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ABSTRACT. In this paper, B-tubular surfaces in terms of biharmonic spacelike new type B-slant
helices according to Bishop frame in the Lorentzian Heisenberg group H? are studied. The Necessary
and sufficient conditions for new type B-slant helices to be biharmonic are obtained. B-tubular
surfaces in the cLorentzian Heisenberg group H® are characterized. Additionally, main results in
Figures 1, 2, 3 and 4 are illustrated.
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Superficies B-tubulares no Grupo H? de Lorentz-Heisenberg

RESUMO. Analisam-se superficies B-tubulares nos termos de novos tipos de hélices B-inclinados,
semelhantes ao espaco bi-harmoénico, de acordo com o esquema de Bishop no grupo H? de Lorentz-
Heisenberg. Obtém-se as condigdes necessirias e suficientes para o novo tipo de hélices B-inclinados.
As superficies B-tubulares no grupo H? de Lorentz-Heisenberg sio caracterizadas e os resultados nas
Figuras 1, 2, 3 ¢ 4 sio analisadas.

Palavras-chave: Bi-energia, esquema de Bishop, hélices do grupo Lorentz-Heisenberg, novos tipos de hélices B-

inclinados, superficie tubular.

Introduction

Tubular surfaces are very useful for representing
long thin objects, for instance, poles, 3D fonts, brass
instrument or internal organs of the body in solid
modeling. It includes natural quadrics (cylinder,
cone and sphere), revolute quadrics, tori, pipes and
Dupin cyclide. Also, canal surfaces are among the
surfaces which are ecasier to describe both
analytically and operationally, (CARMO, 1976),
(O'NEIL, 1983), (FAROUKI; NEFF, 1990), (LU,
1994), (GRAY, 1998), (PETERNELL; POTTMANN,
1997), (ZHU et al, 2005), XU et al, 2006),
(KORPINAR; TURHAN, 2011), (TURHAN;
KORPINAR, 2011a).

We remind that, if ¥ is a space curve, a tubular

surface associated to this curve is a surface swept by
a family of spheres of constant radius (which will be
the radius of the tube), having the center on the
given curve. Alternatively, as we shall see in the next
section, for them we can construct quite easily a
parameterization using the Frenet frame associate to
the curve. The tubular surfaces are used quite often
in computer graphics, but we think they deserve
more attention for several reasons. For instance,
there is the problem of representing the curves
themselves. Usually, the space curves are represented

by using solids rather then tubes. There are, today,
several very good computer algebra system (such as
Maple, or Mathematica) which allow the
vizualisation of curves and surfaces, in different kind
of representations, (KORPINAR; TURHAN, 2012),
(POTTMANN; PETERNELL, 1998).

The aim of this paper is to study tubular
surfaces surrounding biharmonic spacelike B -
slant helices according to Bishop frame in the
Lorentzian Heisenberg group H’.

Let (M,g) and (N,h) be

manifolds and ¢:M — N a smooth map. Denote

Lorentzian

by V? the connection of the vector bundle ¢*TN

induced from the Levi-Civita connection V" of
(N,h). The ‘second fundamental form’ Vdg is
defined by

(Vdg) X,Y)=V%ddY)-dH(V,Y), X,Y e(TM).

Here V is the Levi-Civita connection of

(M,g). The tension field z’(¢) is a section of
¢'TN defined by T(¢)= trvde.
A smooth map ¢ is said to be harmonic if its

tension field vanishes. It is well known that @ is
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harmonic if and only if @ is a critical point of the

‘energy’:
E(p)= [hldg.ag)av,

over every compact region of M. Now let
¢:M — N be a harmonic map. Then the Hessian

H of E is given by
H,(7.)= [n(0, ()W kv, V. < T(§TN)
Here the Jacobi operator J, is defined by

3,()=av -R,(V) Vv eT(pTN)

¢ .— _m A v ¢
A= - [ VEVE -V

, 2
V.

R,(7)=1 R* (v, dg(e, )Mo(e,),

where R and {¢} are the Riemannian curvature

of N, and a local orthonormal frame field of M,
respectively,  (EELLS; SAMPSON, 1964),
(JIANG, 1986a, 1986Db), (TURHAN;
KORPINAR, 2010).

Let ¢:(M,g)—>(N,h) be a
between two Lorentzian manifolds. The bienergy
E,(¢) of ¢ over compact domain Qc M is

defined by
E,(¢)= [ h(z(g).7(4)dv,.

A smooth map ¢:(M,g)— (N,h) is said to be
‘biharmonic’ if it is a critical point of the E, (¢).

The section 7,(¢) is called the bitension field of
¢ and the Euler-Lagrange equation of E, is

smooth map

7,(4):=—J,(z(¢))= 0.

This study is organised as follows: Firstly, we
give necessary and sufficient conditions for new
type B-slant helices to be biharmonic. We
characterize B -tubular surfaces in the Lorentzian
Heisenberg group H’. Secondly, we study B-
tubular surfaces in terms of biharmonic spacelike
new type B-slant helices according to Bishop
frame in the Lorentzian Heisenberg group H’.
Finally, we illustrate our results in Figures 1, 2, 3
and 4.

Korpinar
The Lorentzian Heisenberg Group H?

The Heisenberg group Heis® is a Lie group

which is diffeomorphic to R’ and the group
operation is defined as

(6,0,2)-(60,2) = (X+ X,V + 1,2 +Z =Xy + ).

The identity of the group is (0,0,0) and the

inverse of (x,y,z) is given by (-x,~y,~z)

(RAHMANI; RAHMANTI, 2006). The left-invariant

Lorentz metric on Heis > is
g=—d¥ +dy +(xdy+dz).

The following set of left-invariant vector fields
forms an orthonormal basis for the corresponding
Lie algebra:

0 0 0 0
e, =—,8, = ——X—,8; = —. .
{1 oz’ 7 oy oz’ 6x} @1

The characterising properties of this algebra are
the following commutation relations:

gle,e) = gley,e,) =1, g(ey,e;)=—1.

Proposition 2.1.

For the covariant derivatives of the Levi-Civita
connection of the left-invariant metric g, defined

above the following is true:

0 e e,
V=le 0 ¢ (2.2)

e, —¢ 0

where the (i, j) -element in the table above equals
V. e, for our basis

{e,.k =123}
Moreover we put
R, =Re.¢))e, Ry =Re,.e;.¢.¢),

where the indices i, j,k and [ take the values 1, 2
and 3.

Ry =—¢5, Ry =—¢;, Ry, =3e,
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and

Ryp=-1,R;;53=1, Ry, =3.

Spacelike biharmonic new type B-slant helices with
Bishop frame 1n the Lorentzian Heisenberg group
H3

Let y:1 — H’ be a non geodesic spacelike curve

on the Lorentzian Heisenberg group H’ parametrized
by arc length. Let {t,n,b} be the Frenet frame fields

tangent to the Lorentzian Heisenberg group H’ along
¥ defined as follows:

t is the unit vector field ¥ ’ tangent to ¥, n is the
unit vector field in the direction of V t (normal to ),
and b is chosen so that {t,n,b} is a positively oriented

orthonormal basis. Then, we have the following Frenet
formulas, (TURHAN; KORPINAR, 2011b):

V. t=xn
V. n =kt + b, 3.1
V. B=m,

where x is the curvature of » and 7 is its torsion and

In the rest of the paper, we suppose everywhere
xk#0and 7#0.

The Bishop frame or parallel transport frame
is an alternative approach to defining a moving
frame that is well defined even when the curve
has vanishing second derivative, (BISHOP, 1975).
The Bishop frame is expressed as

V.t=km, —km,,

V.m, = kt, (3.2)
V.m, = kt,
where

g(t,t)= lsg(mpml): —l,g(mz,m2)= 1,
g(T,M])=g(t,m2)=g(m1,m2)=0.

Here, we shall call the set {t,m,,m,} as Bishop

trihedra, k, and k, as Bishop curvatures.

Also, 7(s) =/ (s) and x(s) = |65 — ;|

65

With respect to the orthonormal basis {e,,e,,e,}

we can write

t= tlel +t262 +t3e3,
_ 1 2 3
m, = me, + mye, + m;e,, (3.3)

_ 1 2 3
m, = m,e, +m,e, +mse,.

Theorem 3.1.
y:I — H’ is a spacelike biharmonic curve with

Bishop frame if and only if

kz—kzzconstant =C =0,
k +[k2 K; 2 = [1+4 )ZJ
4k,mim;, (3.4)

K+ k2 = k2 ]k —4k,m!m!
—k, -1+ 4\m| 52]

Proof.

Using Equation(2.2) and Jacobi operator, we
obtain above system. This completes the proof.

Definition 3.2.

A regular spacelike curve y:1 —H is called a
new type slant helix provided the spacelike unit

vector m, of the curve } has constant angle Q

with spacelike vector u, thatis
g(m,(s),u)=cos Qforall s  I. (3.5)

The  condition is not altered by
reparametrization, so without loss of generality
we may assume that slant helices have unit speed.
The slant helices can be identified by a simple
condition on natural curvatures.

To separate a spacelike new type slant helix
according to Bishop frame from that of Frenet-
Serret frame, in the rest of the paper, we shall use
notation for the curve defined above as spacelike
new type B-slant helix.

B-tubular surfaces in terms of spacelike biharmonic
new type B-Slant helices according to Bishop frame
in the Heisenberg group H?

The envelope of a 1-parameter family of the
spheres in the Lorentzian Heisenberg group H’ is
called a tubular surface in the Lorentzian
Heisenberg group H’. The curve formed by the
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centers of the spheres is called center curve of the
tubular surface. The radius of the tubular surface is
the function 7 such that 7 is the constant radius of
the sphere.

To separate a tubular surface according to
Bishop frame from that of Frenet- Serret frame,
in the rest of the paper, we shall use notation for
the surface defined above as B-tubular surface.

Theorem 4.1.

Let y:/—H be a unit speed biharmonic
spacelike new type B-—slant helix with non-zero
curvatures. Then the equation of B—tubular surface
MB(s,t) is

M®(s,7)=sin Qs — %cos Qsinh[C s +C,]
0

c0s*Q(2[C,s + C,] +sinh 2[C,s + C,])
4C,

+r cosh #cos QJe,

+[CLcos Qsinh [C,5 + C,]+C,
0
+rsinh ¢sinh[C s + C,] (4.1)

+rcosh ¢sin Qcosh[C s + C,]]e,

+ [CLcos Q cosh [C (s +C|]

0
+C, + rsinh tcosh [C s+ C|]
—7(s)r'(s)cos Qsinh [C o5 + C,]

+ rcosh tsin Qsinh [C s+ C,]]e;,

where C,,C,,C,,C, are constants of integration

and
NI =
C,=~—2—L -2sinQ.
cos
Proof.

Assume that the center curve of B-—tubular
surface M®(s,¢) is a unit speed spacelike biharmonic
B-slant helix » and M® denote a patch that

parametrizes the envelope of the spheres defining
the tubular surface.
Thus, it is seen that

MB(s,2)=y(s)+als,t)(s)
+0(s,)m, (s)+ e (s, 0)m, (s)

Korpinar

where a, b and c¢ are differentiable on the interval
on which J is defined.

So, without loss of generality, we take the axis of
y is parallel to the spacelike vector e, . Then,

g(m,,e,)=m) =cosQ, 4.3)

where Q is constant angle.
On the other hand, the vector m, is a unit

spacelike vector, we reach

m, = cos Qe, +sin Q cosh A(s)e,

44
+sin Qsinh A (s )e;. 49

On the other hand, using Bishop formulas
Equation (3.2) and Equation (2.1), we have

m, =sinh A(s)e, + cosh A(s)e,. (4.5)
It is apparent that
t = sin Qe, + cos Qcosh A(s)e,
(4.6)

+cos Qsinh A(s)e,.
A straightforward computation shows that
V. t=(t)e, + (t, + 2t,t5)e, + (t; + 24,1,)e;.

Therefore, we use Bishop formulas Equation
(3.2) and above equation we get

[12 ;2
Als)= [Q—ZsinQ]AwCl,

4.7)
cosQ
where C, is a constant of integration.
From Equation(4.6), we get
t = (cos Qsinh [C s + C,],
cos Qcosh [C s + C], (4.8)

sin Q — xcos Q cosh [C s + C,]).

Since,
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7(s)=[sin Qs — %cos Qsinh[C s+ C,]

0

cos’ Q(2[Cys +C,]

- 4C,
+sinh 2[C,s+C,])+C
+[CL cosQcosh[Cs+C|]

0

+ Cz][CL cosQsinh[Cys +C,1+C; e,

0

+ [Clcostinh[Cos +C,]1+C;le,

0

+ [Cicochosh[Cos +C,1+C, Je,,

0

NI
C _——ZSIHQ

where C, =
cos

On the other hand, using definition of tubular
surface, we have

M2 (5.0) (s M (s1)~ (s)) = (s). 49)

Since M®(s,¢)-

tubular surface, we get

g(MB (s,t)— y(s),M? (s,t))= 0.

Using now Equation (4.9) and Equation (4.10),
we get

a’(s)-b'(s)+c*(s)=r(s).
a(s)a, (s)-bl(s),(s)+cls)e, (s)=0
When we differentiate Equation (4.2) with

respect to § and use the Bishop formulas, we
obtain

M?(s,t): (1 + ax(s)+ b(s)kl + C(s)k2 )t(s)
+ @)k, +b Jm, (s)
+ (e, (s)-als )k, )m,(s)

Combining Equation (4.9) and Equation (4.10)
we have

7(s) is a normal vector to the

(4.10)

(4.11)

(4.12)

a(s)=—r(s)(s) (4.13)
A turther computation gives
b(s)+ ()= P - )F) (4.14)

67

The solution of Equation (4.14) can be written
in the following form

b(s)= rsinhz,

c(s)=rcoshz. (415
Thus Equation (4.2) becomes
M®(s,)= y(s)+ rsinh rm,(s)+ rcosh rm,(s).  (4.16)

Therefore, by Equations.(4.4) - (4.6) and taking
into account Equation(4.16), we obtain the system
Equation(4.1). This completes the proof.

Theorem 4.2.

Let y:1—>H
biharmonic new type B-—slant helix with non-zero
Bishop curvatures. Then, the parametric equations
of B—tubular surface MB(s,t) are

be a unit speed spacelike

X g (s, t) = [CL cos Qcosh[Cs +C|]

M
0
+ rsinh ¢ cosh[Cs + C,]

+rcoshtsin Qsinh[Cys +C,]+C,],

Y8 (s, t) = [CL cos Qsinh[Cys + C,]

0

+rsinh¢sinh[Cys + C|]
+rcoshtsin Qcosh[Cys +C,]+C,],

Z s (s,£)=[sin Qs —g—zcos Qsinh[C s+ C,]

0

CcoS Q(Z[C s+C ]

4C

+sinh 2[C,s+C,])+C (4.17)

+[Ciocochosh[C0s+Cl]+Cz]
[Ciocostinh[Cos+Cl]+C3]
+7 cosh #cos Q]
—[CLOcochosh [C,s+C,]+C,
+rsinh fcosh [C,s+ C,]

+ rcosh tsin Qsinh [C s + C,]]
[l—cos

0

+rsinh ¢sinh [C ;s + C, ]

Qssinh [C ,s+C ]+ C,

+ rcosh ¢sin Q cosh[C s + C,]]
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where C,,C,,C,,C, are constants of integration and

'kZ _ 12
C, =2—k1—2sinQ,

Cco

Proof.

Using Equation (2.1) and Equation (4.1), we
have Equation (4.17). Thus proof is complete.

The obtained parametric equations for Equation
(4.17) 1s illustrated in Figures 1, 2 and 3 with helping
the programme of Mathematica as follow:

-2

Figure 2. ForC,=-C, =C,=-C; = 1.

Korpinar

Figure 3. For-C, = C, =-C, = C; = -1.

Corollary 4.3.

Let y:1—>H
spacelike new type B-slant helix with non-zero
Bishop curvatures. Then the equations of y are

be a unit speed biharmonic

x(s)= Cicos Qcosh[C,s+C,]+C,,

0

y(s)= CLcos Qsinh[Cys + C ]+ C,,

0

z(s)=sinQs — %costinh[Cos +C/]

0

C cos”Q(2[Cys + C,]+sinh2[Cys + C,])+ C,,
0

where C;,C,,C,,C, are constants of integration and

k2 —k?
c, =Yk s ana

cos
If we use Mathematica in above system, we get
(Figure 4):

Figure 4. For-C, = C, =-C, =C; = -1.
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Conclusion

A tubular surface associated to a curve is a
surface swept by a family of spheres of constant
radius (which will be the radius of the tube),
having the center on the given
Alternatively, as we shall see in the next section,
for them we can construct quite easily a
parameterization using the Frenet frame associate
to the curve.

curve.

In this work, B-tubular surfaces in the
Lorentzian  Heisenberg  group H’ are
characterized.
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