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ABSTRACT. In this paper we define the sequence space V;° (1) related to the concept of invariant mean
and de la Vallée-Pousin mean. We also determine the necessary and sufficient conditions to characterize
the matrices which transform paranormed sequence spaces into the spaces V;(4) and V;° (1), where V(1)

denotes the space of all (g, 1)-convergent sequences.
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Transformagoes matriciais de espagos sequenciais paranormatizados pela média de la

Vallée-Pousin

RESUMO. Definiu-se a sequéncia espacial V;*(4) relacionada ao conceito de média invaridvel e 2 media de
de la Vallée-Pousin. Determinaram-se também as condi¢des necessirias e suficiente para caracterizar as
matrizes que transformam os espagos sequenciais paranormatizados nos espagos V;(4) and V;” (1), onde
V(1) é o espaco de todas as sequéncias convergentes (g, 4).

Palavras-chave: média invaridvel, media de de la Vallée-Pousin, convergéncia o, transformagao matricial.

Definitions, notations and preliminaries

By w, we shall denote the space of all real-valued
sequences. Any vector subspace of w is called a
'sequence space’. If x € w, then we write x = (x)
instead of x=(x;),_,. We shall write ¢, £o,, ¢ and ¢,
for the spaces of all finite, bounded, convergent and
null sequences, respectively. Further, we shall use
the conventions that e=(1,1,1,...) and e® is the
sequence whose only non-zero term is 1 in the kth
place for each k € N, where N = {0,1,2, ... }.

A sequence space X with a linear topology is
called a K-space if each of the maps p;:X - C
defined by p;(x) = x; is continuous for all i € N.
A K-space is called an FK-space if X is complete
linear metric space; a BK-space is a normed FK-
space.

A linear topological space X over the real field R
is said to be a paranormed space if there is a
subadditive function g: X — R such that g(8) = 0,
gx) =g(—x), and scalar multiplication is
continuous, ie., |a, —a| =0 and g(x, —x) =0
imply g(a,x, —ax) = 0 for all x’s in X and a’s in
R, where 0 is the zero vector in the linear space X.
Assume here and after that x = (x;) be a sequence
such that x;, #0 for all k €N and (py) be the
bounded sequence of strictly positive real numbers

with supp, = H and M = max{1l,H}. Then, the
sequence spaces

co(@)i={x=(x) €E w: ’lango|xk|p’< =0}c(p)={x=(x)) Ew:x—le€

¢o(p) for some ! € C},
Lo (p): = {x = (xx) € w:sup|xy|Pk < oo}
k

and

xi [Pk < w}

2(p):= {x = (x) € w:z
k=0

were defined and studied by Maddox (1968) and
Simons (1965). If p, =p (k=0,1,...) for some
constant p > 0, then these sets reduce to ¢y, ¢, £, and
¢, respectively. Note that ¢, (p) is a linear metric space

paranormed by h(x)=sup, |Xk|i4_k. £ (p) and c(p) fail
to be linear metric spaces because the continuity of
scalar multiplication does not hold for them but these
two turn out to be linear metric spaces if and only if
infypr > 0. £(p) is linear metric space paranormed by
gx) = Ck |xx|P)YM.  The sequence spaces
co(@), c(p), e (p) and £(p) are complete paranormed
by h(x) iff infyp, >0 and g(x), respectively.
However, these are not normed spaces in general, see
(AYDIN; BASAR, 2004) and (KARAKAYA et al.,
2011).
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Let X and Y be two sequence spaces and
A = (apg)mr=1 be an infinite matrix of real or
complex numbers. We write Ax = (4,(x)),
A, (x) = Xk angXy provided that the series on the
right converges for each n. If x = (x;) € X implies
that Ax €Y , then we say that A defines a matrix
transformation from X into Y and by (X,Y) we
denote the class of such matrices.

Let 0 be a one-to-one mapping from the set N of
natural numbers into itself. A continuous linear
functional ¢ on the space £, is said to be an
invariant mean or a ¢ - mean if and only if (i)
P(x) =0 if x>0 (ie. x>0 for all k), (ii)
p(e) =1, where e=(1,1,1,...), (i) @)=
@((X5(1))) for all x € £,

Throughout this paper we consider the mapping
o which has no finite orbits, that is, a? (k) # k for
all integer k = 0 and p = 1, where o?(k) denotes
the pth iterate of ¢ at k. Note that, a g-mean
extends the limit functional on the space ¢ in the
sense  that ¢@(x)=Ilimx for all xE€c,
(MURSALEEN, 1983). Consequently, ¢ ¢ I, the
set of bounded sequences all of whose o-means are
equal. We say that a sequence x = (xi) is o-
convergent if and only if x €V,. Using this
concept, Schaefer (1972) defined and characterized
o-conservative, o-regular and o-coercive matrices. If
o is translation then V is reduced to the set f of almost
convergent sequences (LORENTZ, 1948). As an
application of almost convergence, Mohiuddine (2011)
established approximation theorems for
sequences of positive linear operators through this
concept. The idea of o-convergence for double
sequences was introduced in (CAKAN et al., 2006) and
further studied recently in (MURSALEEN;
MOHIUDDINE, 2007). Cakan et al. (2009),
Mohiuddine and Alotaibi (2013; 2014), Mursaleen and
Mohiuddine (2008; 2009b; 2010a; 2010b; 2010c; 2012),
studied various classes of four dimensional matrices,
e.g. o-regular, o-conservative, regularly o-
conservative, boundedly g-conservative and o-coercive
matrices.

some

De la Vallée-Pousin mean

Let A = (4,,) be a non-decreasing sequence of
positive numbers tending to oo such that
As 1 SAn+1, 4 =0, pp(x) = ﬁzje,m x; is called
the generalized de la Vallée-Pousin mean, where
Ip=[m—24,+1m].

A sequence x = (x;) of real numbers is said to
be (0,1) - convergent (MURSALEEN et al., 2009a)

to a number L if and only if liin thEIm Xgimy =L

m-o

Mohiuddine

uniformly in n, and let V;(1) denote the set of all
such sequences, i.e.

1
x €{,: lim /1— Z
V(1) = K=
Xgimy =L uniformly in n

Note that a
(0,A) - convergent but converse need not hold. We
remark that

(1) it a(n) = n + 1, then V;(4) is reduced to the
space f; (MURSALEEN et al., 2009a),

(i1) if A, = m, then V;(4) is reduced to the space
,

(ii) if c(n) =n+ 1 and A,,, = m, then V;(4) is
reduced to the space f,

w)ccV;(A) €ty

A sequence x = (x;) of real numbers is said to
be (0,A) - bounded if and only if

convergent sequence is

=
sup |=— X jo| < oo,
m}l’ F. ol

J€Im
and let V;° (1) denote the set of all such sequences, i.c.

V" (D) = {x € Lu:sup|ty, (x)| < =},
mn

where:

1
tmn(x) = /1_ Z Xoi(ny-
m

j€Im

We remark that c € V(1) € V;°(1) € 4.
Theorem 2.1. The spaces V;(4) and V;°(4) are
BK space with the norm

Il x I="sup |t (x)] (2.1.1)

m,nz0

Proof. It can be easily verified that (2.1.1) defines a
norm on V,;(1). Now, we show that V(1) is complete.
Let (x®) be a Cauchy sequence in V,(1). Then it is a
Cauchy sequence in R, and hence convergent in R (
since R is complete ). That is for each k, x,({i) = X, Say,
as i = oo. Let x = (Xg)r=1. Then by the definition of
V,(2), we have ||x¥x]| |=supm’n|tmn(x(i)—x)|—>0
(i = o0) since x,(li) - Xp.

Now, we have to show that x € V;(4). Since
(x®) is a Cauchy sequence in V, (1), we have that
for a given € > 0, there is a positive integer N
depending upon ¢ such that, for each i, > N,
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||x(i> —x®|

<eE

Hence by (2.1.1) we have

SUP |ty (x© — xM)| < &.

mn
This implies that

|tmn (x® —xM)| < ¢, (2.1.2)

for each m,n; or

|LO - L®] < ¢, (2.1.3)

where: LO = g-lim x®. Let L=lim,_,,,L”. Then the
g-mean of x is @(x)=lim;(x") (since x=lim;x® and
[0) is  continuous  and  linear).  Further
limp™)=limL?=L (since @?) means o-
limx ®). Now letting r—o0 in (2.1.2) and (2.1.3), we get

|t (x® —x)| <& (2.1.4)
for each m,n (since x = lim x(r)); and
Tr
LD —L| <, (since lim L™ = L). (2.1.5)
r

for i > N. Now, fix i in the above inequalities. Since
x® € V,(A) for fixed i, we get

lim £, (x®) = L@ uniformly in n.

m-o

Hence, for given & > 0 there exists, a positive
integer M, (depending upon i and & but not on n)
such that

|t (x®) = LO| < ¢, (2.1.6)
for eachm,n (since x = lim x™); for all m > m,
T

and for all n. Now by (2.1.4), (2.1.5) and (2.1.6),
we get

|tmn€(x)‘_ Ll S‘ |tmn(?c) - tmn(x(i)) ]
Fmn (x@) = LO + LO — L < |60, (x) = by (x D))
Hemn(x@) = LO +|LO Ll <e+e+e=3,

for all m = my and for all n. Hence x € V;(4),
which proves the completeness of V;(1).

Now, let | x™ —x |5 0 as 7 - co. Then for
given € > 0, there is 1y € N such that

Il x™ —x lI< eforallr >,

73
which implies

sup|tmn(x(r) - x)| <egforallr =,
mn

and so that
|L(r) — L| < gforallr =,

as above in (2.1.5). Hence we easily get

|x£r) — x| < eforallr > 1y, and for all,

that is |x,£r) — Xi| = 0 as r = 00, and this proves the

continuity of the coordinate projection. Hence V(1) is

a BK space. The case V;° (1) can be proved similarly.
This completes the proof of the theorem.

Matrix transformations

In this section we characterize the matrix class

(£(0), Vz(A)) and (£(p), V5" (1)).
Theorem 3.1. Let 1 < p;, < supp, = H < o for
K

every k. Then A € (£(p),V;°(A)) if and only if there
exists an integer N > 1 such that

qk

1
su — a_j N~% < o0
m}’?Z A Z ol (myk

JE€Im

(3.1.1)

Proof. Sufficiency. Let (3.1.1) hold and that
x €€(p) using the following inequality
(MADDOX, 1969)
lab| < C(|al?C~7 + |b|P)

for C >0 and a,b two complex numbers (q~* +
p~1=1),we have

1
|tmn(Ax)| = Z ﬂ Z ao—i(n)‘kxk

k j€Im
ax
1 —dr Pk
Z N /1—2 Aigmyre| N7+ [x |
k ™ i€y

where g + pit = 1.

Taking the supremum over m,n on both sides
and using (3.1.1), we get Ax € V;°(1) for x € £(p),
ie. A € (4(p), V2 ().

Necessity. Let A€ (4(p),V;°(1)). Write
q,,(x) =sup |ty (AX) |. Tt is easy to see that for n > 0,

qn is a continuous seminorm on £(p) and (q,) is
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pointwise bounded on €(p). Suppose that (3.1.1)
is not true. Then there exists x € £(p) with
supqy,(x) = . By the principle of condensation
n

of singularities (YOSIDA, 1966), the set
{x € £(p):sup g (x) = 00}
n

is of second category in £(p) and hence
nonempty, that is, there is x € £(p) with
supqg,(x) = co. But this contradicts the fact that
n

(qn) is pointwise bounded on €(p). Now by the
Banach-Steinhaus theorem, there is constant M
such that

qn(x) < Mg(x). (3.1.2)

Now define a sequence x = (x) by

M 1
&Pk | sgn o Z A (n) k
m

Xk=19 | i agicny | WISt
k A o (n),k
m

J€lm
qk

N for 1<k<k,,
0 for k>k,,

where 0 < § < 1 and

ko dk
1 _
S = Z /1— Z aa.j(n)‘k Nk,
k=1 | ™ jebn

Then it is easy to see that x € £(p) and
g(x) < 6. Applying this sequence to (3.1.2) we get
the condition (3.1.1).

This completes the proof of the theorem.

In the following theorem we characterize the
matrix class (£(p), V;(4)).

Theorem 3.2. Let 1<pk551ippk=H< o for

every k. Then A € (4(p), V,;(1)) if and only if
(1) condition (3.1.1) of Theorem 3.1 holds

. . 1 . .
(ii) IIJPEZJ'E'm Uity = Ak uniformly in n,

for every k.
Proof. Sufficiency. Let (i) and (ii) hold and
x €f(p).Forj=>1

i dx
J R . —dk
k=1 | T Yjey, aa/(n),kl N~ =<

1 qdk
1y ) -q
lep 2k |,1m Yjeln aa’(n),kl N~k < oo,

for every n. Therefore

Mohiuddine
j 1 qdk
Z [y [N~ = li]r_nlirinz /1— Z Asin) i
K k=1 |"™ jein
dk
1
N~ % < supz /1—2 Aitmy ke N~ < oo,
m m ¢
k JEIm

where q: +p1;1 =1. Consequently reasoning as in the
proof of the sufficiency of Theorem 3.1, the series
1

ﬂZk Yjelm AoimyXr and Xy apxy converge for
every n,m; and for every x € £(p). For a given
& > 0and x € £(p), choose k such that

1
® H
D | <e,
k=ko+1

where H=supp,. Condition (ii) implies that there

(3.2.1)

exists mg such that

ko L
Z . Z Uiy — Ak || < €/2
k=1 ™

J€Im

for all m = m, and uniformly in n. Now, since
1
azk Yjetn AoimyiXe  and Xy apx, converges

(absolutely) uniformly in m,n and for every
x € £(p); we have that

[ee]
1
1 Asimyk — Ak | Xk
k=ko+1 | ™ j€Im

converges uniformly in m,n for every x € £(p).
Hence by conditions (i) and (ii)

SR
Z . Z Uiy — k|| < g/2
k=ko+1 | ™ j€ln
for all m = m, and uniformly in n. Therefore
SR
Z . Z Ay — Ok | Xie| = 0 (m — o0)
k=ko+1 | ™ j€ln

uniformly in n, i.e.

. 1
lm > 5= D iyt = ) @ik
K m

j€Im k

(3.2.2)

uniformly in n.
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Necessity. Let A € (£(p), V;(1)). Since V(1) c
V2 (1), condition (i) follows by Theorem 3.1. Since
e®=(0,0,--,1(k th place ),0,0,---)El(p), condition (ii)
follows immediately by (3.2.2).

This completes the proof of the theorem.

Conclusion

Two notions - one of g-mean and the other of
de la Vallée-Pousin mean - play a very active role in
recent research on matrix transformations. With
the help of these two notions, author has defined
the concept of (o,1)-bounded sequence, denoted
by V;°(4). He also characterized the matrix classes
(), V(D) and (£(p),V;"(A)), where £(p) and
V,(A) are defined in Section 1 and Section 2,
respectively.
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