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ABSTRACT. This paper presents the computation of two limits for the nonlinear gain of the error-
squared controller considering two procedures and performance analysis so that a closed-loop system with 
this control algorithm is asymptotically stable in the Lyapunov sense. The first limit for the nonlinear gain 
is obtained using Lyapunov stability theorem. The second limit for the nonlinear gain is obtained 
computing a limit for a linear gain and then the procedure is generalized to the nonlinear case. Simulation 
results were made comparing the tuning methods proposed in this paper, for the error-squared controller, 
with other tuning conventional methods found in the literature. It shown that the limit computed from 
second method is more conservative. 
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O controlador de erro-quadrático: uma proposta para o cálculo do ganho não linear através da 
análise da estabilidade de Lyapunov 

RESUMO. Neste trabalho é apresentado o cálculo de dois limites para o ganho não linear do controlador 
de erro-quadrático considerando dois procedimentos e uma análise de desempenho de modo que um 
sistema em malha fechada com esse algoritmo de controle é assintoticamente estável no sentido de 
Lyapunov. O primeiro limite para o ganho não linear é obtido usando o teorema de estabilidade de 
Lyapunov. O segundo limite para o ganho não linear é obtido calculando um limite para um ganho linear e, 
em seguida, o procedimento é generalizado para o caso não linear. Os resultados das simulações foram 
realizados comparando os métodos de sintonia propostos neste trabalho, para o controlador de erro-
quadrático, com outros métodos de ajuste convencionais encontrados na literatura. É mostrado que o limite 
calculado a partir de segundo método é mais conservativo. 

Palavras-chave: estabilidade de Lyapunov, controle não linear, controlador de erro-quadrático, desempenho. 

Introduction 

It is possible to create a controller with a 
continuous nonlinear function whose gain increases 
with the error. Such controller, described in 
Shinskey (1988) and applied in Sausen (2012), is 
called the error-squared controller. The gain can be 
expressed as (Equation 1) 

 
 (1) 

 
where: 

is a linear part, 
 is a nonlinear one and  
 is the tracking error. If  the 

controller is linear, but with the function 
becomes squared law. 

In Shinskey (1988) are presented an error-
squared Proportional Integral (PI) controller used in 
control of surge and averaging level loops; and an 

error-squared Integral (I) controller that solves 
hysteresis cycling problems in level loops. These 
types of controllers have been useful to control 
surge tanks, but it is not recommended to be used 
for boilers, reboilers, or other vessels where thermal 
or hydraulic effects are prominent. 

The error-squared controller can be used in liquid 
level control in production separators under load 
inflow variations, i.e., slug flow. It is observed that 
small deviations from the setpoint resulted in very little 
change to the output valve leaving flow almost 
unchanged. On the other, hand large deviations are 
opposed by much stronger control action due to the 
larger error and the law of the error-squared, thereby 
preventing the high liquid level in the vessel. The 
error-squared controller has the benefit of more stable 
flow rates for the downstream equipment process, with 
improvement in the response to different types of flow 
changes. 
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Due to the nonlinear nature of the algorithm the 
error-squared controller cannot be tuned using 
conventional techniques. Since error-squared 
controllers are usually used to reduce slugging 
effects, conventional tuning methods would be 
difficult to configure. In literatureis discussed that 
gain calculated for the error-squared controller at 
the maximum level in processes surge tanks must be 
about 50% higher than the gain of the conventional 
controller. Usually the calculation must be repeated 
for the minimum allowable level and must be 
selected the higher of the two gains. 

The closed-loop stability of the error-squared 
controller is an important issue, but the real 
objective of control is to improve performance of 
the process, that is, to make the output behave in a 
more desirable manner in relation to the process 
with controller. A way to describe the performance 
of control system is to measure certain signals of 
interest, such as, Integral Absolute Error (IAE), 
Integral Squared Error (ISE), and peak value in time 
(SHINSKEY, 1988). 

In this context, the objectives of this paper are to 
determine two limits for the nonlinear gain of the 
error-squared controller, so that a closed-loop 
system with such controller is asymptotically stable 
in the Lyapunov sense and to realize a performance 
analysis. Following a comparison is made among the 
error-squared controllers with other three (3) 
control algorithms: the first, the conventional 
controller (CHEN, 1987) because this controller is 
used in most industrial control loops (ASTROM; 
HAGGLUND, 1995), the other two controllers are 
error-squared controller found in the literature 
suggested to be used to control the liquid level in 
production separators in the oil industry. 

Material and methods 

The models 

Consider a linear time-invariant state-space 
system given by (Equation 2) 

 

 (2) 

 
where: 

 is state,  
is control signal, 

 is output, and A, B, C are matrices of 
appropriate dimensions. The system is represented 
by the composition of the two state-space systems, 
the first one denotes the control actions P, I and D, 
and the second one denotes the process. Figure 1 
presents the block diagram of system S, where  

is the proportional gain and is the reference, 
assumed zero with no loss of generality. 

 

 

Figure 1. Closed-loop system . 

In this paper three proportional gains  are 
considered resulting in the following feedback 
systems. Let a linear state feedback given by 

 
 (3) 

 
where: 

 is a linear proportional gain. Then 
applying Equation (3) in Equation (2) results in a 
linear time-invariant state-space system given by 
 

 (4) 
 
where: 

 is assumed to be Hurwitz 
matrix. Now let a linear state feedback given by 

 
 (5) 

 
where: 

 is a linear proportional 

gain and . Then applying Equation (5) in 
Equation (2) results in a linear time-invariant state-
space system 

 

. (6) 

 
Finally, is considered an error-squared nonlinear 

feedback given by 
 

 (7) 
 

where: 
 is nonlinear gain. Applying the 

Equation (7) in Equation (2) results in a nonlinear 
closed-loop state-space system 

 
 (8) 

 
where: 

 is the continuous function, 
such that , since 

 is a scalar, because the vector 
has order and vector  has order  
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Lyapunov stability analysis of the error-squared controller 

Stability theory plays a central role in systems 
theory and engineering. There are different kinds of 
stability problems in the study of dynamical systems. 
Stability of equilibrium points is usually 
characterized in the sense of Lyapunov, an 
equilibrium point is stable if all solutions starting at 
nearby points stay nearby; otherwise, it is unstable. 

This section is concerned in determine a 
condition so that the closed-loop system presented 
in Equation (8) is asymptotically stable in the 
Lyapunov sense, on this account Lyapunov stability 
theorems give sufficient conditions for stability and 
asymptotic stability (SHUSHI et al., 2012). For this 
purpose are presented to follow two limits for the 
nonlinear gain of the error-squared controller 
that ensure the Lyapunov stability. The first limit for 
the nonlinear gain is obtained using Lyapunov 
stability theorem. The second limit is obtained 
computing a limit for the linear gain so that 
system presented in Equation (6) is asymptotically 
stable in the Lyapunov sense. By generalizing the 
procedure for the nonlinear case a limit is obtained 
for nonlinear gain . 

Case 1: The first limit 

Initially consider the Lyapunov stability theorem. 

Theorem 1: Let be and equilibrium 
point for the nonlinear system  and 

 be a domain containing . Let 
 be a continuously differentiable function 

such that and  in

;  in then,  is stable. 

Moreover, if  then 
 is asymptotically stable. 

Proof: See (KHALIL, 2002). 
The following theorem characterizes asymptotic 

stability of the origin for a linear time-invariant 
system 

 in terms of the solution of the 
Lyapunov equation. 

Theorem 2: A matrix  is Hurwitz, that 
is, for all eigenvalues of , if and only if for 
any given positive-definite symmetric matrix there 
a positive-definite symmetric matrix that satisfies 
the Lyapunov equation 

 
 (9) 

 
Moreover, if  is Hurwitz, then is a unique 

solution of Equation (9). 
Proof: See (KHALIL, 2002). 
In the next theorem is enunciated conditions under 

which it can be concluded about stability of the origin 

 as an equilibrium point for the nonlinear 
system by investigating its stability as an equilibrium 
point for the linear system. The theorem is known as 
Lyapunov’s indirect method. 

Theorem 3: Let  be an equilibrium point 

of the nonlinear system , where 
is continuously differentiable and is a 

neighborhood of the origin. Let  
Then, the origin is asymptotically stable if 

 for all eigenvalues of . The origin is 
unstable if  for one or more of the 
eigenvalue of . 

Proof: See (KHALIL, 2002). 
Now, assume that the system presented in 

Equation (4) is globally asymptotically stable in the 
Lyapunov sense. Then, according to Theorem 2 there 
symmetric positive-definite matrices and that 
satisfies Lyapunov equation 

 
 (10) 

 
To follow it will be determined the limit first for 

the nonlinear gain of the error-squared controller. 
Theorem 4: The system in Equation (8) is 

asymptotically stable in theLyapunov sense if  
 

 (11) 

 
where: 

 is the peak of the error signal. 

Proof: The system in Equation (8) can also be 

expressed 
 

 (12) 

 
where: 

 is nonlinear term. 

Defining the quadratic Lyapunov function 
 

                                                       (13) 

 
then its derivative is given by  
 

 (14) 

 
substituting Equation (12) in Equation (14) is 
obtained  
 

 (15) 

 
where: 

 are scalars and 
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depending on the state, since  is a vector in 

order , is a symmetric matrix in order , and 

 is a vector in order . Then, 
 

 (16) 

 
The first term on the right-hand side is 

negative-definite, while the second term is in 
general indefinite. Now, to find a condition 
on , so that the system in Equation (12), is 

asymptotically stable in Lyapunov sense, consider 
that the system can be linearized, conform 
Theorem 3, then the function  satisfies the 

condition: 
 

  (17) 

 
By developing the expression in Equation (14) is 

obtained 
 

 (18) 

 
thus, for any  there exits  such that 
 

.               (19) 

 
 

Considering that the first term on the right-
hand side  in Equation (16), is a 
scalar, applying the norm 2 in the second term 

 

 (20) 

 
hence, is obtained thatfor all . But 

 
  (21) 

 
where: 

 denotes the minimum eigenvalue of the 

matrix . Note that  is real and positive 
since  e symmetric and positive-definite. Thus 
 

 (22) 
 
choosing 
 

 (23) 

and substituting the term  by peak of the 
error signal  is found tha t

therefore by Theorem 1 it is ensured 

that  is negative-definite, so it is concluded 
that the origin of the system in Equation (8) is 
asymptotically stable in the Lyapunov sense. 

Case 2: The second limit 

Initially consider the following Lemma. 
Lemma 5: A matrix of the form 

where is a squarerank-one matrix will: 
be symmetric; 
be rank 2, except for the special case  is 

symmetric, in the case isrank 1; 
when  is non-symetric, will have one 

positive and one negativeeigenvalue. 
Proof: See (ARMSTRONG et al., 1997). 
The Lemma 5 establishes that when is a 

non-symmetric matrix the state-space is 
partitioned into three subspaces: two with 
nonzero measure corresponding to  
and , and the zero-measure null 
space of . An important inequality is the 
Rayleigh-Ritz inequality 
 

(24) 

 
where: 

is a real symmetric matrix,  and  
denote minimum and maximum eigenvalues of 

. 
The procedure to be used follows by obtaining 

a limit for linear gain  so that the system in 
Equation (6) is asymptotically stable in the 
Lyapunov sense. By generalizing the procedure to 
the nonlinear case, a limit is obtained for 
nonlinear gain  such that asymptotic stability 
in the Lyapunov sense is guaranteed for system in 
Equation (8). 

Theorem 6: The system in Equation (6) is 
asymptotically stable in the Lyapunov sense if 

 

 (25) 

 
where: 

M is defined in Lemma 5, P and  are given by 
Equation (9). 
Proof: Consider the system in Equation (6). 
Defining a quadratic Lyapunov function 
 

(26) 

 
and its derivative 
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 (27) 
 
then there exist  that satisfies the Lyapunov 
Equation 
 

. (28) 
 

Use the Lyapunov Equation (10) to obtain 
 

.. (29) 
 
To establish a condition on so that  is 

positive-definite, the Equation(16) is substituted in 

 
 

 (30) 

 

Then,  if and only if 

 
 (31) 

 
as  is a symmetric positive-definite matrix, 

, , and is an indefinite matrix 

(i.e , is 

obtained that if , then 

 but it is assumed that  

If then 
 

 (32) 

 
Applying the Rayleigh-Ritz inequality in 

Equation (32) yields . 

Finally, there is no restriction on  when 
, in this case  always positive-

definite. Therefore the system in Equation (6) is 
asymptotically stable in the Lyapunov sense if 

. 

Theorem 7: The system in Equation (8) is 
asymptotically stable in theLyapunov sense if  

 

 (33) 

 
where: 

it is defined in Theorem 6 and 
 

 (34) 
 
is the peak of theerror signal. 

Proof: Consider the system in Equation (8). 
Define a quadratic Lyapunov function 

 (35) 
 

and the its derivative 
 

. (36) 
 

Then  if and only if 

 
 (37) 

 
As is symmetric positive-definite matrix, then 

, and M is an indefinite matrix, 
from of the inequality in Equation (31) if 

 then but it is 

assumed that  

If  then , 

applying the Rayleigh-Ritz inequality yields 

. 

Let  be the peak of the error 

signal then  where  is the interval 

defined in Equation (15). Finally, there is no 
restriction on  when , in this 
case  always positive definite. Therefore 
the system in Equation (8) is asymptotically stable 

in the Lyapunov sense if . 

Results and discussion 

In this section simulation results are presented 
using the computational tool Matlab, comparing the 
tuning methods for nonlinear gain derived in this 
paper (Theorem 4 and Theorem 7) with some 
tuning methods found in the literature. The 
controllers are applied in processes presented in 
(SKOGESTAD, 2004) and the tunings rules for the 
linear gain , integral time  and nonlinear gain 

 for each control algorithm are: (i) 
Conventional PI controller (PIConv): The linear 
gain  and integral time  used in this paper is the 
presented in Skogestad (2004); (ii) PI Error-squared 
controller 1 (CPIeq1): The tuning rule for  
according to Theorem 4; (iii) PI Error-squared 
controller 2 (CPIeq2): The tuning rule for  
according to Theorem 7; (iv) PI Error-squared 
controller 3 (CPIeq3): The tuning rule for 

presented in (FRIDMAN, 1994). 

Process 1: Consider the transfer function of second order 
process 

 

 (38) 
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presentedin Skogestad (2004). The composition of 
the transfer function in Equation (38), with control 
actions P and I, considering the proportional gain 

 and integral time  results in the 
state-space system whose matrices are given by: 
 

 (39) 

 
In the simulation was used initial condition 

. It is observed that for the simulation of 
the processes CPIeq1 and CPIeq2 the determination 
of the nonlinear gain depends on the maximum 
error of the process in closedloop. Here was 
assumed being  that it is the 
peak of the error signal of the process with PI 
conventional controller. Figure 2 shows the 
development of the tracking error of the process 
with PI conventional controller and of the processes 
CPIeq1 and CPIeq2. It is observed that the error 
peaks are near justifying the selection. 

 

 

Figure 2. Evolution of the error. 

Initially it was computed the first nonlinear gain 
range presented in the Theorem 4, Equation (10), 

given by )). The limit for the 
nonlinear gain was chosen . 

Then the linear gain range was computed 
 and the limit for the linear gain was 

chosen = 0.113. Finally it was computed the 
second nonlinear gain range presented in the 
Theorem 7, Equation (33), given by 

* 
 (40) 

 
so that the limit for the nonlinear gain was chosen 

. 
Table 1 shows the tunings for the nonlinear gain 

 and Figure 3(a) presents the outputs of the 

respective processes. It is observed that the 
nonlinear gain obtained in Theorem 7 (CPIeq2) is 
larger than both the nonlinear gain obtained in 
Theorem 4 (CPIeq1) and the nonlinear gain of the 
controller CPIeq3. It can be seen that processes 
CPIeq1, CPIeq2 and CPIeq3 have nonlinear gains that 
belong to the interval defined in the Equation (21), 
then as expected all processes have positive-definite 
Lyapunov functions and their derivatives are negative-
definite characterizing asymptotic stability in the 
Lyapunov sense, conform presented in Figure 3(b). 

Table 1. Tunings of the Process1. 

 Controller PI 
 

 

 

1. Conventional 0.525 - 4 
2. CPIeq1 0.525 0.18 4 
3. CPIeq2 0.525 0.456 4 
4. CPIeq3 0.525 0.262 4 

 

 

 

 

Figure 3. (a) Response for error-squared PI control, (b) 
Lyapunov functions andits derivatives. 

he PI error-squared controllers are compared 
each other and with the PI conventional 
controller by measuring certain signals of interest, 
such as, Integral Absolute Error (IAE), Integral 
Squared Error (ISE), and peak value in time. 
Table 2 presents the results for these performance 
measures, together with the decrease of tracking 
errors (i.e., improved control action) compared to 
the PI conventional controller called  and  
respectively to IEA and IEQ.  
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It is observed that the processes with PI error-
squared controllers have performance better that 
the process with PI conventional controller. The 
process with PI error-squared controller that 
presented better performance was the CPIeq2 
with higher nonlinear gain, because the errorwas 
reduced by 7.34% to IEA and 4.84% to IEQ when 
compared to theconventional PIcontroller. 

Table 2. Performance measures. 

 Controller  
PI 

IAE (%) ISE (%) Peak 

1. Conventional 0.728 0 0.333 0 0.249 
2. CPIeq1 0.705 3.2 0.326 2 0.248 
3. CPIeq2 0.675 7.34 0.317 4.84 0.244 
4. CPIeq3 0.696 4.49 0.323 2.9 0.246 

 

Simulation results have shown that up to 
 this system with PI error-squared 

controller has definite-negative derivative, then is 
asymptotically stable in the Lyapunov sense. Therefore 
the nonlinear gain is conservative.  

Process 2: Consider the first order process in 
state-space system 

 

 (41) 
 

 
that represents the liquid level system in Figure 4. 
 

 

Figure 4. Liquid level system. 

The flow is laminar, i.e., fluid flow occurs in 
streamlines with no turbulence. Here is 
inflow rate. The relationship between outflow 
rate, and liquid level  is the resistance 
 

                                                                   (42) 
 

To obtain the results were used the simulation 
parameters

. 

The PI error-squared controller will be applied so 
that the setpointis . Now, the composition 
of the state-space system in Equation (41) with the 
control actions P and I results in the system whose 

matrices are 
 

 (43) 

 
The peak of the error signal this process in closed-

loop was assumed to be , that 
it is the maximum error of the process with 
conventional PI controller. Table 3 shows the tunings 
for the nonlinear gain  as similar procedure 
outlined in Process 1. Figure 5(a) presents the outputs 
of the procbesses and Figure 5(b) presents the 
Lyapunov functions and its derivatives. As is expected 
all the process have positive definite Lyapunov 
function and negative-definite derivative, therefore the 
nonlinear gain  is conservative.  

Table 3. Tunings of the Process 1. 

 Controller PI 
 

 

 

1. Conventional 0.4 - 3 
2. CPIeq1 0.4 0.032 3 
3. CPIeq2 0.4 0.7837 3 
4. CPIeq3 0.4 0.2 3 

 

 

 

Figure 5. (a) System response for error-squared PI control. (b) 
Lyapunov functions and its derivatives. 
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Table 4 shows that all the processes with 
error-squared PI controllers have performance 
better that the process with PI conventional 
controller. The process with PI error-squared 
controller that presented better performance was 
the CPIeq2, with higher nonlinear gain, because 
the errorwas reduced by 35.64 % to IEA and 
31.32% to IEQ when compared to 
theconventional PIcontroller. 

Table 4. Performance measures. 

 Controller  
PI 

IAE (%) (%) (%) Peak 

1. Conventional 7.861 0 2.006 0 0.75 
2. CPIeq1 7.609 3.2 1.952 2.69 0.75 
3. CPIeq2 5.059 35.64 1.377 31.32 0.75 
4. CPIeq3 6.646 15.46 1.741 13.18 0.75 
 

Conclusion 

The stability properties of the error-squared 
controller were addressed. Two limits for the 
nonlinear gain were computed for the error-squared 
controller. Simulations results were presented, and it 
was showed that the second limit, from Theorem 7, is 
more conservative than the others ones. Additionally, it 
was observed that the closed loops with error-squared 
PI controllers have better performance when 
compared with conventional PI controller. As 
suggestions for future work carry out a study about the 
error-squared controller applied in processes with 
time-delay, as well as in the liquid level control in 
production separators in the oil industry. 
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