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ABSTRACT. In this paper we introduce fA
2  sequence spaces defined by modulus function and study 

general properties of these spaces and also establish some inclusion results among them. Also P – statistical 
2  sequence spaces is defined and discuss about  general properties. 
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O 
2∆ 

fA definido por módulo 

RESUMO. Este estudo apresenta espaços de sequência fA
2  definidos pela função módulo e analisa 

propriedades gerais desses espaços, estabelecendo alguns resultados de inclusão entre eles. Além disso, 
espaços de sequência 2  p-estatísticos são definidos e discutidos sobre as propriedades gerais. 

Palavras-chave: sequência gai, sequência analítica, função módulo, sequências duplas, fA
2 , convergência P, 

sequência de diferença, regular RH, sentido Prinsheim, convergência estatística. 

Introduction 

Throughout w, x and   denote the classes of all, 
gai and analytic scalar valued single sequences, 
respectively. 

We write 2w  for the set of all complex 
sequences  mnx , where nm, , the set of positive 

integers. Then, 2w  is a linear space under the 
coordinate wise addition and scalar multiplication. 

Some initial works on double sequence spaces 
are found in Bromwich (1965). Later on they were 
investigated by Hardy (1917), Moricz (1991), 
Moricz and Rhoades (1988), Basarir and Solancan 
(1999), Tripathy (2003), Turkmenoglu (1999) and 
many others.  

Let us define the following sets of double 
sequences: 
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where: 
 

 mntt   is the sequence of strictly positive reals 
nmtmn , allfor  and 

 mnp lim  denotes the limit 

in the Pringsheim’s sense. In the case 
         tCtLtCtCtnmt bpuppumn ,,,,;, allfor  1 0  

reduce to the sets , and ,,,, 00 bpbpuppu CCLCC  

respectively. Now, we may summarize the 
knowledge given in some document related to the 
double sequence spaces. Gokhan and Colak (2004, 
2005) have proved that      tCtCt bppu , and   are 

complete paranormed spaces of double sequences 
and calculated the  ,, duals of the spaces 

   tCt bpu  and  . Quite recently, Zeltser  has 
essentially studied both the theory of topological 
double sequence spaces and the theory of 
summability of double sequences Mursaleen et al. 
(2003) have recently introduced the notion of 
statistical convergence and statistically Cauchy for 
double sequences independently and proved a 
relation between statistical convergent and strongly 
Cesaro summable double sequences. Mursaleen 
(2004) and Mursaleen and Edely (2004) have 
defined the almost strong regularity of matrices for 
double sequences and applied these matrices to 
establish a core theorem and introduced the  -
core for double sequences and determned those four 
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dimensional matrices transforming every bounded 
double sequences  jkxx   into one whose core is a 
subset of the M-core of x. Altay et al. (2005) have 
defined the spaces   BVCSCSCStSS rbpp  and ,,,,  
of double sequences consisting of all double series 
whose sequence of partial sums are in the spaces 

  urbppuu LCCCt  and ,,,, , respectively, and also 
examined some properties of those sequence spaces 
and determined the  duals of the spaces 

bpCSVS ,,  and the   -duals of the spaces 

rbp CSCS  and of double series. Basar and Sever (2009) 

have introduced the Banach space qL of double 

sequences corresponding to the well-known space 

q  of single sequences and examined some 

properties of the space Lq Subramanian and Misra 
(2010) have studied the space  uqpM ,,2  of double 
sequences and proved some inclusion relations. 

Spaces are strongly summable sequences were 
discussed by Kuttner (1946) and Maddox (1979) and 
others. The class of sequences which are strongly 
Cesaro summable with respect to a modulus was 
introduced by Maddox (1986) as an extension of the 
definition of strongly Cesaro summable sequences. 
Cannor (1989) further extended this definition and 
introduced the notion of strong A – summability 
with respect to a modulus where  knaA ,  is a 
nonnegative regular matrix and established some 
connections between strong A – summability, strong 
A – summability with respect to a modulus, and A – 
statistical convergence. In Pringsheim (1900) the 
notion of convergence of double sequences was 
presented by a Pringsheim. Also, in Hamilton (1936, 
1938, 1939) the four dimensional matrix 

transformation   






1 1m n
mn

mn
kk xaAx  was studied 

extensively by Robison and Hamilton. 
We need the following inequality in the sequel of 

the paper. For 0, ba and ,10  p  we have 
 
1.1   ppp baba 
 

The double series 


1,nm
mnx is called convergent if 

and only if the double sequence  mnS  is convergent, 

where  
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1,1,

, . 

A sequence  mnxx   is said to be double analytic 
if .sup

/1 nm

mnmn x The vector space of all double 

analytic sequences will be denoted by 2 . A 
sequence  mnxx   is called double gai sequence if 

   ., as 0!
/1  

nmxnm
nm

mn
 The double gai 

squences will be denoted by 2 . Let 

 sequences finite all . 

Consider a double sequence  .ijxx  The 

 thnm,  section  nmx ,  of the sequence is defined by 
  




nm

ji
ijijij

nm nmxx
,

0,

,   where;, allfor   denotes the double 

sequences whose only non zero term is a  !
1

ji   in 

the  thji,  place for each ji, .  
An FK-space (or a metric space ) X is said to have 

AK property if  mn  is a Schauder basis for X. Or 
equivalently   ., xx nm   

An FDK-space is a double sequence space 
endowed with a complete metrizable; locally convex 
topology under which the coordinate mappings 

     nmxxx mnk ,  are also continuous. 
Orlicz (1936) used the idea of Orlicz function to 

construct the space (LM). Lindenstrauss and Tzafriri 
(1971) investigated Orlicz sequence spaces in more 
detail, and they proved that every Orlicz sequence 
space M  contains a subspace isomorphic to 

  pp 1 . Subsequently, different classes of 
sequence spaces were defined by Parashar et al. 
(1994), Bektas et al. (2003), Altin and Tripathy 
(2004), Chandrasekhara Rao and Subramanian 
(2004) and many others. The Orlicz sequence spaces 
are the special cases of Orlicz spaces studied in 
Krasnoselskii and Rutickii (1961). 

Recalling Orlicz (1936) and Krasnoselskii and 
Rutickii (1961) an Orlicz function Is a function 

    ,0,0:M  which is continuous, non-
decreasing, and convex with 

    0for  ,0,00  xxMM  and   . as  xxM  If 
the convexity of Orlicz function M is r eplaced by 
subadditivity of ,M  then this function is called the 
modulus function, defined by Nakano (1953) and 
further discussed by Ruckle (1973) and Maddox 
(1986)  and many others. 

An modulus function Mis said to satisfy the 
 2 condition for small u or at 0 if for each k , 

there exist 
   uMRkuMuR kkk  such that  0 and 0  for all 

 .,0 kuu  Moreover, an modulus function Mis said 
to satisfy the  2 condition if and only if 

 
 
   uM

uM
u

2
suplim 0

 

 
Two modulus functions 21  and MM  are said to 

be equivalent if there are positive constants 
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b and ,   
Such that 
 
       .,0 allfor  121 buuMuMuM    
 
An modulus function M  can always be 

represented in the following integral form 
 

   
u

dttuM
0

  

 
where: 

,  the kernel of M , is right differentiable for 

     ,0for  0,00,0  ttt is non-decreasing and 

   
. as  whenever  as  u

u

uM
tt  

Consider the kernel  associated with the 

modulus function M  and let 
 

    stts   :sup  
 
Then  possesses the same properties as the 

function .  Suppose now  

 
x

dss
0

.  

Then,   is an modulus function. The functions 
 and M  are called mutually complementary Orlicz 

functions. 
Now, we give the following well-known results. 
Let  and M  be mutually complementary Orlicz 

functions. Then, we have: 
(i) For all ,0, yu  
 

1.2    ,yuMuy   (Young’s inequality)
 
(ii)For all ,0u  
 

1.3       .uuMuu  

(iii)For all ,10 and ,0  u  
 

1.4    uMuM  
 
Lindenstrauss and Tzafriri (1971) used the idea 

of Orlicz function to construct Orlicz sequence 
space 
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becomes a Banach space which is called an 

Orlicz sequence space. For    ,1  pttM p  the 
space M  coincide with the classical sequence space 

.p  
If X X is a sequence space, we procure the 

following definitions: 
(i) X’= the continuous dual of X; 

(ii) 
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 XXX ,, are called  (or Kothe-Toeplitz 
dual of ,X -(or generalized-Kothe-Toeplitz) dual 
of  XXXX  ly.respective  of dual, of dual,  is 

found in Kamthan et al. (1981). It is clear that 
 XXXXXX  but  , and  does not 

hold, since the sequence of partial sums of a double 
convergent series need not to be bounded. 

The notion of difference sequence spaces (for 
single sequences) was introduced by Kizmaz (1981) 
as follows 

 
      ZxwxxZ kk  :  for  

 
, and , 0  ccZ  

 
where: 

1 kkk xxx  

for all .  k  
Here  and , 0cc denote the classes of convergent, 

null and bounded sclar valued single sequences 
respectively. The difference space pbv  of the classical 
space p  is introduced and studied in the case 

 p1  by Basar and Atlay (2003) and in the case 
10  p  by Altay et al. (2007). The spaces 

      pbvcc  and ,, 0    are Banach spaces normed by 
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Later on the notion was further investigated by 
many others. We now introduce the following 
difference double sequence spaces defined by  
      ZxwxxZ mnmn  :2  
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Definitions and preliminaries 

Definition 

A modulus function was introduced by Nakano 
(1953). We recall that a modulus f is a function 
from    ,,0,0  such that  

(1)   0 ifonly  and if 0  xxf  
(2)       ,0,0 allfor  ,  yxyfxfyxf  
(3) f is increasing, 
(4)  f is continuous from the right at 0. Since 

     yxfyfxf  , it follows from here that 

 .,0on  continuous is f  

Definition 

Let A=  mn
ka   denote a four dimensional 

summability method that maps the complex double 
sequences x  into the double sequence Ax where 
the ,k th term to Ax  is as follows: 
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Such transformation is said to be nonnegative if 

mn
ka   is nonnegative. 

The notion of regularity for two dimensional 
matrix transformations was presented by Robison 
(1926) and Toeplitz (1911). Following Silverman and 
Toeplitz, Robison and Hamilton presented the 
following four dimensional analogue of regularity for 
double sequences in which they both added an 
additional assumption of boundedness. This 
assumption was made because a double sequence 
which is P  convergent is not necessarily bounded. 

Definition 

A double sequence  mnxx   has a Pringsheim 
limit L(denoted by LxP  lim ) provided that given 

on 0  there exists   such that 
., whenever  nmLxmn  We shall describe such an 

 mnxx   more briefly as ‘ P convergent’. 
The four dimensional matrix A is said to be RH-

regular if it maps every bounded P – convergent 
sequence into a P – convergent sequence with the 
same P – limit. The assumption of boundedness was 
made because a double sequence which is P – 
convergent is not necessarily bounded. Using this 
definition Robison and Hamilton independently, 
both presented the following Silverman-Toeplity 
type characterization of RH-regularity. 

Theorem 

The four dimensional matrix X is RH-regular if 
and only if  
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Definition 

Let f  be an modulus function and  mn
jkaA   be a 

nonnegative RH-regular summability matrix method. We 
now define the following new double sequence spaces: 
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Some spaces are defined by specializing 

 1,1, If . and CAfA   the difference sequence spaces 
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defined above become ff
22  and  which are as 

follows:  
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Let 
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Main results 

Theorem 

The class of sequences  
2

fA  and 
 2

fA  are 

linear spaces. 
Proof: It is routine verification. Therefore the 

proof is omitted  

Theorem  

If  Hh0 , where ,sup and inf mnmn Hph  then 

any modulus function f  and a non-negative RH-regular 

summability matrix method ,A then .22   fAA   
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On the other hand, we use the fact that 
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From equation (3.1) and RH-regularity of 

.A Hence    2
fAmnxx  . 

Proposition 

.22   fAfA  

Proof: The proof is easy, so omitted.    

Theorem  

(1)   22 then  ,1inf0 fAfAmn
pph   

(2) If p

fAfAmnmn pp   22 then ,sup1   

 

Proof: (1) Let   ,2 fAmnxx   
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Thus   .2 fAmnxx    

Proof: (2) Let 1mnp for each 
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This implies that  
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Thus   .2 p

fAmnxx    

Theorem 

 22
fAfA  and the inclusion is strict where  
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where: 
D = max(1,2H-1) 
 
Thus   .2 fAmnxx   

The inclusion is strict follows from the following 
example: 
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Consider the sequence 
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Theorem 
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where   .sup,,1max mnmn pHHT    

 
Proof: Clearly      .,00 xgxgg   Let 
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(By Minknowsky’s inequality). Now  
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Let ,C  then the continuity of the product 

follows from the following equality:  
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This shows that    t
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m xx 11 ,  are Cauchy sequences of 

real numbers. As the set of all real numbers is 
complete so there exists real numbers 
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2  Statistical convergence 
The concept of statistical convergence for single 

sequences was introduced by Fast in 1951. Later, 
Mursaleen et al. (2003) and  Tripathy (2003) defined 
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,
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set of all P statistical 2  sequence by .2st  

Definition 

A real double sequence  mnxx   is said to be 

P statistical  convergence to 0 then  
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In this case, we write 

   0!lim
/1

,
2  nm

mnnm xnmst  and we 

denote the set of all P statistical 2  sequence by 

.2st  

Theorem 

If f be an modulus function, then .22   stf  

Proof: Suppose that   ,2 fmnxx   we 

obtain the following for every j and k  
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Hence   ,2 stxx mn  

Theorem 
  22

fst   if and only if the modulus function 

f  is analytic every where  

Proof:  Suppose that f  is analytic everywhere 

and   .2 stxx mn  Then there exists an integer 

  .0 allfor  such that   xKxfK  Then for each 

kj  and , we have  
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and 

thus the Pringsheim’s limit on . and kj  

Conversely, suppose that f is not an analytic so 
that there is a positive double sequence 
      ,...2,1,for   with 2  kjjkzfz jkmn

. Now the 

sequence  mnxx   defined by  

    
   0! and  ,...2,1,for  

, if !
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wise. Then we have    
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mn But 

   2
fmnxx  , which is a contradiction. Hence 

.22   fst   

Conclusion 

Classical ideas of the modulus function of sequence 
spaces connected with P – statistical  and fA

2 . 
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