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Introduction

Let >a, be a given infinite series of real
numbers with the sequence of n-th partial sums
(s,) = ;-0ar) - For a sequence (s,), we define
As, =sy—s,_1, with Asy =s,. Let 47 be defined by
the generating function
(1-x)* "' =37 A4%" (|x|<1), where @ >~1. A
sequence (s,) is said to be (C,a) summable to §

and we write s, > s (C,a), if

a_ L

— a-l1
Sy =—— 2 A, kS > s
A, k=0

| M=

n

as n— . Note that (C,0) summability is the

ordinary convergence. We write 7, =na, and
define 7,7 as the (C,a) meanof 7,.

A sequence (s,) is said to be Abel summable to
s, and we write s, — 5 (A), if the series > a,x"
is convergent for 0<x<1 and tends to s as
x—>1". A sequence (s,) is said to be (A)C,a)

summable to § and we write s, > s(A4)(C,a), if

(1), g5y x"
tends to s as x—>1 . If we take =0, then
(A)(C,e) summability reduces to Abel summability.

is convergent for 0<x<I and

A generalization of Abel summability is
introduced by (LITTLEWOOD, 1967) as follows.

Let f(x)=>""a,x",0<x<1.Let
1
fl(x)=mﬁf(t)dt,

exists as

[/ (0t

and  suppose  that

lime i~ [; /(D)dr. Let

)=,

an so on. We write
1 A
Jir(x)= :Ixfk—l(t)df

for positive integer k. The f;(x) is called the k-

tuple average of f as x —> 1~ by (LITTLEWOOD,
1967). If limy,_1~ f3(x) = s for some positive integer

k , we say that (s,) is (A)(k) summable to .
Let g(x)=(1-x)> " srx",0<x<l,a>-1. If
limy_1~ g (x) =s for some positive integer k, we

say that (s,) is (A)(k)(C,a) summable to s .
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A sequence (s,) is said to be slowly oscillating
(STANOJEVIC, 1998) if,

lim limsup max |s;—s,[=0.

a1t n n+1<k<[An]

A sequence (s,) is said to be (C,a) slowly
oscillating if (s) is slowly oscillating.

We use the symbols s,=o0(1), s,=0(1) to
mean respectively that s, -0 as n —>oco and that
(s,) 1s bounded for large enough 7. We also write
s, =o(1)(C,a) to mean that 57 = o(1).

Hardy (1910) proved that na,=0(1) is a
condition  for C,a), a>0,
Later, Littlewood (1911)
proved that (C,a) summability of (s,) in Hardy's

theorem (HARDY, 1910) can be replaced by the
Abel summability  of (s,). (HARDY;

LITTLEWOOD, 1913) replaced the condition
na, = O(1) by the one-sided Tauberian condition

na,>-H for constant  H .
Littlewood (1911) proved that if (s,) is Abel
summable to § and s, = O(1), then (s,) is (C,1)
summable to §. Szasz (1935) generalized

Littlewood's theorem (LITTLEWOOD, 1911)
which states that if (s,) is Abel summable to s and

Tauberian

summability of (s,).

some  positive

rl > —H for some positive constant H , then (s,)
is (C,1) summable to §. Pati (2002) obtained a
more general theorem which states that if (s,) is
(4)(C,a) summable for some >0 to s and
77 >—H for some positive constant H , then (s,,)
is (C,a) summable to S§. Quite recently, several
(A)C,a)
summability method have been obtained in Canak
et al. (2010), Erdem and Canak (2010), and Canak

and Erdem, (2011).
Littlewood (1967) proved that na, >2—H for

some positive constant H is a Tauberian condition

new  Tauberian conditions for

for (A)®, where k is a positive integer k,
summability of (s,). Pati (2007) established two
Tauberian theorems which are more general than a
theorem of Pati (2002) and a theorem of Littlewood
(1967).

Our aim in this paper is to introduce some new

to recover (C,q)

A(C,a)

conditions in terms of 7~

convergence of (r,) from its

Canak

summability. Namely, we prove the following
Tauberian theorems.
Theorem 1.1

If, for some positive integer k¥ and >0, (7,)

is (4)M(C,) summable to S and
nAzy =o(1) (1)

then (z,) is (C,a—1) summable to s and (s,) is
(C,a—1) slowly oscillating.

Theorem 1.2
If, for some positive integer £ and a >0, (z,)
is (A)®(C,a) summable to s and for some

positive constant H
nAty >-H 2

then (z,) is (C,) summable to S and (s,) is

(C,a) slowly oscillating.

Theorem 1.3
If, for some positive integer £ and a >0, (zr,)
is (A)*(C,a) summable to s and for some

positive constant H
nAt® =0(1) 3)

then (z,) is (C,a+J—1) summable to S for every
6>0.

Proofs of our Theorems depend on the

following Tauberian theorem due to Littlewood
(1967).

Theorem 1.4

If for some positive integer k, (s,) Iis A®
summable to s, then na, >—-H for some positive

is a Tauberian condition for the
convergence of (s,) to s.

constant H

Lemmas
For the proof of our theorems, we need the
following lemmas.
Lemma 2.1
Kogbetliantz (1925,

70 =nAst =n(sy —s,) -

1931) For a>-1,
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Lemma 2.2
Canak et al. (2010) For

a>-1, nAt“" = (a +1)(z* -2 (1)

Lemma 2.3
(HARDY, 1991) If s —>s as n—>o, a>-1,

then s**° — s as n —w forevery 6> 0.
Lemma 2.4
(HARDY, 1991) If s%—s(C,f), then

s,‘,“ﬁ —s for 20, >0, and conversely.

Lemma 2.5

(PEYERIMHOFF, 1969) All the Cesaro
methods of positive order are equivalent for
bounded sequences. More precisely, if s, =0(1) and

s — s as n—w forsome a >0, then s/ — s as

n— o forsome F>0.

Proofs of Theorems

Proof of Theorem 1.1

By hypothesis, we have f,(x) —>s as x—>17,
where f; (x) is the k -tuple average of:

S = (-0 e = T (e~ 05 x <15 =0, (4)
The condition (1) implies that nAz) >—-H for

some positive constant H . By Theorem 1.4, we get

0

2 (7

n=0

—7,),(z5 = 0) (5)

is convergent to S, i.e.,
T8 > s,n—> . (6)

This means that (z,,) is (C,) summable to §.
By Lemma 2.2, we have

nAt? = a(c - %) (7)

It follows from (1) and (6) that

a
n

%7 S5m0, (8)
which means that (7,) is (C,a—1) summable to

S . By Lemma 2.1, we have

n

a-1
o T
Sn : = z k : (9)
ok

Since (z%7') converges to §, there exists M >0
such that

e < M (10)

for all n. Forany n<k <o, we have

a-1
L8 PYVES SR VL. nl PP
n

k=n+1

. | [An]

a— a—

Sk TSy ‘S z
k=n+1

whence we conclude that

limsup max |s& ' —sIKM(A-1). (12)

n n+1<k<[An]

Letting 4 —>1", we obtain (s,) is (C,a—1)
slowly oscillating. This completes the proof of
Theorem 1.1.
Corollary 3.1

If, for some positive integer k, (z,) 1is
(4)®(C,1) summable to s, and (1) holds, then
and (s,)

(r,) 1s convergent to s is slowly

oscillating.

Proof
Take a =1 in Theorem 1.1.
Proof of Theorem 1.2

We have (7,) is (C,a) summable to S by
Theorem 1.4. That (s,) is (C,) slowly oscillating

follows from Lemma 2.2.

Proof of Theorem 1.3
The condition (3) implies that

nAt? >—-H (13)

for some positive constant H . By Theorem 1.2, we
have

7, > 5(C,a). (14)
By Lemma 2.3,
7, >5(C,a+1) (15)
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and by Lemma 2.2,

nAT M = a(r -7 = o(1), (16)

n n

which is equivalent to
nAty =o(1)(C,1) (17)

by Lemma 2.4. Since nAzy =O(1) by hypothesis,

we have, by Lemma 2.5,

nAtr; — 0(C,5) (18)
for every & > 0, which is equivalent to

nAT?* = o(1) (19)

by Lemma 2.4.
By Lemma 2.2, we have

AT = (a+8) T = 17)=0(1).  (20)
By Lemma 2.3,

%% 5 sn— 0 (1)
It now follows from (20) that

20 5 5n— o, (22)

which is equivalent to
7, > s(C,a+d-1). (23)

This completes the proof of Theorem 1.3.

Corollary 3.2
If, for some positive integer k, (z,) is
(4H®(C,1) summable to s, and (3) holds, then

(z,) is (C,8) summable to s for every 6 >0.

Proof

Take a =1 in Theorem 1.3.

Corollary 3.3
If, for some positive integer k£ and 0<a <1,
(z,) is (4)P(C,a) summable to s, and (3) holds,

then (7,) is convergent to s .

Canak

Proof
Take §=1-a (0<a <1)in Theorem 1.3.

Corollary 3.4
If, for some positive integer k, (7,) Is (A)(k)

summable to S, and
nA(na,) = 0(1), (24)
then (z,) is (C,0—1) summable to S for every
0>0.
Proof

Take a =0 in Theorem 1.3.
Conclusion

New Tauberian theorems for the product (4™
and (C,a)
established. Some new Tauberian conditions in terms
of (C,a)mean of (z,,) have been obtained to recover

summability methods have been

(C, @) convergence of (z,) and slow oscillation of

(C,@) mean from (4)*(C,a) summability of (z,,) .
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