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ABSTRACT. In this paper, we introduce and investigate relationship among s
r

I
 -statistically convergent, 

s
r

I 
 -statistically convergent and [ , , ]s

rI V    summable sequences respectively over normed linear spaces. 
Keywords: difference operator, ideal, filter, statistical convergence, summability. 

Dois novos tipos de convergência estatística e o método de sumabilidade 

RESUMO. Introduzem-se e investigam-se a relação entre s
r

I
 -estatisticamente convergente,  

s
r

I 


-estatisticamente convergente e [ , , ]s
rI V    sequências sumáveis respectivamente sobre espaços lineares 

normatizados. 
Palavras-chave: operador diferencial, ideal, filtro, convergência estatística, sumabilidade. 

Introduction 

The idea of convergence of a real sequence had 
been extended to statistical convergence by Fast 
(1951) and can also be found in Schoenberg (1959) 
If N denotes the set of natural numbers and NK   
then ),( nmK  denotes the cardinality of ],[ nmK  . 

The upper and the lower natural density of the 
subset are K defined by: 
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If )()( KdKd   then we say that the natural density 

of K exists and it is denoted by d(K). Clearly 
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A sequence (xn) of real numbers is said to be 
statistically convergent to L if for arbitrary 0 , 
the set    LxNnK n:)(  has natural 

density zero. Statistical convergence turned out to be 
one of the most active areas of research in 
summability theory mainly due to Fridy (1985) and 
Šalàt (1980). 

As a generalization of statistical convergence, the 
notion of ideal convergence was introduced first by 
Kostyrko et al. (2000/2001). This was further studied 

in topological spaces by Lahiri and Das (2005), Das 
et al. (2008) and many others. Mursaleen (2000) 
introduced and studied the idea of  convergence 
as an extension of the ],[ V summability 

introduced by Leindler (1965).  statistical 
convergence is a special case of more general 
I statistical convergence studied by Kolk (1991). 
The notion of difference sequence space was 

introduced by Kizmaz (1981), who studied the 
difference sequence spaces   ,  c  and  0c  . 

The notion was further generalized by Et and Çolak 

(1995) by introducing the spaces  s
  ,  sc   and 

 0
sc  . Another type of generalization of the 

difference sequence spaces is due to Tripathy and 
Esi (2006), who studied the spaces  r  ,  rc   

and  0 rc  . Tripathy et al. (2005) generalized the 

above notions and unified these as follows: 
Let r, s be non- negative integers, then for Z a 

given sequence space we have 
 

      :s s
r k r kZ x x w x Z      , 

 
where: 

s
r x   s

r kx   1 1s s
r k r k rx x 

    and 
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0
r kx  kx for all k  N , which is equivalent to 

the following binomial representation: 
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Taking r =1, we get the spaces  s

  ,  sc   

and  0
sc   studied by Et and Çolak (1995). Taking s 

= 1, we get the spaces  r  ,  rc   and 

 0 rc  studied by Tripathy and Esi (2006). Taking r 

= s = 1, we get the spaces   ,  c  and  0c   

introduced and studied by Kizmaz (1981). Some 
other works on difference sequences may be found 
in Karakaya and Dutta (2011), Tripathy and Dutta 
(2010), Tripathy and Dutta (2012), and many others. 

Recently, Savas and Das (2011) made a new 
approach to the notions of [ , ]V  -summability and 

 statistical convergence by using ideals and 
introduce new notions, namely 

 ],[ VI summability and I  -statistical 

convergence. In this paper, our intension is to 
generalize the results of Savas and Das (2011) by 
considering difference sequences. 

Throughout ( , . )X  will stand for a real normed 
linear space and by a sequence x = (xn) we shall 
mean a sequence of elements of X. N will stand for 
the set of natural numbers. 

Main results 

A family YI 2 of subsets a non empty set Y is 
said to be an ideal in Y if (i) I  (ii) IBA ,  

imply IBA   (iii) IA , AB   imply 
IB , while an admissible ideal I of Y further 

satisfies Ix }{  for each Yx . If I is an ideal in Y 

then the collection }:{)( IMYMIF c  forms a 
filter in Y which is called the filter associated with I. 

Let NI 2  be a nontrivial ideal in N. The 
sequence Nnnx )(  in X is said to be 

I convergent to Xx  , if for each 0  the set  
}:{)(   xxNnA n

 belongs to I. For 

details, we refer to Kostyrko et al. (2000/2001). 
Definition 2.1: A sequence )( kxx   is said to be 

s
r

I


-statistically convergent to XL , if for 

every 0 , and every 0 , 
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For

finII  , s = 0, r = 1, s
r

I


-statistical 

convergence coincides with statistical convergence. 
Let )( n   be a non-decreasing sequence of 

positive numbers tending to   such that 
11  nn  ,  11  . The collection of such a 

sequence   will be denoted by . 
The generalized de la Valée-Pousin mean is 

defined by  
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Definition 1.2: A sequence )( kxx   is said to be 

I-[ , , ]s
rV    summable to XL , if  
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i.e., for any 0 , 

 : ( , )s
n rn N t x L I     . 

 
If 

finII  , s = 0, r = 1,  ],[ VI summability 

becomes ],[ V summability (LEINDLER, 1965). 
Definition 1.3: A sequence )( kxx   is said to be 

s
r

I 


-statistically convergent or s
r

SI 


-convergent to 

L, if for every 0 and 0 , 
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In this case we write lims

r

SI x L


   or 

( )s
r

S
kx L I 


 . We also write lims

r
kI x L


  . For 

finII  , r = 0, s = 1, 
s
r

SI 


-convergence again 

coincides with  statistical convergence. 
We shall denote by ( , )s

rS I  , ( , )s
rS I   and 

[ , , ]( )s
rV I   the collections of all 

s
r

I


-statistically 

convergent, 
s
r

SI 


-convergent and [ , , ]s

rI V     

summable sequences respectively. 
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Theorem 2.1: Let ( )n   . 

 
(i) [ , , ]( ) ( ( , ))s s

k r k rx L V I x L S I     . 

(ii) If )(Xmx , the space of all bounded 

sequences of X and ( ( , ))s
k rx L S I  then 

[ , , ]( )s
k rx L V I  . 

(iii) ( , ) ( ) [ , , ]( ) ( )s s
r rS I m X V I m X      . 
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Since [ , , ]( )s

k rx L V I  , so the set on the right 

hand side belongs to I and so it follows 
that ( ( , ))s

k rx L S I  . 

(ii) Suppose that ( ( , ))s
k rx L S I   

and  Xmx . We can choose MLxk
s
r  ,   k. 

Let 0  be given. Now  
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Note that 
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 and so 

belongs to I . 

This shows that [ , , ]( )s
k rx L V I  . 

(iii) The proof follows from (i) and (ii). 
Theorem 2.2: If 0inflim 

 n
n
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following hold 
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For 0 , 
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Since I is admissible, the set on the right hand 

side belongs to I and the proof follows. 
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right hand side belongs to I and so the set on the left 
hand side also belongs to I. This shows that 

)( kxx   is I -statistically s
r   convergent to L. 
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It follows that, for any given 0  
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This shows that ( ( , ))s
rx L S I   and 

completes the proof of the theorem. 

Conclusion 

The paper defines and studies two types of 
statistical convergence and a summability method 
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for difference sequences over a normed space. 
Although we are able to extend some results of Savas 
and Das (2011), the following further suggestions 
remain open: Is there other conditions such that 
Theorem 2.2 holds? Whether the condition in 
Theorem 2.3 is necessary? 
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