sums are in the spaces M,, Um(t) G,
Csp Cr and L, respectively, and also examined some
properties of those sequence spaces and determined
the o - duals of the spaces BS, (S and 37 and the
" B (9)- duals of the spaces CSs, CS, of double series.
Quite recently Basar and Sever (2009), have introduced
the Banach space £, of double sequences
corresponding to the well-known space § of single
sequences and examined some properties of the space
Lg Quite recently Das et al. (2008), Vakeel and
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Tabassum (2010, 2011a and b), Kumar (2007),
Subramanian and Misra (2010), have studied the space
2% (p.g.u) of double sequences and gave some inclusion
relations.

Spaces of strongly summable sequences were
discussed by Kuttner (1946), Maddox (1979) and
others. The class of sequences which are strongly
Ces aro summable with respect to a modulus was
introduced by Maddox (1986), as an extension of the
definition of strongly Ces"aro summable sequences.
Cannor (1989) further extended this definition to
the definition of stong A — summability, with
respect to a modulus where A = (4,,) is a no-
negative regular matrix and established some
connection between strong A — summabilty with
respect to a modulus and A — statistical convergence.
The notion of double sequence was presented by
Pringsheim (1900). The four dimensional matrix
transformations

®© ®© mn
(Ax)k,l Zm:lZn:l Ay Xy

was also studied extensively by Hamilton (1936,
1938a and b, 1939). In his work and throughout this
paper, the four dimensional matrices and double
sequences have real-valued entries unless specified
otherwise. In this paper we extend a few results
known in the literature for ordinary (single)
sequence spaces to apply sequence spaces. A
sequence X = (X, is said to be strongly (2, 4,)
summable to zero, if .(x)—>0 as r,s—>o. Let

i(mn

A:(ai(k,l)) be an infinite four dimensional matrix of

complex numbers. We write

©

Ax = (147 (x))izl ’ if
Af ()C) = Z:=l Zj:l (atl((/:’ll)) )xmn
converges for each i € .

Let p = (p,,) be a sequence of positive real
numbers with 0 < p,,, < sup p,,, = G and let D =

max(1,2°"). Then, for a,,,b, €N the set of

complex numbers , and for all m,n € X we have

mn?

mn

4, + b [17 <D {|amn T |bmn|ml+n} 0

The double series z:zlzjzlxmn is said to be
convergent if and only if the double sequence (S,,,)
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m,n
is convergent, where Sm = z,-,,-:1 Xy (m,n € N)
A sequence x = (x,,,) is said to be double analytic

1
mn <o, The vector space of all double

if sup,, |x,,
analytic sequences is denoted by A°.

A sequence x = (x,,) 1Is said to be a double gai

1
sequence if ((m+n)x,,[)™" —>0.as m,n—>o0. The
set of all double gai sequences is denoted by x°. We
denote ¢@as the set of all finite sequences.
The (m,n)" section, usually denoted by x!"", of

xmn

m, ~

the sequence x = (x,,) is defined by ¥ = 2" %3,
denotes the double

1
sequence whose only non-zero term is (i+/)! in
the (i,)" place for each i, j € N.

The difference sequence space (for single
sequences), usually denoted by Z(A), is defined as
(KIZMAZ, 1981)

for all m,ne$; where I,

Z(A) = {x=(x,)ew: (Ax,)eZ}

for Z=c,c, and [, A(xk) =X, + X, for all kell,
where w, ¢, ¢, and [,
convergent, null, and bounded scalar valued single
sequences respectively. The above space is a Banach
space normed by [x]| = |x| + sup,., [Ax,|.

In this paper we define the difference double
sequence space as follows:

denote the class of all,

Z(A) = {xz(xmn)ew2 (Ax,, eZ)}

where: Z = A%, x*and
Axmn = (xrrm _xm,nH) - (xn1+1,n _‘xm+l,n+l) fOr all m,n e N.

We also have, for all m,neX.

m — m-1 — Am-1 m-1
A Kn = A(A xmn) =A X = A xm,n+1 -
m-1 m-1
- A xm+1,n + A xm+1,n+1

A function f:[0,00)—[0, ) is said to be a
modulus function (NAKANO, 1953) if and only if
it satisfies

(1) ftx) = 0, if and only if, x = 0,

@i1) flx + y) < f (%) + f{y), forallx = 0,y = 0,

(i11) f is increasing,

(iv) f Is continuous from the right at 0.

Since |£(x)+£(v)< f(x-]), it follows from (iv) that
is continuous on [0, o).

A double sequence A, = {(B, u,)} is said to be a
double A, sequence if there exist two non-decreasing
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sequences of positive numbers tending to infinity
suchthatf,, < B + 1,8, =1andug,, <u, + 1, u,
= 1. The generalized double de Vallee-Poussin
mean is defined as

t = tl‘S

rs

1
('xmn ) = Zz(m,")E[” xmn

where:

Ay =P u,and [, =
u,+1<n<s}.

A double sequence x=(x,,)
(#,,4,)- summable to a number L if
P-lim, ¢t =L. If 2 (V,.4,)-

summability is reduced to (C, 1, 1) - summability.

{mn):r-p,+1<m=<rs-

is said to be

=7rs, then

Main results
Let 4 = (g;((Z}’)’)) is an infinite four dimensional
matrix of complex numbers and p = (pi(m,n)) be a

double analytic sequence of positive real numbers
such that 0 < i =inf, p,,,, < sup, p,,,) =H <»,

and f be a modulus. We define

v [4amp.f]-

mn E W hm l” Zmne[

Pimn)

1
m +
m+n 'A mn)m "

A

2 & I:A,Am,p,f]z

_ 2. O
x=(x,,)ew’ sup, A, Zmne]w

Pi(mn)
<

m’l m
) Zmlzm (k1) A Ko .

follows in this paper we establish some of the
topological properties of the above spaces and
investigate inclusion relations between them. We
prove:

{ fﬂ 4(a"x,, )1

where: ( In what

741

Theorem-1
Let f be a
]
complex field C.
Proof: Let x’erZ/% [A,A”’,p,f} and a,ueN.
such that

modulus function. Then

s a linear space over the

Then there exist integers D, and D,

1 1
e <D, and |u[=+ <D,.

|

By using (1) and the

I
I

properties of modulus f, we have:

©i(mn ——
A" m+n
Zm»xel |: [‘Zm 1 n= la ( n1+n)'A (axmn+luymn)

1

< !
013 % [ S s s,

+
DD:

L 1
zz{x[z L (s n)iay

Pi(mn)
b

Asr, s — .
. Z’Z m . .
This proves that szz ':A,A ,p,f] is linear.

Theorem-2

Let be a modulus function. Then the inclusion
szzﬂfz [A,Anr’p’f:l c VZ;VZA? I:A,Am,p’f:'

holds.
Proof: Let ycyp, » [A,A'",p,f} such that

J:| Pi(mn)

A ((m+n)!A"x,, )" =0+0

PR (szf [A,A’",p,f])~ Then we have

1

sup}"s‘ f‘Yl zmnél [ (‘ ( m + n)'Am )m+n

o5

< Dsup, 4, z'me]l: [‘ (m+n)lAn1

+ Dswp 23, [ F(O)]™
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1 Pi(mn)
< Dsup, A Zmni[ I: [ ( m+n)lA"x, ’),W _OH

+ Tmax{ £ ((ol)', (o)} <

Hence A [A,A”’,p,f]- Therefore the

xe V242

inclusion

v [Aa s e v, F4a ]

holds . This completes the proof.

Theorem-3

Let P = (pi(mn)) A’ Then [A A pfisa

paranormed space with paranorm

g (x) = sup,, [ﬂ’r_cl Zmne],.‘

1

{fﬂA, ((m + n)!A"’xmn )”’*”

1
j:|p,<nm) M
where: M = max(1,sup, p,).
Proof: Clearly ¢(-x)=g(x). It is trivial that

((m+n)!A”’xW,)ﬁ —o for x, = 0. Hence we get ¢

b

(0) = 0. Further since Ml Land m >1,
Minkowski’s inequality and definition of modulus f,

for each (r, s), we have
L
J:|P1( ,,,,, )y \M

{em e AT T
SO

This follows that g (x) is sub-additive. Next, for
any complex number a and the definition of
modulus function, we have

using

1

A ((m + n)!A"’ (x,, +ymn))m

2 D, {f [

1

((m+n)1a,, Yoo

1

( m +n)'A'” Vo )’”*”

Nagarajan and Misra

g(ax _sup;v[ rrlzmnel

L
]}P;(wn} M

l:f{ A, ((m +n)!A" ax,, )’”l*”

<K g(x),

where g _1 4 {|a|min} and Dtl] denotes the integral

partof t.

Since f is modulus, we have x — 0 implies g (x)
— 0. Similarly x — 0 and o — 0 implies g (ax) — 0.
Thus we have for g x fixed and a — 0, g (ax) — 0.
This completes the proof.

Theorem-4
Le f be a modulus function. Then
v, "l4aample, 2[4 p,f]

Proof: Let , ¢ v, Zﬂa [A,A’”,p} . Then for every

£>0, there exists § 0<s§<1, such that for every
te[O,oo) with 0<¢<§ ,f(t) < ¢. Now we have

\J:|P,(mn)

1

Y | R

— -1 1
- l”f Zmnel

.
|l o

]i| Pi(mn)

1
A; ((m+n)!Amxm,, )"'*”

j:| Pi(mn)

)

1

{fﬂA[ ((m +n)!A'"xmn )m
Z"_Sl Zmne]

>

1

M|A,. ((m+n)1ax,, )

< max{f(g)h ,f(g)H}
+max{l,(2f(l)54)H}/l,;1

Zmne]

rs

4; ((m+n)'Am )’"l*”

>0
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ey

Therefore y ¢ Vzlz s [A,A'”,p,f]~ This completes

1

A ((m+n)!A'”xmn )ﬁ

the proof.
Theorem-5

qi(mn)
Let o< Pty < Do) and {P[W)} be bounded.

Then 7, 2”2 [A,A”’,q,f} cV, 2% [A,AM,P,f]
Proof: Let

X € Vzlzh[A,Am,q,f} @)

Gi(mn)
H 3

Then

1
-1 m ‘m+n
” Zmne] |: (‘ ( m+n)'A mn)””n

—>0,as r,s >

Let

1

1 Z; { U ( m+n)IA"x )T

i(mn)
and

_ pi(mn)
}/i(mn) q( )
Since p(mn) < Gy > WE have (< 7;(mn)£ 1.

Take 0 <y <y Define

=t(t ) u,=0(1,<1);
=0(t,21);v, =1,(,<1);
7Amn yimn 7[mn
t=u +v 6" =u" 4y
Then it follows that
u™ <u <t oand v <V (4)
Hence by (4)
ti%(»m) — ui}/i(mn) + vi}/i(mn) < ti + Vi;/
That is

743

[zm Za /[

- Yi(mn
| i) ) 1)
( m+n)'A'” )'"*”

[ﬂz HA((m)A o

Sﬂ’? Zmnelm l:f

S 1l

("

But as, by (3)

1 Di(mn)
m
( m+n) A xmn)m*"

J:|‘L(nm)
]}P,(mn)

x eV, *[ANpf] . Thi

establishes the theorem.

1

ﬂ,};l Zmne!m {f [|A’ ((m + l’l)!A”’xmn )m+n

—>0,asr,s >0,

1

A Z[l: U (m+n)|A’" ),T

—->0,asr,s >0

Hence

Theorem-6
() Let 0 < inf p, < 1. Then V., [4.A".p.f]

v, *laamr]s

@) Let 1 = p sup pi < oo Then
v, 2l flen, 2aanpf],
@) Let 0 < p =< ¢q < o Then
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szz% [A,A"’,p,f] < szzﬂq I:A’Am’q’f]'
Proof: The proof is a routine verification.

Conclusion

We give natural relationship between strongly
generalized difference v, ~ [A,A’",p,f} -

summable sequences with respect to f. We also

examine  some  topological  properties  of
v, ﬂq[ A,A" p f] spaces and investigate some

inclusion relations between these spaces.
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