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ABSTRACT. Current essay forwards a biodegradation model of a dye, used in the textile industry, based 
on a neural network propped by bootstrap remodeling. Bootstrapped neural network is set to generate 
estimates that are close to results obtained in an intrinsic experience in which a chemical process is applied. 
Pseudomonas oleovorans was used in the biodegradation of reactive Black 5. Results show a brief comparison 
between the information estimated by the proposed approach and the experimental data, with a coefficient 
of correlation between real and predicted values for a more than 0.99 biodegradation rate. Dye 
concentration and the solution’s pH failed to interfere in biodegradation index rates. A value above 90% of 
dye biodegradation was achieved between 1.000 and 1.841 mL 10 mL-1 of microorganism concentration 
and between 1.000 and 2.000 g 100 mL-1 of glucose concentration within the experimental conditions 
under analysis. 
Keywords: resampling, pattern recognition, textile dyes, treatment of effluents, simulation. 

Um modelo de rede neural Bootstrap aplicado na predição da taxa de biodegradação do 
corante reactive Black 5 

RESUMO. Este trabalho propõe um modelo de projeção da biodegradação de um corante, utilizado no 
processo industrial têxtil, baseando-se em rede neural apoiada por reamostragem bootstrap. A rede neural 
com bootstrap é usada para gerar estimativas que se aproximem dos resultados obtidos em uma experiência 
intrínseca na qual se aplicou um processo químico. Pseudomonas oleovorans foi utilizado na biodegradação do 
reactive Black 5. Os resultados mostram uma breve comparação entre a informação estimada pelo método 
proposto e os dados experimentais, com um coeficiente de correlação entre os valores reais e previstos para 
a taxa de biodegradação, acima de 0,99. A concentração de corante e o pH da solução não tiveram 
interferência nos valores de índice de biodegradação. Um valor superior a 90% de biodegradação do corante 
foi alcançado entre 1,000-1,841 mL 10 mL-1 de concentração de microorganismos e 1,000-2,000 g 100 mL-1 
de concentração de glucose, na condição experimental deste estudo. 
Palavras-chave: reamostragem, reconhecimento de padrões, corantes têxteis, tratamento de fluentes, simulação. 

Introduction 

The treatment of effluents in textile industries 
has become a very important issue. There are over 
100,000 commercially available dyes and more than 
7x107 tons of dyestuff produced annually worldwide 
(AKHTAR et al., 2005; ROBINSON et al., 2001). 
These dyes are widely used in a number of 
industries, such as textiles, food, cosmetics and 
printing, although the textile industry is the greatest 
consumer of dyes (PANDEY et al., 2007). 

In Brazil, there are 5,000 textile industries 
distributed into large (11%); small (21%) and very 
small (68%) companies. Whereas the Brazilian textile 
sector occupies 5th place in direct jobs and 6th in 

turnover, the production of dye in Brazil reaches 
26,500 ton per year (SILVEIRA et al., 2009b; 
ULSON DE SOUZA et al., 2007). Moreover, it is 
estimated that at least 20% of textile dyes in the 
dyeing process are discharged into effluents due to 
losses during the process for color fixing to the fibers. 

The removal of these compounds from 
industrial waste is one of the major environmental 
problems faced by the textile sector. In fact, the non-
treatment of these effluents may cause serious risks 
to the environment and, consequently, to the whole 
productive chain. Therefore, the development of 
effluent treatment technologies is currently of great 
relevance due to increasing ecology conscience-
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awareness and to strict environmental law. Further, 
when companies implement new and efficient 
systems of effluent treatment, they show a proactive 
and committed stance towards environmental 
problems by assessing and eliminating its negative 
externalities. In other words, they refrain from 
causing impacts from their production process and, 
by becoming sustainable, no water consumption and 
discharge of polluting effluent occur. 

However, the treatment of effluents by textile 
industries becomes more complicated with the 
common use of several other chemicals with 
different composition, such as moisturizers, 
colorants, electrolytes, dispersers, pH controllers, 
stabilizers and others used during the coloring 
process. 

The main techniques in the literature on effluent 
treatment are adsorption, precipitation, biological 
and chemistry degradation, electrochemistry and 
photochemistry. Currently, the most popular 
methods of color removal from wastewater involve 
physical and chemical processes that, besides being 
expensive, usually include the formation of a 
concentrated sludge that creates a secondary and 
highly significant disposal problem (CHANG; 
KUO, 2000). 

Although integrated chemical methods seem to 
be feasible for the treatment of such wastewater, 
biological methods should preferably be used when 
costs and technical advantages are taken into account 
(YU et al., 2010). Environmental biotechnology is 
constantly trying to find more and more solutions 
for the biological treatment of dye-contaminated 
wastewater. Although numerous microorganisms 
are capable of decolorizing dyes, only a few are able 
to mineralize these compounds into CO2 and H2O 
(JUNGHANNS et al., 2008). Although under 
aerobic conditions, azo dyes are not easily 
metabolized by bacteria (ROBINSON et al., 2001), 
several bacterial strains, including Pseudomonas 
oleovorans, may enzymatically reduce under 
anaerobic conditions the azo bonds in the dye 
molecule to produce colorless by-products 
(SILVEIRA et al., 2009b). 

Due to the toxicity and low biodegradability of 
azo dyes, it is suggested that more effective 
treatment methods, such as advanced oxidation 
processes (AOPs), should be employed for the 
destruction of these compounds in wastewater (KIM 
et al., 2004; MOHAJERANI et al., 2011). However, 
the main costs of the Fenton reaction process with 
H2O2 are disadvantageous. Further, the addition of 
Fe2+ produces a brown turbidity that causes the 
combination of hydroxyl radical. Fe2+ reacts with 

hydroxyl radicals as a scavenger and since this 
contaminant should be removed from the effluent 
the process becomes more expensive still (KIM  
et al., 2004). 

Due to these issues, several researches have been 
carried out to find an efficient approach to simulate 
different process for the degradation of azo dyes 
(ALEBOYEH et al., 2008; BALAN et al., 1999; 
CEYLAN, 2008; DANESHVAR, et al., 2006; 
GUIMARÃES; SILVA, 2007; GUIMARÃES et al., 
2008; MOHAJERANI et al., 2011; SOLEYMANIA 
et al., 2011; ZAREI et al., 2010). Consequently, the 
use of artificial neural network models is widespread 
and shows good results in the prediction of 
degradation rates under different conditions. 

However, neural networks are limited by the size 
of the experimental data set. Neural network 
experiments are conducted by using a division of the 
available data into training, selection, and test sets 
(PANCHAL et al, 2011). Unfortunately, the 
determination of constant values from experimental 
procedure has many limitations. In such cases, the 
initial collected data set is often very small, the 
magnitude of variable effects is sometimes 
ambiguous and data collection costs are high. Data 
division into multiple subsets is therefore very 
unproductive since less data are produced than those 
expected for a single subset. 

An alternative method to overcome these 
problems is the use of a re-sampling approach such 
as the bootstrap method based on an imitation of a 
probabilistic process and on the information 
supplied by a given small set of random samples. 
Research has shown the feasible of the bootstrapping 
technique for estimating objects out of sample by 
redrawing small subsets (EFRON, 1979; EFRON; 
GONG, 1983). However, the use of this approach 
to estimate dye biodegradation rate is practically 
nonexistent. 

Coupling bootstrap and artificial neural networks 
has produced some improved prediction models in 
different areas (FRANKE; NEUMANN, 2000; 
LAJBCYGIER; CONNOR, 1997). Through such 
an approach, the bootstrap method is used to create 
several designed data sets to train different neural 
networks. This approach identifies the distribution 
of a statistical estimation for the construction of 
confidence intervals for values that are being 
predicted (in this case, dye biodegradation rate). Of 
course, decisions based upon a number of 
experiments with different subsets may produce 
much more reliable results and may at least mitigate 
the sampling bias. The latter issue is an important 



Biodegradation prediction bootstrapped neural network model 567 

Acta Scientiarum. Technology Maringá, v. 35, n. 3, p. 565-572, July-Sept., 2013 

problem in the neural network approaches and an 
inevitable consequence of the limited number of 
samples that it is possible to record in a real 
experiment (FRANKE; NEUMANN, 2000; 
LAJBCYGIER; CONNOR, 1997). 

In current assay, the bootstrap method has been 
applied within a neural network context to create an 
improved dye biodegradation prediction model. 
Pseudomonas oleovorans was used in the 
biodegradation of reactive Black 5 and the predicted 
results of the designed model and the experimental 
data were compared to validate the proposed 
numerical approach. 

Material and methods 

Material 

The microorganism Pseudomonas oleovorans 
(CMAI 703) was obtained from the Brazilian 
Collection of Industrial and Environmental 
Microorganisms of the State University of 
Campinas, Campinas, São Paulo State, Brazil. The 
Reactive Black 5 was obtained from the Department 
of Chemical Engineering of the Federal University 
of Sergipe, Brazil. Glucose, mono- and di- basic 
potassium phosphate were provided by Merck 
(Darmstadt, Germany). 

Design and Experimental System 

Table 1 shows the experimental design 24-1 
drawn up to study the effect of dye (Cdye, mg L-1), 
glucose (Cglucose, g 100 mL-1), microorganism  
(Cmo, mL L-1) concentrations and pH (pH) on dye 
biodegradation (%Biod) at initial time. Experimental 
studies were carried out in 250-mL conical flasks 
containing mineral medium and inoculated with 
Pseudomonas oleovorans at 180 rpm, room temperature 
and pressure at 27°C and 1 atm respectively, in an 
orbital shaker, for seven days. The samples were 
then centrifuged and dye biodegradation were 
estimated every 4 hours by a spectrophotometer at 
600 nm (SILVEIRA et al., 2009b). When the sample 
was digested, COD material in that sample was 
oxidized by the dichromate ion. This procedure 
resulted in the change of chromium from the 
hexavalent (VI) to the trivalent (III) state. The two 
chromium species exhibited a color and absorbed 
light in the visible region of the spectrum. The 
dichromate ion (Cr2O7

2-) absorbed strongly in the 
400 nm region, whereas the chromic ion (Cr3+) 
absorbed much less. On the other hand, in the 600 
nm region, the chromic ion absorbed strongly and 
the dichromate ion had a near zero absorption 
(Standard Method 5220 D). The iodine-metric 

method (Winkler method) was used to determine 
OD concentration on zero and five day times for the 
measurement of BOD5 content. The titrating metric 
method (Walkley-Black method) was employed to 
determine TOC content. All methods are shown in 
APHA (1995). 
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The Proposed Bootstrapped Neural Network prediction 
model 

The bootstrap method is based on the imitation 
of the probabilistic process using the information 
from a given small set of random samples. Given an 
original (small) dataset, the method estimates the 
standard error of some parameter of interest using 
the samples as an approximation of the population. 
Specifically, it takes samples with replacement from 
the original dataset to approximate samples from the 
population. A simple algorithm to illustrate the 
bootstrap method may be defined by the three steps 
below (JOHNSON, 2001): 

(1) Sample values with replacement from the 
original data and compute the parameter of interest p. 

(2) Repeat step (1) from a moderate to a great 
number of times, B, to come up with bootstrap 
estimates p1, p2,...., pB . 

(3) Use the standard deviation of the B estimates 
in step (2) to estimate the probability distributions 
describing the prediction process, the standard error, 
and the confidence interval. 

In this case, the original data set obtained from 
the experimental design was used to generate 
thirty-bootstrapped-data set for training feed-
forward neural networks. The artificial neural 
network may be defined as a set of mathematical 
methods and computational algorithms designed to 
simulate the process of information handling and 
the knowledge acquisition on the human brain. 
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Since it is inspired by human brain biology, the 
neural network has basic elements such as artificial 
neurons, synapses, neural weights, transfer 
functions and others (HAYKIN, 1999). The 
artificial neurons are grouped into layers and 
connected in parallel. The first layer of the neural 
network is called the input layer and it has a 
number of neurons equal to the number of 
independent variables. Similarly, the last is the 
output layer and its neurons return the 
correspondent values of the dependent variables. 
Depending on the problem, one or more hidden 
layers may be located between the input and output 
layers. The number of neurons in these hidden 
layers may also be defined according to the 
problem and the computations performed by an 
artificial neuron are determined by the transfer 
functions they apply. Therefore, the number of 
layers, the number of nodes in each layer and the 
transfer function define the configuration of a 
neural network. In the Neural Network training 
process, the input variables (concentrations of dye, 
pH, microorganism and glucose) are normalized 
within the 0-1 range and are connected to the 
hidden neurons by weights and bias. The neurons 
of the network subsequently receive this input 
signal and transform it into output signal that is 
transmitted to the next neuron in the processing 
direction, according to the input-output behavior 
defined by the transfer function. This process is 
accomplished in an iterative way in order to find a 
set of connection weights and biases that minimize 
the mean square error between the observed and 
the predicted output in the output layer. 

In current assay, the bootstrap method has 
been used to generate thirty data sets for the 
neural network training. In this phase, neural 
networks were used with two hidden layers,  
5 neurons in both layers, and bootstrapped 
training sets with 100 samples with replacement. 
Such configuration of the neural networks was 
reached experimentally for values within the 1-5, 
2-15 and 20-100 range for number of layers, 

number of neurons in hidden layers and bootstrap 
sample size, respectively. Figure 1 shows the 
neural network configuration. 

The number of neural networks was chosen to 
ensure a statistical estimation precision of about 8% 
with 95% confidence rate. Further, tangent 
sigmoid as transfer function and gradient descent 
with momentum back-propagation training with 
0.2 of learning rate were employed (HAYKIN, 
1999). 

A sensitivity analysis was also performed to 
quantify the effect of each input variable on the 
network output. The sensitivity analysis approach, 
proposed by Fish and Blodgett (2003) and Delen  
et al. (2006), was adopted in current investigation. 
The basic idea of this method was to disturb one 
input variable value within a reasonable interval 
while keeping all the other variables unchanged. At 
the same time, the corresponding variation of 
network output was recorded and the effect of 
changing a single explanatory variable on the 
network output was found. 

The model selection was also guided by the 
simple strategy of directly focusing on the increase 
of the coefficient of correlation between the 
outcomes and their predicted values, taking all the 
difficulties of this task into consideration (CURRY; 
MORGAN, 2006). 

After the training, the neural networks were used 
to generate new data sets to improve the original set. 
This second step determined all the output values 
for dye biodegradation. The mean value of the 
output from the 30 bootstrapped neural networks 
was used as a predicted value of response 
biodegradation rate. The resulting prediction, based 
on a number of experiments with different subsets, 
may produce much more reliable results and may at 
least mitigate the sampling bias, which is an 
important problem in the neural network 
approaches and is an inevitable consequence of the 
limited number of samples that it is possible to 
record in a real experiment. Figure 2 illustrates the 
whole prediction process. 

 

 
Figure 1. The neural network configuration. 

Cdye(g L-1) 

Cmo(mL L-1) 

pH 

Cglucose(mL L-1) 



Biodegradation prediction bootstrapped neural network model 569 

Acta Scientiarum. Technology Maringá, v. 35, n. 3, p. 565-572, July-Sept., 2013 

 

 
Figure 2. The proposed bootstrapped neural network approach. 

Results and discussion 

Experimental results 

Table 1 shows the experimental plan and results for 
each assay. Most trials showed an over 90% 
biodegradation rate of reactive Black 5. Apparently, 
there was a greater influence of the microorganism 
content than by other factors. However, glucose 
concentration cannot be excluded from these 
important factors, because a low biodegradation index 
had been observed under its lower concentration. The 
best result occurred at 0.15 g L-1 of dye, pH 6,  
1.5 mL L-1 of microorganism and 1 g 100 mL-1 of 
glucose, with a biodegradation index of 96%. 

Table 1. Experimental design for dye biodegradation. Cdye, Cmo 
and Cglucose are, respectively, the concentrations of dye, 
microorganism and glucose; %Biod is the biodegradation index. 

Assay Cdye (g L-1) pH Cmo (mL L-1) Cglucose (%) % Biod 
1 0.05 6 0.5 1 60.46 
2 0.05 6 0.5 2 72.93 
3 0.05 8 0.5 2 42.03 
4 0.05 8 0.5 1 78.32 
5 0.15 6 1.5 2 92.61 
6 0.15 6 1.5 1 96.62 
7 0.15 8 1.5 1 90.53 
8 0.15 8 1.5 2 92.52 
9 0.1 7 1 1.5 90.50 
10 0.1 7 1 1.5 90.44 
11 0.1 7 1 1.5 91.38 
12 0.1841 7 1 1.5 89.79 
13 0.0159 7 1 1.5 85.36 
14 0.1 8.682 1 1.5 90.19 
15 0.1 5.318 1 1.5 86.32 
16 0.1 7 1.841 1.5 93.04 
17 0.1 7 0.159 1.5 84.71 
18 0.1 7 1 2.341 66.82 
19 0.1 7 1 0.659 5.73 
 

Table 2 shows measurements of the chemical 
parameters. A higher removal percentage for all 
parameters may be observed. According to Silveira  
et al. (2009a and b), COD/BOD rate between 1.5 and 
2.5 demonstrated that effluent was biodegradable. 
Consequently, as shown in Table 2, the dye effluent 
used in current experiment was highly biodegradable. 

Golob et al. (2005) achieved a significant result 
for the coagulation and precipitation of the dye, with 
more than 90% removal of reactive Black 5, using 
Al2(SO4)3 as precipitant agent. However, high 

concentrations of dissolved solid and chemicals were 
observed after the process. Consequently, the 
process may be discarded because it increased the 
environment contamination due to a decrease of the 
quality of ecological parameters. 

Table 2. Measured parameters for the best experimental 
conditions. Ponto ou vírgula nos valores? 

Parameter Initial End % Removal 
TOC (mg L-1) 4047.00 2.05 99.95 
COD (mg L-1) 10150.00 28.22 99.72 
BOD (mg L-1) 6394.00 5.09 99.92 
 

Aleboyeh et al. (2008) showed that the initial 
concentration of the dye and initial pH has strong 
effects on the de-colorization efficiency. Further, 
none of the variables studied in their work could 
have been neglected in the photochemical de-
colorization of C.I. Acid Orange 7 solution with a 
90% de-colorization at the best conditions. Similar 
efficiency was also observed by Zarei et al. (2010) in 
their study on the degradation of C.I. Basic Red 46 
(BR46) by photoelectro-Fenton (PEF) combined 
with photocatalytic process. Guimarães and Silva 
(2007) also reported over 90% degradation efficiency 
of Acid Orange 52 and Acid Orange 10 and less than 
80% of Acid Brown 75 and Direct Red 28 dyes. 

Kim et al. (2004) verified less than 60% removal 
efficiency by FeCl2 precipitation reactive yellow  
84 and blue 49 and an efficiency of 95% by photo-
fenton process. 

A lab scale active sludge reactor combined to a 
membrane separation process was used in the dye 
removal of denim textile wastewater. Although  
75 and 90% efficiency was observed, Balan et al. 
(1999) in a biological treatment with yeast of 
Pseudomonas pictorum at 30°C observed a degradation 
of 98% of phenol for high glucose concentration. 
The cell content was not significant and 
demonstrated the importance of glucose on the 
Pseudomanas yeast in biodegradation processes. 

The above demonstrates that P. oleovorans is very 
efficient in dye removal, with results similar to those 
with photo-fenton (ALEBOYEH et al., 2008; 
GUIMARÃES; SILVA, 2007; KIM et al., 2004; ZAREI 
et al., 2010) and with P. pictorum treatments (BALAN 
et al., 1999). In fact, they were higher than those by the 
precipitation (KIM et al., 2004), active sludge and 
membrane processes (SAHINKAYA et al., 2008). 
According to Balan et al. (1999) and Silveira et al. 
(2009a), Pseudomonas yeasts, when adapted to medium, 
used the dyes as a substrate to survive, at the end of 
nutrients. This occurred because they had the ability to 
release several enzymes (catalases) in the reaction and 
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were able to catalyze the decomposition of the carbonic 
and azo links. 

Since photo-fenton processes have a high cost 
with chemicals and increase the turbidity and the 
metal concentration in the effluent, the 
biodegradation process with P. oleovorans is still one 
of the cheapest and most efficient for effluent 
treatment by textile industries (KIM et al., 2004). 

Bootstrapped neural network prediction results 

A large range of assays is required for a simple 
simulation by the traditional neural network 
method. A full factorial design 24 has 27 assays (for a 
full experiment). It comprises the maximum 
reduction in the assay quantity from a 34 common 
experiment, with 243 total assays (with triplicates), 
without statistically significant losses. A factorial 
design 24-1 is a fraction from full factorial planning, 
resulting in 19 assays, as shown in Table 1. 
Therefore, the original small data set obtained from 
the experimental design (Table 1) was used to 
generate thirty bootstrapped data sets for training 
feed-forward neural networks. 

After the training, the neural networks evaluated 
the biodegradation rate from the original input 
values. This second step determined all the output 
values for dye biodegradation in order to generate 
new data sets to improve the original one. The mean 
value of the output from the 30 bootstrapped neural 
networks was employed as a predicted value of 
response biodegradation rate. Figure 3 presents 
numerically the results. 
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Figure 3. Predicted versus experimental dye biodegradation rate. 

The bootstrapped neural network approach also 
calculated the confidence interval for all predicted 
values. The 95% confidence intervals for this case 
are presented in Figure 4. The prediction of the last 
sample was omitted for readability. The minimum 
and maximum values for each point had an almost 
negligible deviation and demonstrated that the 

algorithm reproduced the experimental data with 
high accuracy. Moreover, the designed data analyzed 
the combinations associated to all low- and high-
order interactions and indentified all the effects 
without any aliasing, which may normally occur in 
fractional designs (MONTGOMERY, 2005). In 
fact, the main effects could be assessed more clearly 
and with greater statistical accuracy. 
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Figure 4. 95% confidence intervals for the predictions. 

Additionally, the results of the proposed 
approach were also compared with the experimental 
data. The performance of a linear regression 
between the network response and the 
corresponding target are presented in Figure 5. The 
proposed model presented remarkable coefficient of 
correlation between real and predicted values for the 
biodegradation rate, or rather, above 0.99. 

 

 
Figure 5. Linear regression results for the bootstrapped neural 
network approach. 
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Conclusion 

The prediction model presented was highly 
efficient for the experimental data and the model 
showed a remarkable correlationship coefficient 
between real and predicted values for an over  
0.99 biodegradation rate. The resulting prediction, 
based upon a number of experiments with different 
datasets, may produce much more reliable results 
since it identifies the distribution of statistical 
estimates, calculates standard error and constructs 
confidence intervals for the values that are being 
predicted. Moreover, this approach may at least 
mitigate the sampling bias, which is an important 
problem in neural network approaches and is an 
inevitable consequence of the limited number of 
samples possible to record in a real experiment. 
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