
Acta Scientiarum  
http://www.uem.br/acta 
ISSN printed: 1806-2563 
ISSN on-line: 1807-8664 
Doi: 10.4025/actascitechnol.v37i1.17206 

	

Acta Scientiarum. Technology  Maringá, v. 37, n. 1, p. 55-61, Jan.-Mar., 2015 

Almost statistical convergence of order    

Mikail Et, Yavuz Altin* and Rifat Çolak 

Department of Mathematics, University of Firat, 23119, Elaziğ-Türkey. *Author for correspondence. E-mail: yaltin23@yahoo.com   

ABSTRACT. In this paper, we introduce the concept 
Ŝ statistical convergence of order  . Also some 

relations between 
Ŝ - statistical convergence of order   and strong  

pŵ - summability of order   are 

given. Furthermore some relations between the spaces   Mw p ,ˆ   and 
Ŝ  are examined. 

Keywords: statistical convergence, almost convergence, Cesàro summability. 

Quase convergência estatística da order   

RESUMO. Apresenta-se o conceito 
Ŝ a convergência estatística da ordem  - e fornecem-se alguns 

relacionamentos entre 
Ŝ - a convergência estatística da ordem   e a forte  

pŵ - sumabilidade da 

ordem  . Algumas relações entre os espaços   Mw p ,ˆ   e 
Ŝ  são investigadas. 

Palavras-chave: convergência estatística, quase-convergência, sumabilidade de Cesàro. 

Introduction 

The idea of statistical convergence was given by 
Zygmund (1979) in the first edition of his 
monograph published in Warsaw in 1935. The 
concept of statistical convergence was introduced by 
Steinhaus (1951) and Fast (1951) and later 
reintroduced by Schoenberg (1959) independently. 
Over the years and under different names statistical 
convergence has been discussed in the theory of 
Fourier analysis, Ergodic theory, Number theory, 
Measure theory, Trigonometric series, Turnpike 
theory and Banach spaces. Later on it was further 
investigated from the sequence space point of view 
and linked with summability theory by Šalát (1980), 
Fridy (1985), Connor (1988), Rath and Tripathy 
(1994), Savaş (2000), Mursaleen (2000), Miller and 
Orhan (2001), Et and Nuray (2001), Mursaleen  
et al. (2001, 2003, 2009), Mursaleen and Edely 
(2009), Mohiuddine and Lohani (2009), Çolak 
(2010), Çolak and Bektaş (2011), Bhunia et al. 
(2012), Kumar and Mursaleen (2011) and Savaş and 
Mohiuddine (2012) and many others. In recent 
years, generalizations of statistical convergence have 
appeared in the study of strong integral summability 
and the structure of ideals of bounded continuous 
functions on locally compact spaces. Statistical 
convergence and its generalizations are also of the 
natural numbers. 

Moreover, statistical convergence is closely 
related to the concept of convergence in 
probability. 

Let w  denote the set of all real sequences 

 .nxx   By   and ,c  we denote the Banach 
spaces of bounded and convergent sequences 

 nxx   normed by ,sup nn xx   respectively. A 

linear functional L  on   is said to be a Banach 
limit if it has the properties, i)   0xL  if 0x  (i.e. 

0nx  for all ),n  ii)   ,1eL  where  ,,1,1 e  iii) 
   ,xDx LL   where D  is the shift operator defined 

by    1 nn xDx  Banach (1955). 

Let B  be the set of all Banach limits on .  A 
sequence x  is said to be almost convergent to a 
number L  if   Lx L  for all .BL  Lorentz (1948) 
has shown that x  is almost convergent to L  if and 
only if 
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Let f  denote the set of all almost convergent 

sequences. We write Lxf lim  if x  is almost 
convergent to .L  Maddox (1978) and (independently) 
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Freedman et al. (1978) has defined  kxx   to be 
strongly almost convergent to a number L  if 
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Let  f  denote the set of all strongly almost 

convergent sequences. If x  is strongly almost 
convergent to ,L  we write   .lim Lxf   It is easy 
to see that   . ff  Das and Sahoo (1992) 
defined the sequence space  
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and investigated some of its properties. 

The order of statistical convergence of a 
sequence of numbers was given by Gadjiev and 
Orhan (2002) and after then statistical 
convergence of order   and strongly p Cesàro 
summability of order   studied by Çolak (2010) 
and generalized by Çolak and Bektas (2011). 

The statistical convergence of order   is 
defined as follows. Let 10   be given. The 
sequence  kxx   is said to be statistically 
convergent of order   if there is a real number L  
such that  
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for every 0 , in which case we say that x  is 
statistically convergent of order  , to L . In this case 

we write LxS k  lim . The set of all statistically 
convergent sequences of order   will be denoted by 

S . 
The generalized de la Vallée-Poussin mean is 

defined by  
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where  n   is a non-decreasing sequence of 
positive numbers such that ,11  nn   ,11   

n  as n  and  .,1 nnI nn     
A sequence  kxx   is said to be  ,V

summable to a number L  if   Lxtn   as n , 

Leindler (1965).  ,V summability reduces to 
 1,C  summability when    nn   . 

We write 
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for the sets of strongly Cesàro summable and 
strongly  ,V summable sequences, respectively. 
Strong  ,V summability reduces to strong  1,C  
summability when    .nn    

Main results  

In this section we give the main results of the 
paper. In Theorem 2.4 we give the inclusion 

relations between the sets of 
Ŝ statistical 

convergent sequences of order   for different '  s. 
In Theorem 2.8 we give the relationship between 

the strong  
pŵ summability of order   and the 

strong  
pŵ summability of order  . In 

Theorem 2.11 we give the relationship between the 

strong  
pŵ summability of order   and the 


Ŝ statistical convergence of order  . 

Definition 2.1  

Let the sequence  n   of real numbers be 
defined as above and 10    be given. The 

sequence   wxx k   is said to be 
Ŝ  statistically 

convergent of order   if there is a real number L  
such that 
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where  nnI nn ,1   and n  denote the th  

power  n  of ,n  that is     n  

 .... , ..., , , 21
  n  We write LxS k  limˆ

  in case 

 kxx   is 
Ŝ  statistically convergent to L  of 

order  . The set of all 
Ŝ statistically convergent 

sequences of order   will be denoted by 
Ŝ . We 

shall write Ŝ  in the special case nn   for all 
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;Nn  Ŝ  in the special case 1  and Ŝ  in the 

special case ,nn   1  instead of .ˆ
S   

The 
Ŝ statistical convergence of order   is 

well defined for 10    , but it is not well 
defined for 1  in general. For this let  kxx   
be fixed. Then for an arbitrary number L  and 

0  we have 
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Thus kxS limˆ 
  is not uniquely determined for 

1  , where  a  denotes the integer part of the real 
number a .  

Theorem 2.2  

Let 10   and  ,kxx    kyy   be sequences 

of complex numbers ,  then )(i  If 0limˆ xxS k 
  

and Cc , then ,)lim(ˆ
0cxcxS k 

  )(ii  If 

0limˆ xxS k 
  and 0limˆ yyS k 

 , then 

.)lim(ˆ
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Proof.  

Omited. 

Definition 2.3  

Let the sequence  n   be as above,  1,0  
be any real number and let p  be a positive real 
number. A sequence x  is said to be strongly 

 
pŵ summable of order  , if there is a real 

number L  such that  
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where  .,1 nnI nn    The strong  
pŵ

summability of order   reduces to the strong 
 pŵ summability for 1 . The set of all 

strongly  
pŵ summable sequences of order   

will be denoted by  
pŵ . 

Theorem 2.4  

If 10    then 



 SS ˆˆ   . 

Proof.  

If 10    then we may write  
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for every 0  and this gives that 



 SS ˆˆ   . 

From Theorem 2.4 we have the following. 

Corollary 2.5 

If a sequence is 
Ŝ statistically convergent of 

order ,  to L , then it is Ŝ statistically 

convergent to ,L  that is 

 SS ˆˆ   for each 
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For given 0  we have 
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Taking the limit as n  and using ),1(  we get 

.limˆlimˆ LxSLxS kk  


   

Corollary 2.7 

If ,0inflim 
 nn

n
  then .ˆˆ 

SS    

Theorem 2.8  

Let 10    and p  be a positive real 

number, then    .ˆˆ  
pp ww    
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Proof.  

Let    
pk wxx ˆ . Then given   and   such 

that 10    and a positive real number ,p  we 
may write  
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and this gives that    .ˆˆ  
pp ww    

The following result is a consequence of Theorem 2.8. 

Corollary 2.9 

Let 10   and p  be a positive real number. 

Then    
pp ww ˆˆ  .  

Theorem 2.10  

Let 10   and  qp0 . Then 

   .ˆˆ  
pq ww   

Proof is seen from Hölder inequality. 

Theorem 2.11  

Let   and   be fixed real numbers such that 
10    and  p0 . If a sequence is 

strongly  
pŵ summable of order ,  to ,L  then 

it is 
Ŝ statistically convergent of order  , to L , 

i.e   .ˆˆ 


  Swp    

Proof.  

For any sequence  kxx   and 0 , we have 
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and so that  
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From this it follows that if  kxx   is strongly 

 
pŵ summable of order  , to L , then it is 


Ŝ statistically convergent of order  , to L . 

Corollary 2.12  

Let   be a fixed real number such that 10    
and  p0 . Then, the following statements 

hold: )i  If a sequence is strongly  
pŵ summable 

of order  , to L , then it is 
Ŝ  statistically 

convergent of order  , to L , i.e   


  Swp ˆˆ  ,  )ii  

  .ˆˆ 
  Swp   

Results related to orlicz function 

In this section we give the inclusion relations 

between the sets of 
Ŝ  statistical convergent 

sequences of order   and strongly   Mw p ,ˆ 

summable sequences of order     with respect to 
an Orlicz function .M   

An Orlicz function is a function 
    ,0,0:M , which is continuous, non-

decreasing and convex with 0)0( M , 0)( xM  
for 0x  and )(xM  as x . 

Lindenstrauss and Tzafriri (1971) used the 
idea of Orlicz function to construct the sequence 
space  
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becomes a Banach space, called an Orlicz sequence 
space. The Orlicz space M  is reduced in the special 

case pxxM ||)(   to the classical space p  of 

absolutely p summable sequences, where 
.1  p   

Recently Orlicz sequence spaces have been 
studied by Bhardwaj and Singh (2000), Mursaleen 
et al. (2001), Savaş and Rhoades (2002), Çolak et al. 
(2006), Et et al. (2006), Güngör et al. (2004), 
Tripathy et al. (2008), Dutta and Başar (2011) and 
many others. 
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Definition 3.1  

Let M  be an Orlicz function,  kpp   be a 
sequence of strictly positive real numbers and let 

 1,0  be any real number. Now we define 
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If   ,,ˆ Mwx p   then we say that x  is strongly 

  Mw p ,ˆ  summable of order   with respect to 

the Orlicz function .M   
In the following theorems we shall assume that 

the sequence  kpp   is bounded and 
 Hppph kkkkk supinf0  . 

Theorem 3.2 

Let  1,0,   be real numbers such that    
and M  be an Orlicz function, then 
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  nn   for each n  we may write  

 

 
 

 

 

 

  

      

  
      ).,(min 

:
1

 ,,min
1

1

1

11

11

1

111

1

2

1

2

1

Hh

kmn
n

Hh

n

p

n

p

km

p

km

n

p

km

p

km

n

p

km

Ik
n

ff

LxtIk

MM

f

Lxt
M

Lxt
M

Lxt
M

Lxt
M

Lxt
M

k

k

k

k

k

k

n





















































































 






















 













































 






















 






















 
















 

Since   ,,ˆ Mwx p   the left hand side of the 
above inequality tends to zero as n  
uniformly in m . Therefore the right hand side 

tends to zero as n  uniformly in m  and 
hence ,ˆ

Sx  because       .0),min( 11 Hh ff   

Corollary 3.3 

Let 10    and M  be an Orlicz function, 

then    .ˆ,ˆ 


  SMw p    

Theorem 3.4  

Let M  be an Orlicz function and  kxx   be a 

bounded sequence, then   .,ˆˆ MwS p 
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, x  then there is a constant 0T  such that 
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Hence   .,ˆˆ MwS p 
   

Conclusion  

We introduced an studied the  - statistical 
convergence of order  α,  - strong p- Cesàro 
summability of order α. Some of inclusion relations 
of given sets are established. 

Also using an Orlicz function establish some 
other sets of sequences related to the subset. 
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