

http://www.uem.br/acta ISSN printed: 1806-2563 ISSN on-line: 1807-8664

Doi: 10.4025/actascitechnol.v36i4.16605

Some extended Tauberian theorems for $(A)^{(k)}(C,\alpha)$ summability method

İbrahim Çanak

Department of Mathematics, Ege University, 35100, İzmir, Turkey. E-mail: ibrahim.canak@ege.edu.tr

ABSTRACT. In this paper, some new Tauberian conditions are introduced for $(A)^{(k)}(C,\alpha)$ summability method.

Keywords: Abel summability, $(A)(C,\alpha)$ summability, $(A)^{(k)}(C,\alpha)$ summability, Tauberian conditions and theorems.

Alguns teoremas tauberiano estendidas para $(A)^{(k)}(C,\alpha)$ método de somabilidade

RESUMO. Neste artigo algumas novas condições de tauberiano são introduzidas para $(A)^{(k)}(C,\alpha)$ método de somabilidade.

Palavras chave: somabilidade de Abel, somabilidade de $(A)(C,\alpha)$, somabilidade de $(A)^{(k)}(C,\alpha)$, condições de tauberiano e teoremas.

Introduction

Let $\sum a_n$ be a given infinite series of real numbers with the sequence of n-th partial sums $(s_n) = (\sum_{k=0}^n a_k)$. For a sequence (s_n) , we define $\Delta s_n = s_n - s_{n-1}$, with $\Delta s_0 = s_0$. Let A_n^{α} be defined by the generating function $(1-x)^{-\alpha-1} = \sum_{n=0}^{\infty} A_n^{\alpha} x^n$ (|x| < 1), where $\alpha > -1$. A sequence (s_n) is said to be (C,α) summable to s and we write $s_n \to s(C,\alpha)$, if

$$s_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{k=0}^n A_{n-k}^{\alpha-1} s_k \to s$$

as $n \to \infty$. Note that (C,0) summability is the ordinary convergence. We write $\tau_n = na_n$ and define τ_n^{α} as the (C,α) mean of τ_n .

A sequence (s_n) is said to be Abel summable to s, and we write $s_n \to s(A)$, if the series $\sum_{n=0}^{\infty} a_n x^n$ is convergent for $0 \le x < 1$ and tends to s as $x \to 1^-$. A sequence (s_n) is said to be $(A)(C,\alpha)$ summable to s and we write $s_n \to s(A)(C,\alpha)$, if $(1-x)\sum_{n=0}^{\infty} s_n^{\alpha} x^n$ is convergent for $0 \le x < 1$ and tends to s as $x \to 1^-$. If we take $\alpha = 0$, then $(A)(C,\alpha)$ summability reduces to Abel summability.

A generalization of Abel summability is introduced by (LITTLEWOOD, 1967) as follows. Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $0 \le x < 1$. Let

$$f_1(x) = \frac{1}{1-x} \int_x^1 f(t) dt,$$

and suppose that $\int_0^1 f_1(t)dt$ exists as $\lim_{\xi \to 1^-} \int_0^{\xi} f(t)dt$. Let

$$f_2(x) = \frac{1}{1-x} \int_{x}^{1} f_1(t) dt,$$

an so on. We write

$$f_k(x) = \frac{1}{1-x} \int_x^1 f_{k-1}(t) dt$$

for positive integer k. The $f_k(x)$ is called the k-tuple average of f as $x \to 1^-$ by (LITTLEWOOD, 1967). If $\lim_{x\to 1^-} f_k(x) = s$ for some positive integer k, we say that (s_n) is $(A)^{(k)}$ summable to s.

Let $g(x) = (1-x)\sum_{n=0}^{\infty} s_n^{\alpha} x^n, 0 \le x < 1, \alpha > -1$. If $\lim_{x\to 1^-} g_k(x) = s$ for some positive integer k, we say that (s_n) is $(A)^{(k)}(C,\alpha)$ summable to s.

680 Çanak

A sequence (s_n) is said to be slowly oscillating (STANOJEVIČ, 1998) if,

$$\lim_{\lambda \to 1^+} \limsup_{n} \max_{n+1 \le k \le [\lambda n]} |s_k - s_n| = 0.$$

A sequence (s_n) is said to be (C,α) slowly oscillating if (s_n^{α}) is slowly oscillating.

We use the symbols $s_n = o(1)$, $s_n = O(1)$ to mean respectively that $s_n \to 0$ as $n \to \infty$ and that (s_n) is bounded for large enough n. We also write $s_n = o(1)(C, \alpha)$ to mean that $s_n^{\alpha} = o(1)$.

Hardy (1910) proved that $na_n = O(1)$ is a Tauberian condition for (C,α) , $\alpha > 0$. summability of (s_n) . Later, Littlewood (1911) proved that (C,α) summability of (s_n) in Hardy's theorem (HARDY, 1910) can be replaced by the Abel summability of (s_n) . (HARDY; LITTLEWOOD, 1913) replaced the condition $na_n = O(1)$ by the one-sided Tauberian condition $na_n \ge -H$ for some positive constant H. Littlewood (1911) proved that if (s_n) is Abel summable to S and $S_n = O(1)$, then (S_n) is (C,1)summable to S. Szasz (1935) generalized Littlewood's theorem (LITTLEWOOD, 1911) which states that if (s_n) is Abel summable to s and $\tau_n^1 \ge -H$ for some positive constant H, then (s_n) is (C,1) summable to S. Pati (2002) obtained a more general theorem which states that if (s_n) is $(A)(C,\alpha)$ summable for some $\alpha \ge 0$ to s and $\tau_n^{\alpha} \ge -H$ for some positive constant H, then (s_n) is (C,α) summable to S. Quite recently, several Tauberian conditions for $(A)(C,\alpha)$ summability method have been obtained in Çanak et al. (2010), Erdem and Çanak (2010), and Çanak and Erdem, (2011).

Littlewood (1967) proved that $na_n \ge -H$ for some positive constant H is a Tauberian condition for $(A)^{(k)}$, where k is a positive integer k, summability of (s_n) . Pati (2007) established two Tauberian theorems which are more general than a theorem of Pati (2002) and a theorem of Littlewood (1967).

Our aim in this paper is to introduce some new conditions in terms of τ_n^{α} to recover (C,α) convergence of (τ_n) from its $(A)^{(k)}(C,\alpha)$

summability. Namely, we prove the following Tauberian theorems.

Theorem 1.1

If, for some positive integer k and $\alpha \ge 0$, (τ_n) is $(A)^{(k)}(C,\alpha)$ summable to S and

$$n\Delta \tau_n^\alpha = o(1) \tag{1}$$

then (τ_n) is $(C, \alpha - 1)$ summable to s and (s_n) is $(C, \alpha - 1)$ slowly oscillating.

Theorem 1.2

If, for some positive integer k and $\alpha \ge 0$, (τ_n) is $(A)^{(k)}(C,\alpha)$ summable to S and for some positive constant H

$$n\Delta \tau_n^{\alpha} \ge -H$$
 (2)

then (τ_n) is (C,α) summable to S and (S_n) is (C,α) slowly oscillating.

Theorem 1.3

If, for some positive integer k and $\alpha \ge 0$, (τ_n) is $(A)^{(k)}(C,\alpha)$ summable to S and for some positive constant H

$$n\Delta \tau_n^{\alpha} = O(1) \tag{3}$$

then (τ_n) is $(C, \alpha + \delta - 1)$ summable to S for every $\delta > 0$.

Proofs of our Theorems depend on the following Tauberian theorem due to Littlewood (1967).

Theorem 1.4

If for some positive integer k, (s_n) is $A^{(k)}$ summable to s, then $na_n \ge -H$ for some positive constant H is a Tauberian condition for the convergence of (s_n) to s.

Lemmas

For the proof of our theorems, we need the following lemmas.

Lemma 2.1

Kogbetliantz (1925, 1931) For $\alpha > -1$, $\tau_n^{\alpha} = n\Delta s_n^{\alpha} = n(s_n^{\alpha} - s_{n-1}^{\alpha})$.

Lemma 2.2

Çanak et al. (2010) For

$$\alpha \ge -1, \ n\Delta \tau_n^{\alpha+1} = (\alpha+1)(\tau_n^{\alpha} - \tau_n^{\alpha+1}) \tag{1}$$

Lemma 2.3

(HARDY, 1991) If $s_n^{\alpha} \to s$ as $n \to \infty$, $\alpha \ge -1$, then $s_n^{\alpha+\delta} \to s$ as $n \to \infty$ for every $\delta \ge 0$.

Lemma 2.4

(HARDY, 1991) If $s_n^{\alpha} \to s(C, \beta)$, then $s_n^{\alpha+\beta} \to s$ for $\alpha \ge 0$, $\beta \ge 0$, and conversely.

Lemma 2.5

(PEYERIMHOFF, 1969) All the Cesàro methods of positive order are equivalent for bounded sequences. More precisely, if $s_n = O(1)$ and $s_n^{\alpha} \to s$ as $n \to \infty$ for some $\alpha > 0$, then $s_n^{\beta} \to s$ as $n \to \infty$ for some $\beta > 0$.

Proofs of Theorems

Proof of Theorem 1.1

By hypothesis, we have $f_k(x) \to s$ as $x \to 1^-$, where $f_k(x)$ is the k-tuple average of:

$$f(x) = (1-x) \sum_{n=0}^{\infty} \tau_n^{\alpha} x^n = \sum_{n=0}^{\infty} (\tau_n^{\alpha} - \tau_{n-1}^{\alpha}) x^n, 0 \le x < 1, (\tau_{-1}^{\alpha} = 0).$$
 (4)

The condition (1) implies that $n\Delta \tau_n^{\alpha} \ge -H$ for some positive constant H. By Theorem 1.4, we get

$$\sum_{n=0}^{\infty} (\tau_n^{\alpha} - \tau_{n-1}^{\alpha}), (\tau_{-1}^{\alpha} = 0)$$
 (5)

is convergent to S, i.e.,

$$\tau_n^{\alpha} \to s, n \to \infty.$$
 (6)

This means that (τ_n) is (C,α) summable to S. By Lemma 2.2, we have

$$n\Delta \tau_n^{\alpha} = \alpha (\tau_n^{\alpha - 1} - \tau_n^{\alpha}). \tag{7}$$

It follows from (1) and (6) that

$$\tau_n^{\alpha-1} \to s, n \to \infty,$$
 (8)

which means that (τ_n) is $(C,\alpha-1)$ summable to S. By Lemma 2.1, we have

$$s_n^{\alpha - 1} = \sum_{k=1}^n \frac{\tau_k^{\alpha - 1}}{k}.$$
 (9)

Since $(\tau_n^{\alpha-1})$ converges to S, there exists M > 0 such that

$$|\tau_n^{\alpha-1}| \le M \tag{10}$$

for all n. For any $n < k < \infty$, we have

$$|s_k^{\alpha-1} - s_n^{\alpha-1}| \le \sum_{k=n+1}^{\lceil \lambda n \rceil} \left| \frac{\tau_k^{\alpha-1}}{k} \right| \le M \sum_{k=n+1}^{\lceil \lambda n \rceil} \frac{1}{k} \le M \frac{\lceil \lambda n \rceil - n}{n}, \tag{11}$$

whence we conclude that

$$\limsup_{n} \max_{n+1 \le k \le \lfloor \lambda n \rfloor} |s_k^{\alpha - 1} - s_n^{\alpha - 1}| \le M(\lambda - 1). \tag{12}$$

Letting $\lambda \to 1^+$, we obtain (s_n) is $(C, \alpha - 1)$ slowly oscillating. This completes the proof of Theorem 1.1.

Corollary 3.1

If, for some positive integer k, (τ_n) is $(A)^{(k)}(C,1)$ summable to s, and (1) holds, then (τ_n) is convergent to s and (s_n) is slowly oscillating.

Proof

Take $\alpha = 1$ in Theorem 1.1.

Proof of Theorem 1.2

We have (τ_n) is (C,α) summable to s by Theorem 1.4. That (s_n) is (C,α) slowly oscillating follows from Lemma 2.2.

Proof of Theorem 1.3

The condition (3) implies that

$$n\Delta \tau_n^{\alpha} \ge -H \tag{13}$$

for some positive constant H. By Theorem 1.2, we have

$$\tau_n \to s(C, \alpha).$$
 (14)

By Lemma 2.3,

$$\tau_n \to s(C, \alpha + 1) \tag{15}$$

682 Çanak

and by Lemma 2.2,

$$n\Delta \tau_n^{\alpha+1} = \alpha(\tau_n^{\alpha} - \tau_n^{\alpha+1}) = o(1), \tag{16}$$

which is equivalent to

$$n\Delta \tau_n^{\alpha} = o(1)(C,1) \tag{17}$$

by Lemma 2.4. Since $n\Delta \tau_n^{\alpha} = O(1)$ by hypothesis, we have, by Lemma 2.5,

$$n\Delta \tau_n^{\alpha} \to 0(C, \delta)$$
 (18)

for every $\delta > 0$, which is equivalent to

$$n\Delta \tau_n^{\alpha+\delta} = o(1) \tag{19}$$

by Lemma 2.4.

By Lemma 2.2, we have

$$n\Delta \tau_n^{\alpha+\delta} = (\alpha+\delta)(\tau_n^{\alpha+\delta-1} - \tau_n^{\alpha+\delta}) = o(1). \quad (20)$$

By Lemma 2.3,

$$\tau_n^{\alpha+\delta} \to s, n \to \infty$$
(21)

It now follows from (20) that

$$\tau_n^{\alpha+\delta-1} \to s, n \to \infty,$$
 (22)

which is equivalent to

$$\tau_n \to s(C, \alpha + \delta - 1).$$
 (23)

This completes the proof of Theorem 1.3.

Corollary 3.2

If, for some positive integer k, (τ_n) is $(A)^{(k)}(C,1)$ summable to s, and (3) holds, then (τ_n) is (C,δ) summable to s for every $\delta > 0$.

Proof

Take $\alpha = 1$ in Theorem 1.3.

Corollary 3.3

If, for some positive integer k and $0 < \alpha < 1$, (τ_n) is $(A)^{(k)}(C,\alpha)$ summable to s, and (3) holds, then (τ_n) is convergent to s.

Proof

Take $\delta = 1 - \alpha$ (0 < α < 1) in Theorem 1.3.

Corollary 3.4

If, for some positive integer k, (τ_n) is $(A)^{(k)}$ summable to S, and

$$n\Delta(na_n) = O(1), \tag{24}$$

then (τ_n) is $(C, \delta - 1)$ summable to S for every $\delta > 0$.

Proof

Take $\alpha = 0$ in Theorem 1.3.

Conclusion

New Tauberian theorems for the product $(A)^{(k)}$ and (C,α) summability methods have been established. Some new Tauberian conditions in terms of (C,α) mean of (τ_n) have been obtained to recover (C,α) convergence of (τ_n) and slow oscillation of (C,α) mean from $(A)^{(k)}(C,\alpha)$ summability of (τ_n) .

Acknowledgements

The author thanks the referees for their comments on the paper.

References

ÇANAK, İ.; ERDEM, Y. On Tauberian theorems for $(A)(C,\alpha)$ summability method. **Applied Mathematics and Computation**, v. 218, n. 6, p. 2829-2836, 2011.

ÇANAK, İ.; ERDEM, Y.; TOTUR, Ü. Some Tauberian theorems for $(A)(C,\alpha)$ summability method. **Mathematical and Computer Modelling**, v. 52, n. 5-6, p. 738-743, 2010.

ERDEM, Y.; ÇANAK, İ. A Tauberian theorem for $(A)(C,\alpha)$ summability. **Computers and Mathematics** with **Applications**, v. 60, n. 11, p. 2920-2925, 2010.

HARDY, G. H. Theorems relating to the summability and convergence of slowly oscillating series. **Proceedings of the London Mathematical Society**, v. 8, n. 2, p. 301-320, 1910

HARDY, G. H. **Divergent Series**. New York: Chelsea, 1991

HARDY, G. H.; LITTLEWOOD, J. E. Tauberian theorems concerning power and Dirichlet's series whose coefficients are positive. **Proceedings of the London Mathematical Society**, v. 13, n. 2, p. 174-191, 1913.

KOGBETLIANTZ, E. Sur le séries absolument sommables par la méthode des moyennes arihtmétiques.

Bulletin de la Societe Mathematique de France, v. 49, n. 2, p. 234-251, 1925.

KOGBETLIANTZ, E. Sommation des séries et intégrals divergentes par les moyennes arithmétiques et typiques. **Memorial Science de Mathematique**, v. 51, p. 1-84, 1931.

LITTLEWOOD, J. E. The converse of Abel's theorem on power series. **Proceedings of the London Mathematical Society**, v. 9, n. 2, p. 434-448, 1911.

LITTLEWOOD, J. E. A theorem about successive derivatives of a function and some Tauberian theorems. **Journal of the London Mathematical Society**, v. 42, n. 1, p. 169-179, 1967.

PATI, T. Extended Tauberian theorems. **Proceeding National conference on recent developments in sequences, summability and fourier analysis.** In: RATH, D.; NANDA, S. (Ed.). New Delhi: Narosa Publishing House, 2002. p. 235-250.

PATI, T. An extension of Littlewood's "O" Tauberian theorem. **Journal of the International Academy of Physical Sciences**, v. 11, n. 1, p. 89-98, 2007.

PEYERIMHOFF, A. **Lectures on Summability**. Berlin: Springer-Verlag, 1969.

STANOJEVIČ, C. V. **Analysis of divergence**: Control and management of divergent process, graduate research seminar lecture notes. In: ÇANAK, İ. (Ed.). Missouri: University of Missouri-Rolla, 1998. p. 1-56.

SZASZ, O. Generalization of two theorems of Hardy and Littlewood on power series. **Duke Mathematical Journal**, v. 1, n. 1, p. 105-111, 1935.

Received on March 31, 2013. Accepted on July 10, 2013.

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.